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Abstract

When firm location decisions exhibit strong strategic complementarities, certain

equilibria emerge where firms coordinate their entry, while others encounter coor-

dination failures. Many large-scale, big-push-style, place-based industrial policies

designed to stimulate economic growth aim to guide the production sector towards

pareto dominant equilibrium. In this ongoing project, I present an econometric

framework to: a) estimate agglomeration forces in the presence of multiplicity, b)

identify instances of multiplicity, and c) estimate firm beliefs as encoded in the

equilibrium selection rule. This framework, under appropriate instruments, can

be used to decompose the causal impact of policy shocks, distinguishing between

effects stemming from movement along equilibrium and those arising from equi-

librium switching. I apply this framework to study the evolution of the economic

activity distribution in India, as well as its response to various Industrial Policy

initiatives.
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1 Introduction

Industrial policy is ubiquitous. Even developed countries are engaged in Industrial Policy

whether it is to address green transition, build resilient supply chains or tackle geopolitical

tensions with China. Yet, as researchers, we don’t quite understand when and how

Industrial Policy works. Industrial Policy has traditionally been understudied due to

data limitations and lack of exogenous variation. Even though some of the existing work

(juhasz lane hanlon) has isolated exogenous variation to study the impact of protection,

the mechanisms through which such policies work still remain unclear.

The theoretical foundations of industrial policy are well-established, grounded in the

broader rationale often invoked in policymaking – addressing market failures. A recent

review article by Juhász, Lane, and Rodrik (2023) identifies externalities and coordina-

tion failures as the top two justifications for industrial policy. In this paper, I aim to

provide an econometric framework for dissecting the impact of industrial policy into two

fundamental components: movement along equilibria and shift in equilibria. To illustrate,

consider an analogy of firms engaging in an entry game. A policy shock can influence

the entry outcomes through three channels. First, the shock may directly increase en-

try by enhancing expected payoffs, such as through tax incentives, making entry more

financially attractive. Second, it can affect entry through spillover effects; for example,

tax incentives targeting one industry may stimulate entry in another, creating a positive

feedback loop that boosts the initial industry’s profitability and encourages further entry.

Lastly, the policy may stimulate entry by inducing a shift in equilibria. Even if no relevant

payoff variables change, the policy can “advertise” a region as a future industrial hub,

attracting firms to establish themselves there. Alternatively, the policy may introduce a

big of temporary incentives that makes it the dominant strategy for all firms to enter -

if the equilibria is sticky, such big push can be temporary. I label the first two channels

as part of ”movement along the equilibria” and the third as ”equilibrium switching.” I

present a robust framework for decomposing the effects of industrial policy into these

three channels.

My contribution is threefold. First, I provide estimates of the spillover parameter

even in a setting where multiple equilibria are played in the data. The literature on

empirical estimation of games that estimating games is hard when there is a possibility

of multiplicity. Otsu, Pesendorfer, and Takahashi (2016) provide tests for when the data

across different markets can be pooled in the estimation of games. Aguirregabiria and

Mira (2019) provide an identification argument for the equilibrium selection rule assuming

finite and small support for unobserved heterogeneity. leverage the trade setting to

provide a methodology that can be used to estimate the parameter even with underlying

multiplicity and continuous unobserved heterogeneity. Estimation of spillover parameters

is absolutely key in informing trade policy.
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Secondly, we explore whether real-world industrial policy primarily operates through

movement along equilibria or equilibrium switching. In other words, we introduce a

method to quantify the impact of policy shocks on the selection of equilibria. This not

only enriches our understanding of historical industrial policy instances but also provides

insights into the types of policy interventions capable of shifting equilibria. Importantly,

even though there has been some work on identifying underlying mechanisms for effects

of Industrial Policy (Hanlon (2020), Juhász, Squicciarini, and Voigtländer (2020)), no

prior work has attempted to quantify the influence of industrial policy on equilibrium

selection.

Lastly, while the paper primarily focuses on firm location decisions and place-based

industrial policy, the methodology presented here can be applied more broadly. It can

extend to the estimation of network games with strategic complementarities, opening the

door to comprehensive investigations in various domains.

2 Model

I model the distribution of economic activity across space, as resulting from the entry

decisions of firms in various industries. With some abuse of notation, I will denote the

set and the cardinality of the set interchangeably. There are K firm-groups that can be

interpreted as industries but in general, can refer to any firm group that can be assigned

to potentially anonymous firms across various markets.

