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Abstract

Is engagement with harmful social media content driven by algorithmically curated
feeds or user tastes? I conduct an RCT replacing personalization algorithms with
random content delivery for over one million users of a prominent TikTok-like platform
in India. I find a trade-o↵: random post recommendation lowers exposure to anti-
minority (‘toxic’) content by 8.7% on average, and also lowers platform usage. The
intervention’s impact on socially undesirable behaviors was blunted as users greatly
valued posts that the recommendation algorithm did not show them. Strikingly, the
proportion of toxic posts shared increased by 7.8%. An economic model incorporating
heterogeneous user preferences, endogenous social media activity, and an engagement
maximizing algorithm, rationalizes these results and quantifies malleability in user
behavior. Estimated behavioral parameters reveal that the influence of exposure to
diversified feeds is low, but users are not entirely mechanical in sharing the content
they are fed. This points towards limited e↵ectiveness of regulatory measures targeting
algorithms that impose substantial costs in terms of user activity on the platform.
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1 Introduction

The pervasive influence of social media, with users spending an average of 151 minutes daily
on these platforms, has intensified scrutiny of their adverse impacts (Allcott et al., 2020;
Braghieri et al., 2022). From deteriorating mental health outcomes to increased political po-
larization, a range of concerns has emerged. These issues are hypothesized to be exacerbated
by personalized content delivery systems that reduce search costs for belief-confirming infor-
mation (Garimella and Eckles, 2017; Tucker et al., 2018). Designed to maximize user engage-
ment through tailored content recommendations, these feed-ranking algorithms are thought
to create ’filter bubbles’ that deepen political divisions (Guess et al., 2023a). The potential
consequences extend beyond online interactions, with recent studies linking extreme ‘toxic’
content with increased o✏ine violence (Bursztyn et al., 2019; Müller and Schwarz, 2021).1

In response to these concerns, various government bodies, including the US Senate and
the Supreme Court, are actively discussing regulations targeting algorithms.2 While these
regulations are expected to yield benefits by reducing users’ exposure to hateful posts, they
may also impose substantial costs on platforms. Moreover, the feedback loop between con-
sumer behaviors and algorithms may limit the e↵ectiveness of policies aimed at minimizing
socially undesirable engagement, especially if users aren’t easily influenced by new infor-
mation they are exposed to (Hosseinmardi et al., 2024). Despite the significant behavioral
implications of regulating algorithms, there is little experimental evidence on the role of user
preferences or the malleability of human behavior in determining engagement with extreme
posts when algorithmic content curation is disabled.

This paper addresses this gap by examining a year-long experiment I conducted, in
collaboration with a prominent social media platform in India. The experiment temporarily
disabled personalization algorithms for over a million users. The analysis is structured
along three key research questions. First, what is the cost of regulating personalization
algorithms for social media platforms? The cost to firms is measured by reduced number
of daily active users, and the consequent loss in advertising revenue. Second, does exposing
biased users to more diverse feeds reduce the spread of harmful content? In other words,
is socially undesirable behavior driven by mechanical consumption of the feed? Third, how
malleable is user behavior when exposed to automatically personalized social media feeds?
Alternatively, to what extent are socially undesirable behaviors, such as sharing posts that are
hurtful towards minority groups, reinforced by exposure to toxic content via recommendation
algorithms?3 A rich literature in economics has characterized the demand for traditional

1Toxicity of a post is a measure of it’s hatefulness, or the harm it can cause, and is defined as per Google’s
Perspective API. Perspective is a free API that uses machine learning to identify ‘toxic’ comments, where
toxicity is defined as “rude, disrespectful, or unreasonable comment that is likely to make someone leave
a discussion.” Perspective has been adopted by organizations like The New York Times to automatically
regulate and filter abusive comments, and has also been used in academic research (Jiménez Durán, 2022).
See https://perspectiveapi.com/how-it-works/ and https://perspectiveapi.com/case-studies/,
for a comprehensive guide and applications of this API.

2The regulatory policies targeting algorithms that are being considered in the US are expected to impact
close to 300 million social media users. See https://shorturl.at/WKWPU for minutes of the Subcommittee
on Privacy, Technology, and the Law convened under the US Senate Committee on the Judiciary. See also
https://shorturl.at/G6Lj4 for SCOTUS view on Texas, Florida regulation of social media moderation.

