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Abstract

This paper presents a model in which firms make decisions on the intensive
and extensive margin on a production network. Firms choose not only on prices
and quantities but also their input sellers. Prices emerge from distributed local
interactions between firms in segmented markets. The model generates three
empirically observed features of real world economies: perennial flux at the level
of individual firms, stability in certain distributional attributes of the population of
firms, and sizeable fluctuation in aggregate output. More specifically, the rate of
decay of aggregate volatility, with an increase in the size of the economy, is
sufficiently slow to generate the empirically observed aggregate volatility in an
economy as large as the United States. The model generates firm size distribution
and degree distribution of the production network with significantly fatter tails than
the Gaussian. The model also produces the empirically observed mean growth
rate of firm sizes along with a thick right tail. In short, our model is capable of
endogenously generating the empirically observed firm volatility and aggregate
volatility, along with some of the intervening meso structures. Note that within our
setting, distributional stability does not entail microeconomic fixity rather it emerges
from incessant microeconomic change. The number of incoming and outgoing
links of individual firms change but the degree distributions remains largely stable.
Similarly, the sizes of individual firms vary over time but the size distribution
of firms remains relatively stable. Note that these features emerge in a system
without productivity shocks. The root cause of the dynamics is the continual in-
jection of microeconomic disturbance because of rivalrous competition between firms.
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1 Introduction
One of the central problems of macroeconomic theory is understanding the relation
between micro interactions and the time dynamics of aggregate variables. Empirical
evidence suggests that the micro economy is in perennial flux. In the United States,
for instance, every year tens of thousands of new firms are born and similar numbers
perish1. The entry and exit of firms does not however capture the totality of changes
within the economic system. Firms that remain within the production network too
change by forming relations with new sellers of inputs and new buyers of output.
The production network of modern economies is a living pulsating entity that exhibits
change in its constituent parts and the relations between parts. Few economists have
related these micro economic dynamics to the fluctuations in macro variables. In this
paper, we develop a model in which rivalrous competition between firms generates
certain structural properties of the micro economy and the observed volatility in
aggregate output.
We work with a variant of Gualdi and Mandel’s (2016) model of a network

economy, which generalizes Acemoglu et al. (2012) model by allowing for firm
entry-exit and endogenous formation of buyer-seller relations. Firms are related to
each other as buyers and sellers of intermediate inputs. They produce using Cobb
Douglas production functions. Firms set prices through a non-tatonnement process
of local interactions between buyers and sellers in multiple markets for intermediate
goods. A representative household consumes using a Cobb Douglas utility function
and supplies labor to all firms. Firms also make decisions on the extensive margin by
replacing existing input sellers with lower cost suppliers. Firms, therefore, form new
buyer-seller relations and sever existing relations.
While each firm’s decisions on the intensive and extensive margin are based on

private cost calculus, these decisions influence variables well beyond their locale. When
a firm adds a new seller of input and severs relation with an existing seller, the
decision propagates downstream as supply shocks and upstream as demand shocks.
More specifically, the firm that replaces an existing supplier with a lower cost alternative
increases production and decreases the price of its output. Firms who use this output
as an input into their own production processes experience a positive supply shock.
This is not all. The severing of one link and adding of another generates a negative
1See Phillips and Kirchhoff (1989), Foster, Haltiwanger and Syverson (2008), Coad (2009), and

Axtell, Guerrero and Lopez (2019) for evidence on firm birth, growth, and death.
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demand shock for the former supplier and a positive demand shock for the new supplier.
These demand and supply shocks propagate via buyer-seller relations generating a
sequence of relative price changes that ripple through the production network. Each
relative price change alters the private calculus of firms on the intensive and extensive
margin. All of which means that one firm’s decision to form new production relations
influences other firms’ decisions to do the same. Within our model, these intertwined
processes are capable of generating the death of firms. We assume that a firm dies
when it loses all its buyers. New firms enter the economy so as to support a stable
population.
Note the rivalrous nature of the afore noted process of competition between firms.

When a firm forges a relation with a new input-seller, it increases the flow of money
to the input-seller, which the input-seller uses to purchase more of its own inputs.
The only way to purchase more inputs is to outcompete existing users of those inputs
in the markets for those intermediate goods. These ‘outcompeted firms’ must contract
their outputs, which are inputs into the production processes of other firms. This
is however not the only way in which the shock of from the formation of a new
buyer-seller relation travels upstream. Within our setting, a firm form a new relation
by severing an existing relation. Therefore, when one firm finds a new seller, another
firm loses an existing buyer. The firm who lost a buyer will shrink in size, contract
production, and thereby leave more of the goods it uses as inputs for competing users
of the inputs, who will in turn expand production. The shock from the formation of
a new buyer-seller relation also travels downstream. The firm which finds a new lower
cost seller expands production, for which it demands more inputs. The suppliers of
these inputs meet the increase in demand by increasing production and by reallocating
its output from the firms that have not increased demand to the firm which has.
The decision of one firm to change a production relation, therefore, generates long
chains of reallocation of real resources across the production network. The reallocation
benefits some firms and hurts others. Some firms grow, others shrink, and yet others
die. The exact direction and magnitude of the reallocation of resources at each time
step depends on the state of each firm and the topology of the production network.
The afore noted microeconomic dynamics of our model are capable of generating