Players and Action Space. Assume there are Nk potential entrants in each sector

k, choosing to locate between L locations. Denote the set of all potential entrants by

N = ∪kNk. Each potential entrant decides whether and where to locate her firm, therefore

there at L+ 1 actions available to each potential entrant.

Markets and Locations. By market, I mean an instance of the game played between

players. A market will have a set of locations that the firms in that market are choosing

from. When I discuss the model, I am discussing how the game is played within any

given market. Therefore, the market-level notation is suppressed initially and introduced

only when I discuss data generating process.

Payoffs. Payoff for a firm in sector k for locating her firm in location l is given by

πikl = ṽikl(x, a−i,ω)

I allow profits to depend on observed characteristics of all locations l denoted by x ≡ (xl),

actions of other agents within and outside industry denoted by a−ikl and a−kl respectively,

a−i ≡ (a−i,kl, a−k,l)l∈L. I also allow for the profits to depend on unobserved but payoff-

relevant characteristics denoted by ω.

There is an idiosyncratic part of the pay-off that is private information to each entrant,
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denoted by ϵik. That is, before making the entry decision, ϵik is observed by firm i only,

although everyone knows the joint distribution of (ϵik)i∈Nk,k∈K . I assume, in line with the

literature that studies estimation of non-cooperative incomplete-information games, that

this part is additive separable, independent of all payoff and non-payoff relevant observed

and unobserved characteristics, and has a known continuously differentiable distribution.

That is,

πikl = vikl(x, a−i,ω) + ϵikl,where

Assumption 1. (ϵikl)i∈Nk,k∈K,l∈L+1 is i.i.d across i ∈ N . (ϵikl)l∈L+1 is drawn from a

known continuously-differentiable distribution G.

Given this information structure, players play according to the Bayes-Nash equilib-

rium. Player i’s beliefs about player j’s actions are denoted by Pij(.,x,ω) ∈ ∆L+1.

Players will choose a location so as to maximize expected profits given their beliefs about

what other players are playing. If i’s beliefs of player j strategy are independent across

all players j ∈ N − 1, then i’s strategy, conditional on observing ϵik is given by

σik(x,ω, ϵik) = arg max
al∈L+1

ϵikl +
∑

a′j∈L+1,j∈N−1

Πj ̸=iPij(a
′
j,x,ω)vikl(x, a

′
−i,ω)

Assumption 1 along with consistency of beliefs implies that beliefs indeed are going

to be independent and equal to the ex-ante choice probabilities:

Pij(a,x,ω) =

∫
1(σj(x,ω, ϵ) = a)G(ϵ)

Definition 1. Let x ∈ X and ω ∈ Ω. The best-response conditional choice probability

function Ψik : X × Ω× (∆L+1)N−1 → ∆L+1 for player i in industry k is given by

Ψikl(x,ω,P) =

∫
1

argmax
al∈L

ϵikl +
∑

a′−i∈(L+1)N−1

Πj ̸=i,k∈KPjk(a
′
j,x,ω)vikl(x, a

′
−i,ω)

 = al

G(ϵ)

where the l-th element of the vector Ψik is ik’s probability of playing action al.

A probability vector P ∈ (∆L+1)N is an equilibrium conditional choice probability

(CCP) vector given (x,ω) iff it satisfies P = Ψ(x,ω,P).

By Brower’s Fixed Point Theorem, under assumption there is at least one equilibrium,

but there can be many.
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Figure 1: Left Panel (a): π̃ = −2; δ = 3, (b): π̃ = −2; δ = 4, Right Panel: δ = 4

2.0.1 Example

Suppose L = 1, so the location decision of firms boils down to the entry decision. The

payoff of a firm i in industry k is given by

πik1 = π̃k +
∑
k′∈K

δkk′Qk′ + ϵik1; πik0 = ϵik0

Here, Qk =
∑

i∈Nk
aik

Nk
, where aik is the binary variable for whether firm i belonging to

industry k enters. ϵik is the private information of firm i. Let ϵik ⊥ ϵjk′∀i, j ∈ N, k, k′ ∈
K, implying Eϵk′

(Pk′ | ϵik) = Eϵk′
Pk′m. That is, independence of private information

means that firm i’s private information shocks are not informative of firm j’s private

information shocks.