3Here, sharing particularly means sharing posts o↵ the platform, to other social media platforms like
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media content, and the e↵ects of biased media exposure on economic, social and political
behaviors (See (DellaVigna and La Ferrara, 2015) for a comprehensive review). However,
the findings of this literature cannot be generalized because unlike broadcast media, social
media platforms customize information that each user is exposed to.

I bring experimental evidence from a TikTok-like Indian social media platform, with
close to 200 million monthly active users (henceforth called SM), to answer these questions.
My field intervention e↵ectively ‘switched o↵’ the personalization algorithm for close to a
million treated users, and exposed them to randomly picked content instead. Therefore,
treatment was randomly assigned to 0.5% of SM’s users, and exposure to content in the
treatment group was given purely by chance. This enabled the identification of demand (user
preferences) and supply (algorithms) factors that drive online misinformation. In particular,
I study engagement with harmful anti-minority (or toxic) content when the treatment reduces
exposure to such content for some users.

The personalization algorithm for control users continued to optimize over various metrics
of user satisfaction during the intervention period. SM’s typical algorithm, like that of
Netflix, does this by ranking the kind of content a user has engaged with in the past. These
rank-orderings place a higher ‘score’ on posts that the user is more likely to ‘share’, where
the likelihood of engagement is estimated using machine learning models trained on a recent
history of user behavior.4 The intervention replaced these ranked lists of posts (henceforth
called content feeds) with random draws of content, for each treated user, on each day.

I find a trade-o↵: random post recommendation lowers exposure to anti-minority (‘toxic’)
content, but also lowers usage of the platform by 14.4%. Treated users viewed and shared
fewer posts of any variety, and reduced the time spent on the application by 35.2%. Therefore,
I show that regulating algorithms is expensive for platforms, and quantify the costs of this
intervention, in order to answer the first research question.

Second, the treatment reduced the number of toxic posts viewed and shared on average,
by 27% and 19%, respectively. That is to say, not only did the treatment reduce the total
number of posts shared, it also decreased the absolute quantity of toxic content shared by the
average user. However, this led to a 7.8% increase in the proportion of toxic posts shared,
as the decrease in toxic shares was smaller than the decrease in total shares.

These results indicate that users receive greater value from sharing toxic content when
they encounter fewer toxic posts during the intervention. Upon being treated, they view
and share fewer toxic posts, but the reduction in toxic posts shared is smaller (in absolute
terms) than the e↵ect on the number of toxic posts viewed and the total number of posts
shared. This suggests that users actively seek out posts aligning with their tastes, even when
such content is not readily served to them via the personalization algorithm. I also provide
complimentary evidence that treated users were more likely to use the ‘search’ feature on

WhatsApp.
4This is operationalized through contextual embeddings that are obtained by factorizing engagement

matrices constructed at the user-post level (Athey and Imbens, 2019), as is delineated in greater detail
later. The intervention was administered using algorithmically generated latent feature vectors for each
user, called embedding vectors, by factorizing an engagement matrix containing all users and posts. These
embedding vectors represent some abstract measure of user tastes over social media content as learned by
the personalization algorithm.
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the platform.5

I rationalize these results, and estimate malleability in user behavior, with a simple
economic model in which (1) engagement is endogenous, (2) users’ sharing behavior reflects
a balance between their intrinsic preferences for sharing toxic content and the composition
of their feeds, and (3) the status quo algorithm serves to maximize engagement. The model
enables characterization of heterogeneous responses to the intervention, so that the overall
increase in the proportion of shares that are toxic is driven by users with lower proclivity
towards toxic content.

The model supports the claim that the reduction in the number of toxic posts shared
comes from users with a high preference for toxic content, in major part due to their reduced
engagement with the platform. This is because the median treated user is exposed to fewer
toxic posts (by design), but also shares fewer posts overall. As a result, the average treated
user shares a higher proportion of toxic posts, even as she was exposed to fewer such posts.

Using the model to structure an analysis of the data, I find an elasticity of toxic sharing
with respect to toxic viewing of only 0.16. This means that user behavior is not malleable in
the short run, when exposed to random content for a period of one month. The implication
is that users minimally update their view of the range of ideas that are acceptable in public
discourse, which they learn from the automatically generated content feeds.6 Therefore, user
behavior is largely driven by pre-existing user tastes, and the intervention has a limited e↵ect
on user behavior.