sizeable fluctuations in aggregate output. The rate of decay of aggregate volatility,
with an increase in the size of the economy, is sufficiently slow to generate the
empirically observed aggregate volatility in an economy as large as the United
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States. The model also generates firm size distribution and degree distribution of
the production network with significantly fatter tails than the Gaussian. Furthermore,
the model generates the empirically observed mean growth rate of firm sizes along
with a thick right tail. In short, our model is capable of endogenously generating
the empirically observed firm volatility and aggregate volatility, along with some of
the intervening meso structures. Note that within our setting, distributional stability
does not entail microeconomic fixity rather it emerges from incessant microeconomic
change. The number of incoming and outgoing links of individual firms change but
the degree distribution of the production network remains stable. Similarly, the sizes
of individual firms vary over time but the size distribution of firms remains stable.
The ability of our model to endogenously generate some of the empirically

observed micro, meso, and macro properties of real world economies depends crucially
on firms making decisions on the extensive margin. To study firm decisions on the
extensive margin, we have had to develop a model in which the adjacency matrix
that defines the production network changes over discrete time steps. Network models
with a dynamic adjacency matrix have so far proved analytically intractable2. One
cause of the intractability is that the changes in adjacency matrix forbids us from
representing the evolution of model variables as linear transformations from one time
step to another3. We therefore solve the model using agent-computing, i.e. we run
computational experiments on a synthetic economy in silico and analyze the data
generated by these experiments (Axtell, 2000). Such discrete and scalable systems
are particularly useful to study non-equilibrium dynamics that emerge from bottom-up
interactions (Arthur, 2010).

1.1 Related literature
Most economists think of macroeconomic fluctuations as comparative statics of perfectly
coordinated systems (Bausor, 1986). Within this analytical paradigm, the central
problem is that of amplifying the influence of the distribution of firm productivity on
aggregate output so that each new draw of firm productivity relates to a sufficiently
different level of aggregate output (Klette and Kortum, 2004). An amplification
mechanism becomes necessary because the sum of independent idiosyncratic productivity
2Schelling (1971) model of segregation and Elliott, Golub and Jackson’s (2014) model of financial

contagion belong to this class of network models.
3See Mandel and Veetil (2021) for some analytical results of a variant of this model with a fixed

adjacency matrix.
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shocks decays too fast to generate sizeable aggregate volatility in large economies
(Lucas, 1977). Early work in this direction emphasized the production network
itself (Acemoglu et al., 2012), while later work noted the role of attributes like
input-specificity and price rigidity which in conjunction with the production network can
amplify productivity shocks4. Within a network economy, the level of output is not a
simple sum of firm productivity but involves a transformation of each firm’s productivity
defined by the adjacency matrix of the network. In so far as the degree distribution
is sufficiently skewed, the transformation effected by the adjacency matrix generates
sizeable difference in the aggregate output associated with different distributions of firm
productivity. One could then interpret idiosyncratic productivity shocks as generating
sizeable aggregate volatility as measured by the difference in equilibrium output
consistent with each draw of firm productivity. This is what may be called ‘equilibrium
aggregate volatility’. The nature of aggregate volatility generated by our system is
profoundly different from the afore noted aggregate volatility exhibited by equilibrium
systems with idiosyncratic productivity shocks. Unlike in equilibrium network models,
the macro fluctuations generated by our model reflects microeconomic miscoordination.
The miscoordination emerges from the propagation of disturbances that arise from
the finite sized firms making new decisions on the extensive margin well before the
system could adapt to old entry-exit decisions by making numerous adjustments on
the intensive margin.
Our model builds on the firm entry-exit literature a la Hopenhayn (1992). This

literature has been extended by Bilbiie, Ghironi and Melitz (2012), Rocha and Pujolas
(2011), and Carvalho (2019) to study the macroeconomic consequences of firm
entry-exist. Their work, however, does not consider the buyer-seller relations between
firms. From this point of view, our paper is closely related to Baqaee (2018) and
Taschereau-Dumouchel (2020), who show that firm entry-exit amplifies idiosyncratic
productivity shocks with a network setting. This paper differs from Baqaee (2018)
and Taschereau-Dumouchel (2020) in that we show firm entry-exit can generate
sizeable macroeconomic fluctuation even in the absence of productivity shocks. In this
sense, our paper echoes the subtitle of Bonart, Jean-Philippe and Augustin (2014):
“aggregate volatility without idiosyncratic shocks”. Our model is a thematic cousin of
the models developed by Axtell (1999) and Richiardi (2006) to study labor dynamics.
4See, for instance, Barrot and Sauvagnat (2016), Pasten, Schoenle and Weber (2018), Bigio and