Lets assume that all firms in a group play symmetric strategies. Firm i chooses

the action that maximises the ex-ante profits, which are given by the same expression

above if we replace the actual probability Qk with the conditional choice probability

Pk. Lets assume that (ϵik0, ϵik0) follow a Type-I Extreme Value distribution. Under the

distributional assumption on ϵik, the conditional choice probability of firms in group k is

given by

Pk =
exp π̄k1

1 + exp π̄k1

; whereπ̄k1 = π̃k +
∑
k′∈K

δkk′Pk′

Single Industry. In the case of single industry, the equilibrium choice probability

is given by the fixed point of the mapping P → exp π̃+δP
1+exp π̃+δP

. This is visualized in the left

panel figure 2.0.1 where for a low value of δ there is a single equilibrium, while for a high

value of δ, three equilibria emerge.

Multiple equilibria exists in the intermediate range of π̃. For a low value of π̃, the

dominant strategy for everyone is to not enter, and for a high level of π̃, firms are going

to enter irrespective of the entry probability. This can be visualised in the right panel of

figure 2.0.1 where multiplicity arises when π̃ ∈ [−2.4,−1.4]
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Figure 2: Red: Best Response Curve of Iron; Blue: Best Response Curve of Steel

Multiple Industries. Suppose there are two industries - iron and steel. π̃k for

k ∈ {Iron, Steel} is −2,−5 respectively. There are no cross-industry spillovers, but the

spillovers across industries are parameterised by δcross.

The left panel of the figure 2.0.1 plots the best response curves P−k → Ψk(π̃, P−k) for

k ∈ {Iron, Steel}. The best response curves intersect only once for a low δ, but they

intersect thrice for high δ.

2.1 Data Generating Process

As an econometrics, we have data from M independent markets. We observe the market-

level characteristics and choices played in each market, denoted by xm = (xlm)l∈L and

am = (aiklm)k∈K,i∈Nk,l∈L+1 respectively. The researcher does not observe ωm which we

call unobserved heterogeneity across markets. I assume that xm and ωm | xm are iid

across markets. Denote the conditional distribution of ωm | xm by F (. | .). Denote the

support of ω | x as Ω(x)

Define the set of equilibria Λ(xm,ωm) = {P|P − Ψ(xm,ωm,P) = 0}. Denote the

selected equilibria by a random variable τm ∈ 1, 2, . . . ,#Λ(xm,ωm), with distribution

λ(. | xm, ωm). Lets index the τth equilibrium by Pτ (xm, ωm). Denote the conditional

choice probability for a market by Pm = (Pklm)k∈K,l∈L = Pτm(xm, ωm)
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Equilibrium Types. For notational convenience, let’s denote all the pay-off relevant

variables for a market m as π̃m ≡ (xm,ωm). τ not only indexes equilibria conditional

on π̃m but also has a meaning as we vary π̃m. τ denotes the “equilibrium type” - a

notion I borrow from Aguirregabiria and Mira (2019). Informally, P τ
′
(π̃1) ∈ Λ(π̃1) and

P τ
′′
(π̃2) ∈ Λ(π̃2)) belong to the same type τ , that is, they will be indexed by same

τ = τ
′
= τ

′′
, iff there exists a continuous path P [t], t ∈ [0, 1], P [t] ∈ Λ(tπ̃1 + (1 − t)π̃2)

that connects P τ
′
and P τ

′′
.

For example, in the right panel of figure 2.0.1, the lower curve in the graph belongs

to one equilibrium type, as any two probabilities on the curve can be joined by the

continuous path of CCPs on the curve. Similarly, the upper curve constitutes another

equilibrium type.

Likelihood Function. The likelihood of observing actions am in market m, condi-

tional on xm is given by

L(am | xm) =

∫
ω∈Ω(xm)

∑
τ∈1,2,...,Λ(xm,ωm)

Πj∈Nk,k∈KP
τ
jk(aj,xm,ω)λ(τ | ω,xm)dF (ω | xm)

(1)

Additionally, if we make assumptions about symmetric payoffs and strategies within

a firm-group, we can derive joint likelihood for the number of entrants from each firm

group in every location nm ≡ (nklm)k∈K,l∈L+1, as a function of the marginal likelihood.

Assumption 2 (Within-group Symmetry). 1. Within Group Identical Ex-ante Pay-

off:

νikl(xm,a−im,ωm) = vkl(xm, ākm, ā−km,ωm)

for all i ∈ Nk

2. Within Group Symmetric Equilibria:

λ(τ | xm,ωm) > 0 =⇒ Pik(xm,ωm) = Pi′k(xm,ωm) (2)

for all i, i′ ∈ Nk, k ∈ K

The first part of assumption 2 says that the ex-ante pay-offs are identical for all firms

in a group, and they depend on the group-level entry outcomes. Note that symmetric

pay-offs does not, in general, guarantee symmetric strategies. The second part of the

assumption imposes that all players play symmetric strategies in an equilibrium that is

played with positive probability. Under the symmetry assumption, we can express the

likelihood of entry in different locations in different markets as -

L(nm | xm) =

∫
ω∈Ω(xm)