These results have a number of important policy implications for regulating digital tech-
nologies to minimize harm and political polarization, especially in developing countries.
Technology policy would be highly cost-e↵ective if the benefits of any intervention that
reduced exposure to toxic content were bolstered by the influence of diverse content on be-
havior in a way that breaks existing feedback loops between algorithms and users, or even
generating positive feedback loops. I show that while the intervention significantly reduces
the proportion of toxic content viewed, a large proportion of new behaviors can be predicted
using engagement patterns at baseline, and not the exposure to new information. Therefore,
any intervention that reduces toxic exposure may not be entirely e↵ective in changing user
behavior, because the benefits of behavior change are very limited, at best. This suggests a
multipronged approach to making digital spaces less hostile.

1.1 Related Literature

This paper contributes to three strands of the literature. First, it closely relates to the
literature on implications of new communication technologies on human behavior and wel-

5The search feature resembles any search engine, where users can type in keywords to find posts that are
relevant to their interests.

6The range of ideas that are considered acceptable in public discourse is popularly known as the Overton
Window (Astor, 2019). The Overton Window essentially informs people about the social norms, about what
is considered acceptable to say in public. Matthew Desmond (2023) provides an insightful definition in his
book Poverty, by America, relayed to him by psychologist Betsy Levy Paluck, ‘ ‘Norms license us to do things
we already believe in” (Ch 8, pp 131). Here, the idea is that users learn what is okay to say in public by
observing the content that is recommended to them by the algorithm. I provide survey evidence to validate
this assumption in Section 5.
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fare.7 This includes the contributions of Nyhan et al. (2023), Guess et al. (2023a) and Guess
et al. (2023b), where a team of social scientists collaborated with Meta (henceforth called,
the Meta-Science studies), to experimentally study the role of their feed-ranking algorithms
in driving political polarization in the run-up to the 2020 US Presidential Elections. This
paper, similar to the Meta-Science studies, analyzes data from an on-platform experiment.
These studies found no di↵erences in measures of a↵ective polarization, measured using sur-
veys that users were asked to opt into. The main findings are consistent with my results, as
users who were served lower amounts of toxic content, do not seem to change their behavior
in the short-run.

My experiment complements this work in the following ways. (1) I analyze outcomes
from the platform’s administrative data, instead of relying on survey responses. This makes
the analysis less prone to experimenter demand and Hawthorne e↵ects. (2) The experiments
above study fairly short-term e↵ects of disrupting the usual algorithm, while this experiment
lasted for 11 months. In future work, I will study the long-term e↵ects of the intervention
on user behavior, as these data have also been secured. (3) My work adds breadth to
the existing research as I analyze preferences revealed ‘in the wild’ through high-frequency
engagement behavior of users with millions of posts on SM, in a developing country with a
vastly di↵erent political context (See section 2 for more details). India, despite being the
second largest market for digital platforms, has been scarcely studied in terms of interactions
with evolving technologies. I also collect survey data for a large subset of control and treated
users, to complement the analysis of a↵ective polarization, and mental health outcomes in
this literature.8

Second, this paper relates to a rich literature studying the relationship between media
bias and political polarization (DellaVigna and Kaplan, 2007; Gentzkow and Shapiro, 2011;
Chiang and Knight, 2011). Even though social media di↵ers from traditional media in some
key aspects (most notably, entry costs for content creators, and personalization of content),
existing literature sheds light on how exposure to content (supply factors) changes important
aspects of human behavior (Jensen and Oster, 2009). Similarly, this literature provides a
framework to understand the demand for slanted content (slanted news in particular, for
example Martin and Yurukoglu (2017)).

This paper contributes to the media-bias literature by analyzing demand for shaded
information, when the supply of information is itself endogenously determined by a person-

7The literature in economics has emphasized the e↵ect of technology on ‘o✏ine’ measures of welfare like
protest participation (Enikolopov et al., 2020; Manacorda and Tesei, 2020; Enikolopov et al., 2018; Cantoni
et al., 2023), voting behavior (Zhuravskaya et al., 2020; Gonzalez, 2021; Fujiwara et al., 2023), mental health
outcomes (Allcott et al., 2020; Braghieri et al., 2022), and targeted attacks on vulnerable communities by
non-state actors (Bursztyn et al., 2019; Müller and Schwarz, 2021). However, the behavioral responses in
many studies using observational data from social media platforms may be confounded by the algorithm
itself.