La’o (2020), Acemoglu and Tahbaz-Salehi (2020), Elliott, Golub and Leduc (2022), Miranda-Pinto,
Silva and Young (2023), and Baqaee and Rubbo (2022).
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All three models view mesoscopic order as emerging from incessant micro economic
change within systems that exhibit non-equilibrium dynamics. Overall, this paper is a
part of the small but growing group of models that explain macroeconomic fluctuations
as emerging endogenously from market interactions (Dessertaine et al., 2022).

1.2 Organization of the paper
Section 2 computes equilibrium aggregate volatility using a data set with more
than 600,000 buyer-seller relations between more than 150,000 US entities. Our
estimates suggest that equilibrium aggregate volatility is an order of magnitude lower
than the empirically observed magnitude, thereby motivating a different approach to
viewing macroeconomic fluctuations. Section 3 presents the model. We enumerate
the sequence of interactions between finite sized firms in discrete time. Section
4 compares equilibrium aggregate volatility with disequilibrium and non-equilibrium
volatility generated by our dynamic production network model. Our computations
show that disequilibrium volatility is two orders of magnitude lower than the empirically
observed aggregate volatility. Non-equilibrium dynamics, with firm entry-exist and
without idiosyncratic shocks, is capable of generating the empirically observed aggregate
volatility for certain ranges of parameter values. Section 5 presents the micro distribu-
tional properties that emerge from our model’s dynamics. The degree distribution of
the production network and the size distribution of firms that emerge from the model
have fatter tails than the Gaussian. Furthermore, the model generates a firm volatility
distribution with the empirically observed mean and a fat right tail. Section 6 concludes
the paper. Model code is available at bitbucket.org/VipinVeetil/networkeconomy.

2 Computing equilibrium aggregate volatility
Empirical studies suggest that in the US economy firm volatility is on the order of
10% whereas aggregate volatility is on the order of 1% (Gabaix, 2011). According
to the Central Limit Theorem, the rate of decay of aggregate volatility is given by
m0.5 with m denoting the number of firms. The US economy has on the order
of 106 firms (Axtell, 2001). Therefore, according to the Central Limit Theorem,
firm idiosyncratic productivity shocks generate an aggregate volatility of 0.01%, i.e.
about a hundredth of the empirically observed magnitude. The rate of decay of
aggregate volatility within a network economy, however, can be slower than the
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CLT rate because of the interdependence between firms (Carvalho, 2014). More
specifically, Acemoglu et al. (2012) show that the scaling of aggregate volatility in a
network economy is given by m1−αα , where α is the exponent of the powerlaw which
characterizes the degree distribution of the production network. This result is derived
using an equilibrium model of the network economy, and therefore we shall refer to
m1−αα as the ‘equilibrium rate of decay’ of aggregate volatility with an increase in the
number of firms.
The empirical significance of the result depends on the exact value of the powerlaw

exponent of the degree distribution of the production network. For instance, at
α= 1.2 the equilibrium network amplification mechanism accounts of nearly all of the
empirically observed aggregate volatility, whereas at α= 1.5 the mechanism accounts
for about a tenth of it. More generally, the elasticity of aggregate volatility to
powerlaw exponent is 1−αα m(1−2α)/α. Despite the high sensitivity of the equilibrium
production network mechanism to the powerlaw exponent, no one has so far measured
the empirical significance of the mechanism using granular data. Acemoglu et al.
(2012), Contreras (2014), Caliendo et al. (2018), and Pasten, Schoenle and Weber
(2018) present empirical estimates based on linkage data from sectoral networks which
contain on the order of 102 entities. There is little reason to presume that the degree
distribution at such an aggregate level retains properties of more disaggregate degree
distribution. This is important. Any measure of the share of aggregate volatility
accounted for by firm volatility must depend on reasonable estimates of the powerlaw
exponent of firm buyer-seller network not sectoral network.
We measure the empirical significance of the aggregate volatility generated by

firm shocks using a novel data set of buyer-seller relations between firms in the US
economy. Our data set consists of 659,869 relations between 164,195 entities
in the US economy. The data set comes from Standard and Poor’s Capital IQ.
It contains economic relations formed between the years 2005 and 2017 without
information on the exact year in which the link was formed. The Capital IQ data set
contains an order of magnitude more firms and linkages than the data on relations
between publicly traded firms reported by Atalay et al. (2011) and three orders of
magnitude more entities than the US Input-Output Table.
Economists before us have reported the degree distribution of the buyer-seller