∑
τ∈1,2,...,Λ(xm,ωm)

Πk∈KL(nkm | τ, xm, ω)λ(τ | ω,xm)dF (ω | xm)

(3)
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where nk | τ,x,ω ∼ Mult(Nk, P
τ
k (.,x,ω))

A couple of remarks are in order. First, note that conditional on all observable and

unobservable pay-off relevant characteristics, if there is a unique equilibrium being played

in the data, entry in different sectors in different should be independent. However, con-

ditional on observable characteristics, the correlation in location decisions across sectors

could arise from either unobserved heterogeneity ω or multiplicity of equilibria. Second,

conditional on market-level characteristics, entry for each sector follows a multinomial

distribution under a unique equilibria, but follows a finite mixture of multinomial distri-

butions under multiplicity. This idea is formalised in the next proposition:

Proposition 1. 1. If | Λ(x,ω) |= 1, and assumption 2 holds, then (nk)k∈K | (ω,x)

are pair-wise independent, and nk | (ω,x) follows a multinomial distribution.

2. If | Λ(xm,ωm) |= T > 1, nk | (ω,x) follows a mixture of at most T distinct

multinomial distributions.

The result in this proposition can be used to derive a test for multiplicity as in De

Paula and Tang (2012). Correlation in firm entry across markets similar on observed fun-

damentals will be suggestive of either multiplicity or correlated unobserved fundamentals.

Similarly, bi-modality of the distribution of entry will be suggestive of either underlying

multiplicity or bi-modal unobserved heterogeneity.

2.1.1 Example Contd.

Going back to the two-industry example depicted in figure 2.0.1, across markets that are

identical on both observables and unobservables, we will see a correlation in the number

of entrants in iron and steel only if there are multiple equilibria.

3 Indentification

The approaches in the game estimation literature assume a finite number of players, and

identification and inference relies on M → ∞. But in a macroeconomic setting where

we are interested in aggregate outcomes and general equilibrium, we might have many

potential firms per firm group. Along with the assumption that they all play the same

strategies, we can estimate the conditional choice probabilities without relying on the

variation across markets. As Nk → ∞, data from a single market will give a consistent

estimate Pklm as nklm

Nkm
, therefore we don’t need to pool data across markets. Once we

have the market-specific choice probabilities, we can back out πklm which we can project

on xm and P−klm along with appropriate exclusion restrictions. Note that within-group

spillovers are harder to identify in general, without a full solution method.
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3.1 Identification of CCPs

Denote the ex-ante profit function with ν̄k(xm,Pm,ωm) = EPmνk(xm, a−im,ωm)

Proposition 2. Under assumptions 1 and 2, along with Nkm → ∞ for all k ∈ K,m ∈
M , conditional choice probabilities pkm and ex-ante profits πkm = ν̄k(xm,Pm,ωm) are

identified.

Proof. Group -specific CCP pkm is identified from the Law of Large Numbers since all

the players in a group k and market m play symmetric strategies (Assumption 2). πkm

can be recovered from pkm using Assumption 1 and applying the Proposition 1 in Hotz

and Miller 1993.

Denote the mapping between pk and πk with πk = Γ(pk). For example, with T1EV

ϵs:

pkl = Γ−1(πk) =
exp πkl∑
l′ exp πkl′

3.2 Identification of Pay-off Function

Even though we have recovered πkm, the structural relationship between πk and (xm, a−im,ωm)

is still unknown. However, having recovered the values of all the variables that enter the

structural relationship, we can estimate the relationship using appropriate instruments.

Proposition 3. If

• νk(x,a−i,ω) is additively separable in ωk.

• There exist a set of instruments z such that E(ω | z) = 0

• (Newey-Powell’03 condition) For all δ(x,P−i) with finite expectation, E(δ(x,P−i)) |
z) = 0 =⇒ δ(x,P−i)) = 0,

then, νk(.) is identified.

Proof. Additive separability implies that the ex-ante profits can be written as

ν̄k(x,P−i,ω) = βk(x,P−i) + ωk

Directly applying Proposition 2.1 in Newey and Powell (2003) to the equation above

gives the result.