8While the o✏ine e↵ects on online engagement are important and have been widely studied, there is a
growing recognition that time spent online itself has a profound impact on human welfare. Consequently,
there is a growing interest in questions related with mobile phone usage (Björkegren, 2019), mobile money
(Suri and Jack, 2016), digital addiction (Allcott et al., 2022; Aridor, 2022), online advertising (Goldfarb and
Tucker, 2011; Brynjolfsson et al., 2024), biased news consumption (Levy, 2021), spread of misinformation
(Acemoglu et al., 2021), radicalization (Hosseinmardi et al., 2020), and employment of surveillance technolo-
gies (Beraja et al., 2023b,a). Recent work has also questioned social media’s role in engagement with hate
speech, making policy recommendations to check the spread of harmful posts (Jiménez Durán, 2022).
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alization algorithm. Prior work has asserted that changing social norms are key in driving
behavioral responses to biased information (Bursztyn et al., 2020). I build a structural
model on a similar vein, where social media engagement is driven by utility derived from
social-image concerns, while conforming to norms practiced in one’s identity-based network
(Akerlof and Kranton, 2000; Butera et al., 2022). However, direct evidence on the mecha-
nisms driving behavioral responses due to (social) media bias is scarce, especially on TikTok-
like platforms that currently attracts a majority proportion of social media users, and the
younger demographic, in particular (Aridor et al., 2024).

Finally, I contribute to a burgeoning literature on the economics of artificial intelligence
and algorithms (Acemoglu, 2021). Fairness concerns notwithstanding, there is a growing
interest in the impact of black-box algorithms in a world where they have a wide variety of
applications (Rambachan et al., 2020). Examples of such human-computer interactions in-
clude online shopping for given personalized information, decision-making in the legal system,
and hiring in the labor market (Goldfarb and Tucker, 2019). Notably, these human-computer
interactions are especially important to study in the presence of behavioral responses that
may generate substantial unanticipated e↵ects (Björkegren et al., 2020; Kleinberg et al.,
2022; Agan et al., 2023).

I analyze the e↵ect of algorithms (or their absence, thereof) in a context where these
technologies have been introduced only recently. This is important as more and more people
interact with technologies that generate customized feeds using di↵erent types of machine
learning algorithms, in contexts with scant regulations. My work shows that while social
media platforms aggressively use costly algorithms to retain users on the platform, users
are active agents who often seek out the content that aligns with their pre-existing biases
(Hosseinmardi et al., 2024). This is crucial because it is not clear if behavioral responses
dampen or bolster the e↵ects of regulatory policies that target algorithms.

The remaining paper is organized as follows. Sections 2 provide background details of
the context and the administrative data employed in this study. Section 3 delineates the
design of the experiment, and provides descriptive statistics that motivate an interrogation
of mechanisms with a structural model. Section 5 provides a simple theoretical framework
that generates testable hypotheses to structure the empirical analysis. This structural model
also provides an estimation strategy to measure the behavioral e↵ect of content exposure.

2 Background and Data

I lay out the context of this study to highlight the importance of behavioral responses to
viewing social media posts, in the presence of new digital technologies. I use high frequency
administrative data on exposure to and engagement with posts by millions of SM users.
I also use various methods in Machine Learning and Text Analysis to classify 15 million
multilingual posts that were ‘viewed’ and ‘shared’ by my sample of users. This was done
in order to understand the behavioral factors driving engagement with extreme content,
as being distinct from the supply factors, like the algorithmic recommendations. These
behavioral responses, in turn, determine content exposure, as feed curation technologies
attempt to learn ‘preferences’ from human behavior, and could lead to harmful downstream
consequences, like rabbit holes of (mis)information and radicalizating content.
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2.1 Social Media in India

There has been a sharp increase in political polarization and hate speech on social media
platforms around the world (Boxell et al., 2022). Facebook whistleblower, Frances Haugen,
has alleged that the company’s personalization algorithms promote extreme content (Haugen,
2021). She also leaked the company’s internal documents show that the company is aware
of the harms that have been caused, not just in the US, but also in India 9. This has piqued
academic interest in the factors that lead to the production and propagation of hateful
content on these platforms (Huszár et al., 2022).

With over 500 million social media users, India provides a highly relevant context for
studying these questions as social media has grave consequences for the socio-political en-
vironment in this setting. India is among the largest markets for online platforms in the
world, second only to China.10 Social media usage has proven to be very harmful in the In-
dian setting, because various posts are known to have provoked instances of violence, in the
form of mob lynchings, riots, and hate crimes (Banaji et al., 2019). Details of the particular
challenges faced by social media platforms in India are provided in Appendix D.