network between publicly listed firms in the US and near-universe of firms in Japan
(Atalay et al., 2011; Konno, 2009). One of their empirical claims is that the degree
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distribution follows a powerlaw. Our estimates, using Maximum Likelihood, suggests
that powerlaw is a better fit than exponential and lognormal for the out-degree
distribution5. For the in-degree distribution, the powerlaw is a better fit than the
exponential but worse than the lognormal6. Figure 1a presents the counter CDF of
the degree distribution of the US network.
Powerlaw occurs in the tails. Naturally then, the size of tail chosen impacts the

value of the powerlaw exponent (Chicheportiche and Bouchaud, 2012). Figure 1b
presents estimates of the powerlaw exponent α for different sizes tails. The x-axis of
Figure 1b marks the cutoff in terms of the minimum number of buyer-seller linkages
for a firm to be included in the tail. The powerlaw exponent of the firm degree
distribution within our data set differs sizeably from the exponent (approximately 1.4)
derived from the IO table by Acemoglu et al. (2012)7. The dotted horizontal line
in Figure 1b marks the powerlaw exponent α necessary for idiosyncratic productivity
shocks to generate the empirically observed aggregate volatility within an equilibrium
setting. More specifically, with firm volatility of 0.1 and aggregate volatility of
0.01, in an economy with about 106 firms, α must be about 1.2 to generate
empirically observed aggregate volatility. The values of α within our data set are
systematically greater than 1.2. Put differently, for a wide range of values of the
in-degree exponent and for all values of the out-degree exponent, the equilibrium
model generates significantly lower aggregate volatility than the empirically observed
magnitude8.
5The likelihood ratio test favors powerlaw over exponential with likelihood ratio R= 13 and p-value

of less than 0.01. The likelihood ratio test favors powerlaw over lognormal with R= 0.5 and p-value
of less than 0.1.
6The likelihood ratio test favors powerlaw over exponential with R= 8 and p-value of less than

0.01. The likelihood ratio test favors lognormal over powerlaw with R=−1.9 and p-value of less
than 0.1.
7The powerlaw exponent of the second order degree distributions are also greater than those

reported by Acemoglu et al. (2012) using the IO table. And unlike in the US Input-Output network,
the second-order exponents are greater than the first order exponents within our firm network. The
second-order powerlaw exponent therefore does not provide tighter bounds for the equilibrium rate of
decay of aggregate volatility.
8There are two reasons to emphasize the aggregate volatility computed using the out-degree

exponent. The first of which is that the powerlaw exponent of the in-degree distribution is less
significant because the in-degree is better fit by a lognormal distribution than a powerlaw. Second,
within an equilibrium setting, we typically think of an idiosyncratic productivity shock to one firm
affecting other firms through changes in the quantity of inputs.
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(a) (b)

Figure 1

Figure 2: Equilibrium aggregate volatility for different values of the powerlaw exponent,
with 106 firms and firm volatility at 0.1.

3 The model
We consider an economy with a finite number of firms and a representative household.
The firms and the differentiated goods they produce are indexed by M = {1, · · · ,m}.
The household has index 0 and N = {0, · · · ,m} denotes the set of agents. The
representative household inelastically supplies 1 unit of labor and has a Cobb-Douglas

9



utility function of the form:

u(x1, · · · ,xm) :=
∏
j∈M

xaj0i (1)

where for all j ∈M, aj0 ∈ R+ is the share of good j in the household’s consumption
expenditure, therefore ∑j∈M aj0 = 1.
Each firm i ∈M has a Cobb-Douglas production function of the form

fi(x0, · · · ,xm) := λi
∏
j∈N
xajij (2)

where λi ∈R++ is a productivity parameter. For all j ∈N, aji ∈R+ is the share of good
j in firm i’s expenditure on inputs, thus ∑j∈N aji = 1 and there are constant return
to scale. We assume each firm uses a non-zero quantity of labor in its production
process, i.e. for all i ∈M, a0i >0. The production structure of the network economy is
characterized by the adjacency matrix A= (aij)i,j∈N, in which aij >0 if and only if agent
i is a supplier of agent j. The network economy denoted by E(A,λ) is irreducible
and aperiodic9. Given irreducibility and aperiodicitiy, the unique general equilibrium of
the network economy (up to price normalization) E(A,λ) can be defined as follows:

Definition 1. A collection (pi,xi,qi)i∈N ∈ RN+× (RN+)N×RN+ of prices, intermediary inputs
vectors and outputs is a general equilibrium of E(A,λ) if and only if:

∀i ∈M, qi = λi
∏
j∈N
xajiij feasibility (3)

∀i, j ∈N, xji := aji
piqi
pj

profit and utility maximization (4)

∀i ∈N, qi =
∑
j∈N
xij market clearing (5)

9The existence of a representative household that buys goods from all firms and sells labor to all
firms, along with the fact that at least one firm buys input from another firm, guarantees irreducibility
and aperiodicitiy. For more details see Mandel and Veetil (2021).
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3.1 Time dynamics with fixed network
Time is discrete and indexed by t ∈ N. The following sequence of events occur at
every time step:

• Each agent i ∈N receives the nominal demand ∑j∈N aijwtj .