The first assumption is without loss of generality - I do allow for profits of industry k

to arbitrarily depend on ω−k. The only requirement is that νk(.) is additively separable
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in P−i and ω. To see this, under additive separability, I can rewrite the ex-ante profit

function as

ν̄k(x,P−i,ω) =
∑
a−i

P−i(a−i)νk(a−i,x,ω)

= ηk(x,ω)︸ ︷︷ ︸
≡ωk

+
∑
a−i

P−i(a−i)βk(a−i,x)︸ ︷︷ ︸
≡βk(P−i,x)

and redefine ωk to be the additive part.

The second and third assumption require that we find shifters for x and P−i that are

mean independent of ω. More concretely, we need characteristics zk′ that enter into the

profit equation of k′ ̸= k, and hence are shifters for Pk′ , but are independent of ωk.

3.3 Identification of Equilibrium Selection Rule

We saw that the reduced form relation between market characteristics (x,ω) and (pk, πk)

will be a correspondence under multiplicity -

pk(x,ω) ∈ {Pk : P ∈ Λ(x,ω)}

πk(x,ω) ∈ {ν̄k(x,P,ω);P ∈ Λ(x,ω)}

Recall that τ indexes an equilibrium type. By definition, if both τth and τ
′
th equi-

librium types exist conditional on (x,ω), τ ̸= τ ′ =⇒ Pτ (x, ω) ̸= Pτ ′(x, ω).

Note that, once we recover ν̄k(x,P,ω), we can recover the equilibrium set Λ(x,ω) as

the set of fixed points of function P → Γ−1(ν̄(x,P,ω)).

Proposition 4. If

1. πm = ν(xm,Pm,ωm) can be inverted to get ωm = r(πm,xm,Pm), and

2. Pm = pτm(xm,ωm) can be inverted to get τm = s(Pm,xm,ωm);

then λ(τ | x,ω) is identified.

Proof. xm is data, and Pm is identified in each market from Nk → ∞. Hotz-Miller

inversion gets us πm = Γ(Pm). Assumption 1 tells us that we can recover ωm. Once ωm

is recovered, we can recover τm from Assumption 2. The distribution of τm conditional

on xm,ωm gives us λ(τ | x,ω).

The above result does not assume functional form for the profit function, but it is

helpful to think about the parametric case. Suppose ν̄k(x,P,ω) = βk(x,P)+ωk is known
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up to some parameter θk. With some abuse of notation, lets say πkm = βk(xm,Pm; θk) +

ωkm where βk(.) is known.

Once θk is recovered using appropriate exclusion restrictions a’la Newey and Powell

2003, Assumption 1 in Proposition 4 is satisfied: ωkm = πkm−βk(xm,Pm; θk). Moreover,

since θk is identified, the set of equilibria Λ(x,ω) can be solved for as the set of fixed

points of P → Γ−1(βk(x,P; θk)+ωk). In practice, I follow the following algorithm in the

assignment of equilibrium type to different equilibria:

Start with some initial values of π̃0 = (x0, ω0). Solve for the set Λ(π̃0). Assign indices

randomly from 1 to #Λ(π̃0). Denote the assignment rule by τ(p).

1. For nth point π̃n, denote the τ -th equilibrium by pτn, and the set of assignments by

Tn

2. Perturb π̃n+1 = (xn+1, ωn+1) = (xn +∆, ωn +∆), and find Λ(π̃n+1).

3. Given the total number of equilibrium types K ∈ [#Λ(π̃n),#Λ(π̃n) + #Λ(π̃n+1)],

search for the assignment of equilibrium types by minimizing the distance between

equilibria of the same type:

C(K) = min
τ(p)∈1...K:p∈Λ(xn+1,ωn+1)

∑
τ∈Tn∩Tn+1

|| pτn − pτn+1 ||2

4. Determine the optimal number of K using AIC or BIC, as in K-means clustering.

Repeat the process till the whole range of (x, ω) is covered.

Now that we know the relation (xm, ωm, τm) → Pm, observed Pm can be inverted to

recover the equilibrium selection rule τm. Once τm is recovered for each market, then

estimating the impact of any policy shock on τm is standard and can be estimated using

parallel trends assumption.

4 Conclusion

In this short paper, I provide an econometric framework to identify spillovers and the

equilibrium selection rule in a game that features multiplicity. Importantly, I provide

methods to identify both the objects of interest with minimal restrictions on the un-

observed heterogeneity. This is important because the causal impact of many policy

shocks masks movement along the equilibria and equilibrium switching. My method can

be applied to all those settings to decompose the causal impact into the two channels.

Currently, I am working on applying my methods to decompose the causal impact of

Industrial Parks in India into the one due to agglomeration spillovers and the one due to

equilibrium switching.
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