Threats to minority communities, stemming from social media usage in India, are specu-
lated to be bolstered by content recommendation algorithms, which are highly sophisticated
customization algorithms that employ machine learning or deep learning technologies. This
is because, in optimizing content engagement, social media is predicted to generate political
filter bubbles or echo chambers (Sunstein, 2001; Conover et al., 2011; Barberá et al., 2015).
Such echo chambers are likely to increase user exposure to more extreme and polarized view
points in the digital space, possibly leading to radicalization (Gaudette et al., 2021).

2.2 The Platform

I partner with SM, a prominent social media platform in India, to understand the e↵ects of
exposure to extreme content, due to content recommendation algorithms. I study how the
nature of online interactions changes with my intervention in SM’s rich online social network.
I assess the contribution of users’ existing behavioral patterns in regard to extreme content
using SM’s data on (close to) 200 million monthly active users.

SM’s app features resemble those of TikTok, and the platform made massive gains in
market share when TikTok was banned in India due to escalating geo-political tensions with
China (Mishra et al., 2022). SM is a content-based social network, meaning that users
interact with content rather than with other users, unlike X (formerly, Twitter), where users
engage with users they ‘follow’. SM’s user interface resembles that of Instagram, where
users can scroll over content in the form of short videos, images, and text posts. User
connectedness with other users is therefore, of little consequence.11

Due to the new (TikTok-like) features this platform o↵ers users, and its multi-lingual
interface (with a conspicuous absence of the English language), SM attracts a large propor-

9See documents on internally conducted experiments, providing concrete evidence of the problem in India
https://www.nytimes.com/2021/10/23/technology/facebook-india-misinformation.html

10https://www.statista.com/statistics/278341/number-of-social-network-users-in-selecte
d-countries/

11Unlike Facebook, where users engage with content from ‘Friends,’ or from the ‘Groups’ they join.
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tion of young voters among the urban and rural poor in India. This makes such analysis
especially important as little is known about political behavior of this demographic in India
or about the users of this massive platform (Aridor et al., 2024).

2.3 Control (Current) Algorithm

The estimated treatment e↵ect measures changes in engagement with toxic or non-toxic
content for treated users. The control group receives standard algorithmic recommendations
generated for each user on the platform, while I intervene on the algorithmic recommenda-
tions generated for treated users. In this paper, treatment captures exogenous deviations in
recommendations from the current algorithm employed by the platform. I briefly describe
the algorithm, to enable an intuitive understanding of the treatment administered in the
experiment.

Like Netflix, user feeds on SM are usually customized according to preferences revealed
via previous engagement with content using Field Aware Factorization Machines, henceforth
called the FFM algorithms (Aggarwal et al., 2016). These Deep Learning models are the
most widely used algorithms in the tech industry (Dell, 2024). The algorithm generate a
vector of preference weights for each user with respect to some post attributes. This generates
a ranking of posts for each user, and users are recommended new posts according to this
order, on each day. These vector-weights in the space of some post features are known as
embeddings in the machine learning literature (Athey et al., 2021).

The recommender system generates vector weights or embeddings in the space of some
(latent) features, where the features could represent a user or post’s likeness to cat videos, or
to humorous content, for instance. I provide a general overview of how these algorithms work,
along with a simple example, in Appendix E. The workings of the FFM algorithms are useful
to understand how the treatment was administered, by replacing algorithmically generated
embedding vectors, with randomly chosen ones. I describe the treatment in detail in Section
3, and also simulate a simple FFM algorithm to illustrate the treatment in Appendix E.

2.4 Administrative Platform Data

I use administrative data from the platform to construct my main outcome variables includ-
ing, viewership of and engagement with polarizing and toxic content at the user level. The
administrative data provides information on each post that is viewed or engaged with by any
given user. The precise time of exposure and engagement is also recorded in the data, which
helps identify distinct patterns in usage according to time of the day and weekends. This
allows me to trace the posts a user was exposed to, whether the user chose to engage with the
post or not, and under what conditions were the posts engaged with.12 Consequently, I con-
dition engagement statistics on viewership, which is a feature absent from most observational
studies that use social media data (Hosseinmardi et al., 2020).