• Firms adjust prices towards market-clearing values according to:

pti = (1−τ)pti +τpt−1i (6)

where τ ∈ [0,1] measures price-stickiness. Given the nominal demand ∑j∈N aijwtj
and stock of output qti , the market clearing price pti for firm i is given by:

pti =
∑
j∈N aijwtj
qti

. (7)

• Markets do not clear if τ>0. In case of excess demand, buyers are rationed
proportionally to their demand. In case of excess supply, qti :=

∑
j∈N aijw

t
j

pti is sold.
The remaining output is carried as inventory, which we denote by It = qti −qti .

• The household sets market-clearing wage:

pt0 =
∑
i∈M
a0iwti (8)

• Working capitals are updated on the basis of revenues, for all i ∈N:

wt+1i =
∑
j∈N
aijwtj (9)

• Firms produce their output for the next period, for all i ∈M :

qt+1i = It+λi
∏
j∈N

(ajiwti
ptj

)aji (10)

• Labor supply is replenished to 1.

In the absence of exogenous shocks, the out-of-equilibrium dynamics detailed above
converges to the general equilibrium of the network economy E(A,λ). The speed
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of convergence to equilibrium is determined by the second largest eigenvalue of
the production network (Golub and Jackson, 2012)10. Each time step of the model
represents one month, the model is run for 20 years for it to reach sufficiently close
the equilibrium. Firms sizes in all simulations begin with random assignments, they
adjust to the network because within our model firm sizes are determined by the
topology of the production network.

3.2 Evolution of the production network
The production network evolves because of rivalrous competition between firms for
low cost suppliers of inputs. More specifically, at the end of the every time step,
each firm receives an independent opportunity to change one of its suppliers with
probability ρ ∈ [0,1]. If this opportunity materializes for firm i in period t, then firm i
randomly selects one of its suppliers j and another firm k among those to which it
is not connected. Firm i severs its connection with firm j and adds a connection to
firm k if the price charged by k is less than the price charged by j. The weight of
the connection of i to k is assumed to be the same as the weight of the connection
from i to j.
The afore noted process of changes in network linkages means that some firms

may lose all their buyers. We assume that a firm that loses all its buyers dies and
exits the market. Such an exit is capable of generating cascades of exits. When Firm
A dies, its input seller Firm B loses an output buyer. If A was the only buyer of
B, then B too dies and exits the market. And so on for other firms who sell to B.
Note that no firm is allowed to sell only to the household, to remain in the market
each firm must sell to at least one other firm. Therefore, at the end of each time
step, after the exit of each firm, we run a recursive algorithm which ensures that all
firms who lose all sellers of intermediate inputs exit the production network. When a
firm loses an input seller, it renormalizes the weights of the Cobb Douglas production
function towards remaining suppliers. At the end of each time step, as many firms
enter the economy as the number that exited so as to maintain a stable population
of firms. Each new firm i enters the economy with the following attributes:

• The number of suppliers si and the number of buyers bi of firm i are independently
10For more details on the stability of these dynamics see Gualdi and Mandel (2016). These
out-of-equilibrium dynamics are akin to the question of stability considered by Fisher (1989) and
others, with the difference that our system involves interaction within a network setting.
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drawn from a binomial distribution B(p,m). Where m is the number of firms in
the economy and p is the probability of success of the binomial distribution. The
probability of success p is set such that the mean of the binominal distribution
p×m equals the mean degree of the production network before the beginning
of the network evolution process.

• si firms are drawn from the population of firms in the economy and each is
connected as an input-seller to firm i. Firm i divides expenditures equally among
all its intermediate input suppliers, i.e. the Cobb Douglas exponents of firm i
equals 1−a0isi .

• bi firms are drawn from the population of firms in the economy and each is
connected as an output-buyer to firm i. Each output-buyer j ∈ bi renormalizes its
Cobb Douglas exponents so that j spends equally on all its input-sellers.

• The price, wealth, and output of firm i is initialized using a uniform(0,1)
distribution.

4 Macroeconomic volatility

4.1 Computing disequilibrium aggregate volatility

Definition 2. Disequilibrium aggregate volatility is the volatility of GDP with stochastic
firm productivity and fixed production network, i.e. there is no entry-exit of firms or
changes in buyer-seller linkages.

• Firms are placed on a production network whose degree distribution follows a
powerlaw (we use the powerlaw exponent computed in Section 2). We do
not allow for firm entry-exit, i.e. the evolution of the network as described in
Section 3.2 does not occur. Firms interact with each other on a fixed network
by choosing quantities and prices.

• The productivity of firms is stochastic. More specifically, Equation 2 is modified
by setting λi = ezi . Therefore, the production function of each firm i becomes:

fi(x0, · · · ,xm) := ezi
∏
j∈N
xajij (11)

13



zi is distributed as a Gaussian N(0,γ) with 0 mean and γ standard deviation.

• We measure aggregate volatility as the standard deviation of ln(GDP). This
definition of aggregate volatility is consistent with our usage of firm volatility
within the model. More specifically, firm volatility in reality is measured as
the standard deviation of firm growth rates. Since we are implementing firm
volatility as the standard deviation of the log of firm output, we must make the
appropriate adjustment in computing aggregate volatility11.

• We set the price-stickiness parameter τ= 0, therefore prices are fully flexible.

• We compute GDP by summing the output of all firms that goes to the final
consumer which is the representative household. Output is valued at equilibrium
prices as in Green and Laffont (1981).

• Each time step of our model represents a month. Therefore, yearly firm volatility
γ is scaled to the monthly level as γ/12, after which monthly GDP is summed
to the yearly GDP to compute aggregate volatility.

• The model is first run for 20 years, without productivity shocks, so that the
economy reaches a steady state. After this the model is run for 100 years with
productivity shocks to generate the data with which to compute disequilibrium
aggregate volatility.

4.2 Computing non-equilibrium aggregate volatility

Definition 3. Non-equilibrium aggregate volatility is the volatility of GDP with deter-
ministic firm productivity and endogenously evolving production network.

• We assume that the productivity of firms is deterministic.

• We allow for the production network to evolve endogenously through changes
in buyer-seller linkages and the entry-exit of firms as described in Section 3.2.

11See equation 6 in Acemoglu, Akcigit and Kerr (2016) for the idea in terms of rates of change
of zi. See Acemoglu, Akcigit and Kerr (2016, pp. 278-285) for Hicks-neutral productivity shocks and
Acemoglu et al. (2012) for Harrod-neutral. The two implementations merely shift the level of GDP,
not the standard deviation of log GDP.
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• GDP is computed as the sum of the quantity of output of different firms that
goes to the representative household valued at the prices prevailing at each
time step. Note that GDP cannot be computed using equilibrium prices because
equilibrium does not exist in the system with an endogenously evolving production
network. Prices are constantly changing in response to the entry-exit of firms
and in response to the change in buyer-seller relations.

• We assume prices are sticky, i.e. τ >0. The introduction of price-stickiness
is important to compute GDP for the following reason. Price setting within
our model is such that for each firm i, the fully flexible price is the inverse of
its quantity (see Equation 7). Therefore, the product of price and quantity is
constant. Price-stickiness allows for the product of price and quantity to change
with changes in either price or quantity, thereby registering changes in GDP.
These changes in GDP are necessary to compute aggregate volatility.

• Each computational experiment begins with firms on an Erdos-Renyi random
graph. The system is run for 20 years for the transient changes to decay.
During the transient period the degree distribution of the graph becomes more
fat tailed than the Erdos-Renyi random graph. After the transient, the system is
run for 100 years to generate data with which to compute aggregate volatility.

• We compute aggregate volatility using the regular definition which is the standard
deviation of changes in yearly GDP (Comin and Philippon, 2005, p. 167-168).
Since the non-equilibrium setting does not include productivity shocks, there is
no need to redefine aggregate volatility to bring about a consistency between
the empirical measure of firm volatility and its implementation with the model.

4.3 Equilibrium, disequilibrium, and non-equilibrium aggregate volatil-
ity

Figure 3 presents the scaling of the aggregate volatility with an increase in the number
of firms. For an economy as large the United States, equilibrium volatility accounts
for less than a tenth of the empirically observed aggregate volatility. Furthermore,
there is reason to suspect that this measure may be overstating the aggregate
volatility generated by idiosyncratic productivity shocks. More specifically, equilibrium
aggregate volatility is based on the unrealistic assumption that new productivity shocks

15



occur only after the economy has adjusted to old shocks. Within an economy
in which new productivity shocks arise before the system has fully adjusted to old
shocks, disequilibrium aggregate volatility is a more sensible measure than equilibrium
aggregate volatility. Figure 3 shows that disequilibrium volatility is significantly lower
than equilibrium volatility.
The reason for why disequilibrium volatility is sizeably lower than equilibrium

volatility is as follows. Suppose the distribution of the productivity of firms at time
steps 1, 2, and 3 is D1, D2, and D3. Let the equilibrium GDP corresponding to each
of these distributions of firm productivity be y1, y2, and y3. Equilibrium aggregate
volatility marks the jump from y1 to y2 and y2 to y3. Consider the productivity
shock at t = 3, when the economy is still adjusting to the productivity shock at t = 2.
While the economy is adjusting to the shock received at t = 2, suppose firm i with
low productivity under the D1 temporarily acquires a large share of inputs12. At that
very movement D3 arrives, which happens to increase the productivity of firm i. This
will generate a jump in GDP, which may be larger than the difference between y2
and y3. More generally, there exist various peculiar draws of productivity along with
various disequilibrium states of the economy, such that disequilibrium changes can be
larger than equilibrium changes.
But the probability of these peculiar draws of productivity along with various