12For instance, Table H.2 shows that treated users were more likely to log onto the platform during the
weekend, and in the evenings. This information is insightful for technology policy around questions of
platform usage and addiction. The said finding then implies that treated users were most likely spending
less time on the platform during the time they could be working, and earning wages.
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I also observe user characteristics, like their geographic location, gender, age, date of
account creation and language in the administrative data. These static user characteristics,
along with users’ exposure to and engagement with di↵erent types of content during the
baseline period allow me to analyze heterogeneous treatment e↵ects. The variables and
dimensions of heterogeneity used in this analysis were pre-registered with the AEA RCT
Registry (Kalra, 2023). I provide a descriptive summary of user characteristics, as well as
engagement at baseline, in Table H.1.

Posts on the platform are also characterized by broad tag genres, user generated hash
tags. Further, the text on the images/ videos in the user generated posts is a rich source of
information. I adopt various methods to analyze the text data, in order to understand the
qualitative nature, tone, and political slant of more than 20 million posts that users engaged
with, during the course of the experiment. The descriptive text analysis methods, detailed
in Appendix F, highlight the need for contextual embeddings that accurately characterize
the potential harm that a post may cause. Next, I use a mix of supervised and unsupervised
machine learning methods to construct my main outcome, that is, the toxicity of posts that
treated and control users engage with.

2.5 Toxicity Classification

The administrative data provides user-post level data on viewership and engagement, and
exceeds 10 TB in size. To measure the main outcome variable, i.e. toxicity of shared posts,
I further process the text from images in the post data (using OCR), to classify them as
hateful, hurtful, harmful, or toxic. I problematize posts that are a direct threat to the safety
of a group or individual, but also posts that are likely to make one leave a discussion.

Multilingual hate speech classification is a key part of my research because I study the
impact of my intervention on hatefulness of platform discourse and the content data is in
many regional languages (none in English). I use Perspective’s machine learning algorithms,
developed by Jigsaw at Google, to identify toxicity in the Hindi text extracted from about
20 million posts. Toxic content is defined as “a rude, disrespectful, or unreasonable comment
that is likely to make one leave a discussion.”13

Perspective provides the best known machine learning solution for toxicity detection, as
it relies on transformer based/ deep learning models (most notably, BERT) and training data
from millions of comments from di↵erent publishers that are annotated by ten human raters
on a scale of “very toxic” to “very healthy” contributions (Fortuna et al., 2020). This mix of
Supervised and Semi-Supervised Machine Learning methods makes the Perspective algorithm
sensitive to context while assigning toxicity scores.14 Perspective’s Machine Learning models
are being widely adopted to identify and filter out abusive comments on platforms like New
York Times, and are also being frequently used in academic research (Jiménez Durán, 2022;
Aridor et al., 2024). These models score a phrase “based on the perceived [negative] impact
the text may have in a conversation.”

I construct a binary variable, called ‘toxic,’ which takes value 1 when Perspective’s toxi-
city score on a post is higher than 0.2. I validate this threshold in Appendix F by comparing

13https://perspectiveapi.com/how-it-works/
14The source code for the Perspective API is unavailable. These conclusions are drawn from the docu-

mentation and the research papers that have used the API.
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the performance of this cut-o↵ with other methods of hate speech classification.

3 Experimental Design

I conducted a large-scale and long-term experiment in collaboration with SM, to expose a
million users to content that was randomly drawn from the corpus of 2 million posts in
the Hindi Language, that is generated each day. This ‘random algorithm’ is contrasted
with the usual content feed, which is customized according to user behavior in the past. The
experiment enables estimation of demand for toxic content, as being distinct from the supply
through the personalization algorithms. The objective of this intervention is to identify the
role of personalization algorithms, and the underlying mechanisms, in driving engagement
with harmful social media posts.

3.1 Treatment

The control group consists of a random sample of users who were exposed to the usual
ranked list of posts. Here, the ranking was determined by user behavior revealed to the
algorithm in previous engagements.15 SM posts, comprising image and video-based posts,
are created by star users and influencers on this platform. The intervention does not a↵ect
the aggregate supply of content because less than 1% of SM’s users were randomly allocated
to the treatment group.16 Therefore, the intervention left the incentives of the star content
creators una↵ected.

The random draw of posts for the content feeds of treated users, were generated by re-
placing the algorithmically generated embedding vectors (as explained in Section 2.3) with
randomly picked multidimensional embeddings for each treated user. These ‘random embed-
ding’ vectors generated for treated users were drawn from the distribution of user embeddings
that the personalization algorithm generated for control users on each day. That is, for each
treated user, the vector of preference weights is just a random draw of numbers. In Appendix
E, I show that this e↵ectively randomizes the probability of a post being recommended to a
user.