disequilibrium states being realized declines rapidly with an increase in the size of the
economy. So much so that in a sufficiently large economy, the productivity changes
brought about by D3 will tend to act as noise upon the productivity changes brought
about by D2. More specifically, as an economy is moving from y1 towards y2, D3
will tend to make the economy move to ŷ. And |y2− ŷ| will tend to be less than
|y2−y3| because idiosyncratic firm level shocks at one time step will tend to average
out the idiosyncratic shocks from the pervious time steps. This averaging becomes
more pronounced with an increase in the size of the economy because of the Law of
Large Numbers. Put differently, the joint-probability of productivity draws and states
of the economy necessary for succeeding disequilibrium states to be more different
than succeeding equilibrium states declines with an increase in the number of firms.
Our computational experiments show that this averaging of idiosyncratic firm level
shocks over time is sufficient to generate an order of magnitude difference between
12Disturbances to the network economy generates complex time sequences of changes in relative
prices, which in turn produces temporariy changes in the working capital possessed by different firms,
see Mandel, Taghawi-Nejad and Veetil (2019) and Mandel and Veetil (2021) for more details.
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equilibrium and disequilibrium aggregate volatility.
Figure 3 shows that non-equilibrium aggregate volatility is sizeably greater than

equilibrium and disequilibrium volatility. Furthermore, non-equilibrium aggregate
volatility is on the same order as the empirically observed aggregate volatility. Figure
4 shows that the model is capable of generating the empirically observed aggregate
volatility for a range of parameter values. Figure 4a plots the non-equilibrium
aggregate volatility for different values of mean degree of the production network
d and different probabilities of a change in input sellers ρ. The figure shows that
aggregate volatility decreases with an increase in mean degree. This is because within
our setting the probability of a firm changing one of its links is independent of the
number of input sellers, therefore as the number of input sellers grow the proportion
of links changed by firms declines. Figure 4b shows that non-equilibrium aggregate
volatility increases with an increase in price-stickiness. Figures 4a and 4b show that
non-equilibrium aggregate volatility increases with the probability of link change.

Result 1. Non-equilibrium aggrega te vola tility
Firm decisions on production levels, production relations, and entry-exit generate
sizeable aggregate volatility in a large economy, without idiosyncratic productivity
shocks.
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Figure 3: Equilibrium, disequilibrium, and non-equilibrium aggregate volatility for
different sized economies. For disequilibrium, the production network is powerlaw with
an exponent of 1.19 and τ= 0. For disequilibrium and non-equilibrium : a0i = 0.3∀i.
For non-equilibrium: τ= 0.9, ρ= 1, d= 10.

(a) (b)

Figure 4: Non-equilibrium aggregate volatility for different values of price stickiness
(τ), probability of link change ρ, and mean degree d. Results reported in (a) use
τ = 0.5 and results reported in (b) use d = 10. All results are from experiments
with 105 firms. The mean degree varies from 5 to 10 with increments of 1. τ
variues from 0.5 to 0.9 with increments of 0.05. And ρ varies from 0.1 to 1 with
increments of 0.1.
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5 Meso stability amidst micro flux

5.1 Emergent distributions
Figure 6 shows the degree distribution and size distribution at three time steps: the
initial distribution at Year 0, interim distribution at Year 25, and final distribution at
Year 100. Figure 5a shows that beginning from an Erdos Renyi random graph, the
degree distribution of the production network grows fat-tails as the model dynamics
unfold over time. Figure 5b shows that beginning from a uniform random distribution,
the size distribution of firms grows fatter tails as the model dynamics unfold.
Finally, Figure 6 marks the convergence of the degree and size distribution. Figure

6 plots the distance of the distribution at each time step from the final distribution.
The distance at Year t denoted by ωt is defined as follows:

ωt =
∑
i∈E
|CDF(xti )−CDF(xTi )| (12)

where CDF denotes the empirical cumulative distribution function. E is the set of
events, meaning degree in case of degree distribution and sizes in case of size
distributions. Figure 6 plots the distances for each for the 100 years beginning from
Year 0, normalized to the distance in the first year. Figure 6a shows that the degree
distribution converges as the distance to the distribution at Year 100 decreases at
each time step. Figure 6b shows that the size distribution convergences as the distance
to the distribution at Year 100 decreases at each time step.

Result 2. Degree distribution and size distribution
Firm decisions on production levels, production relations, and entry-exit generate
degree distribution and size distribution with fatter tails than a normal distribution.
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(a) (b)

Figure 5: Log-log plots of the degree and size distribution of firms. m= 105, ρ= 1,
τ= 0.9, d= 10.These are distribution that emerge after 100 years of firm interactions,
where the first year begins after 20 years of transient.

(a) (b)

Figure 6: m= 105, ρ= 1, τ= 0.9, d= 10.

5.2 Flux at the level of individual firms
While the degree and size distribution converge and thereby come to exhibit stability,
the economy at the level of individual firms is in perennial flux. Figure 7a plots the
changes in buyer-seller linkages at every time step as a proportion of total links in the
economy. Figure 7a shows that the rate of change in buyer-seller relations is sizeable
even after the transient of the first 20 years. Figure 7b plots the changes in the firm
sizes from one time step to the next as measured by: φt = 1m

∑m
i=1
|sti−st−1i |
st−1i
. Figure 7b

shows that there are sizeable changes in firm sizes at each time step.
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Result 3. Micro va riables
The evolution of the production network generates sizeable changes the in buyer-seller
relations between firms and the sizes of individual firms.

(a) (b)

Figure 7

5.3 Firm level volatility
Figure 8 plots the distribution of annual growth rate in firm sales: vti = sti−st−1i

st−1 , for
each firm i. The figure plots the distribution of growth rate in the last year of the
model run. The plot shows that firm growth rate is skewed to the right. Firm level
volatility as measured by the standard deviation of the distribution is on the same
order of magnitude as the empirically observed figure.

Result 4. Idiosyncra tic productivity change
The firm volatility generated by the model is approximately equivalent to the empirically
observed magnitude. The distribution of firm growth rate has a fat right tail.
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Figure 8: firm volatility as measured by annual sales growth of firms from one time
step to the next. m=105, ρ=1, τ=0.9, d=10. This is the sales growth distribution
that emerge after 100 years of firm interactions, where the first year begins after 20
years of transient.

6 Concluding thoughts
Frisch (1933) argued that macroeconomic fluctuations arise from “certain exterior
impulses” that “hit the economic mechanism”. He divided business cycle theory into
the impulse problem and the propagation problem. Where by ‘impulse problem’ he
meant the origins of the external impulses that hit the economy. And by ‘propagation
mechanism’ he meant the process by which the exterior impulse is amplified, dampened,
and more generally carried by the exchange mechanism. Most business cycle models
are founded on the Frischian dichotomy between impulse and propagation. They
differ merely in the origins of the impulse and sources of propagation. This paper
presents an alternative to Frisch’s basic architecture. The Frischian dichotomy does
not hold within our system wherein the impulse is the propagation. More specifically,
it is precisely the propagation of old changes that provides the impulse for new action.
Decisions to switch from one input seller to another, or to enter-exit the production
network, generates a whole sequence of relative price changes across the economic
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system. These price changes become the incentive for new decisions on prices,
quantities, production relations, and entry-exit. Our system exhibits non-equilibrium
dynamics as it remains away from equilibrium due to forces endogenous to the model
(Prigogine and Lefever, 1975; Vickers, 1985). The system, however, converges
to equilibrium if firms do not make decisions on the extensive margin. This is
because while firms’ decisions on the extensive margin are miscoordinating, decisions
on the intensive margins are coordinating. Macroeconomic dynamics emerge from the
interplay between the forces of coordination and miscoordination.
The difference between Frisch’s architecture and ours stems from disparate concep-

tions of market competition. The Frischian architecture presume market competition is
always coordinating. In so far as competition is coordinating, the economic system
exhibits perfect stability in the absence of exogenous impulses. Each day is a mundane
repetition of the day before. This is what Mises called ‘the evenly rotating economy’,
Schumpeter ‘the circular flow’, and Arrow-Debrue ‘general equilibrium’. Matters are
wholly different within systems in which competition is rivalrous process (Hayek, 1948;
Wagner, 2001). Ours is one such setting. One firm’s decision to switch to a lower
cost provider of an input may temporarily improve its position, but the decision hurts its
former supplier. Furthermore, each firm’s decision to change an input seller propagates
upstream as positive or negative demand shocks, and downstream as positive or
negative supply shocks. Some firms are hurt by these shocks whereas others benefit, all
of which depends on their network positions. There is no senses in which competition
on the extensive margin is neutral or coordinating. Rivalry between firms for input
sellers incessantly injects microeconomic disturbances. We have shown that such a
rivalrous process of competition proves sufficient to generate sizeable macroeconomic
volatility in large economies in the absence of exogenous productivity shocks. Our
approach suggests that it would be mistaken to treat firm-volatility as an exogenous
variable to be amplified by the skewed size of distribution of firms or the skewed
degree distribution of the production network. Indeed we have shown that the degree
distribution of the production network, the size distribution of firms, and firm volatility
are interdependent variables that co-emerge amidst rivalrous competition.
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