The multidimensional embedding vectors are generated by factorizing engagement matrix
at the user-post level, into vectors that characterize both the user and the post in some latent
embedding space (Dell, 2024; Athey et al., 2021). For the treatment group on the other hand,
embedding vectors are uniformly sampled from an epsilon ball whose centroid is given by
the mean embedding in the control group and radius is twice the sum of variances in that
vector.17 In particular, µ = 1

N

PN
i=1 xi, �2 = 1

N

PN
i=1(xi � µ)2, where xi represents the

embedding with bias for user i, and N is the total number of users. Formally, for each user
embedding, the intervention algorithm uniformly sample a point from an epsilon ball with

15I do not use data of the remaining 99% control users, because di↵erent users may be subject to di↵erent
AB tests at a given point in time. The random sample of control users is known to be uncontaminated by a
di↵erent intervention being implemented on the platform during the intervention period.

16Further, my sample excludes posts that were created more than 60 days before the date that a particular
piece of content was served.

17As per internal company documents and author’s conversations with data science engineers.
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the centroid µ as the center and radius 2⇥ variance of control embeddings.

⇢ ⇠ U(Ball(µ, 2�2))

where ⇢ is the new sampled embedding for the user, and U(Ball(µ, 2�2)) represents a uniform
distribution within the epsilon ball centered at µ with radius 2�2. This way of administering
the intervention has implications for the distribution and ranking of posts in the treatment
group.

I demonstrate the key properties of the content distribution in the treatment group
by simulating a simple recommender system with two-dimensional embedding vectors in
Appendix E. For a randomly generated matrix of engagement for 1,000 control users and
50 posts, I obtain two-dimensional embedding vectors for both the users and the posts
using Singular Value Decomposition (Golub and Reinsch, 1971; Wall et al., 2003).18 In this
engagement matrix (R), each row represents a user, and each column represents a post, to
generate a sparse matrix, where any entry rij 2 R can be a binary variable indicating whether
user i engaged with post j or not. Then I factorize this matrix into its component parts, using
an eigenvalue decomposition, U⌃V T . Here, U and V

T represent user and post embeddings
respectively, so that each column in both these matrices represents an attribute: say, tragedy
and comedy. I further build this example, concretely and intuitively, in Figure E.1, and also
provide graphical representation of these vectors in the space of two content-types: tragedy
(X-axis, dim 1), and comedy (Y -axis, dim 2).

Then, I imitate the procedure or algorithm that implemented the intervention, uniformly
at random picking embeddings from a bivariate distribution centered at the mean of the
embedding vectors generated for control. This process is then repeated each day for a
month-long simulation period, so that the uniformly picked embeddings can converge to a
Normal distribution. This is implied by the Central Limit Theorem, as the intervention
continues for a longer period of time. In Appendix I, I provide the details of the algorithms
used to simulate user embeddings, for both treated and control users.

First, note that the distribution of treatment embeddings, in Figure E.3, approximates a
normal distribution centered around the average embedding vector generated by the control
group, as would be predicted by the Central Limit Theorem (CLT). Second, the CLT also
predicts a smaller spread for the treated embeddings than the control embeddings, because
the variance of treated embeddings is divided by the number of treated users.

Finally, and most importantly, the treatment has a greater e↵ect on users with more
extreme preferences over dimension 1 of the embedding, or the tragedy of the content.
Figure 1 shows that the users with preferences closer to the average user did not see large
di↵erences in embedding assignment, and therefore the content feed, when treated. This is
an important characteristic of content distribution, and is formally tested using the data on
treatment intensity. Figure E.4 shows that the distribution of embedding vectors for treated
and control users in the data, is similar to the simulated distribution of embeddings.

18As a heurristic, I interpret the two dimensions of the embedding vectors as tragedy and comedy, re-
spectively. This means that posts can either be tragic or comic, or some linear combination of these two
genres.
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3.2 Randomization

Treatment was randomly assigned at the user level to 1% of SM’s user base, which includes
both active and inactive users. Users opt-in to be randomly assigned to the treatment for
market research and AB tests that are routinely conducted by the platform.19 The interven-
tion began on February 10, 2023 and continued till the end of the year (December 31, 2023).
Administrative and survey data on relevant outcomes was gathered for the baseline period
(December, 2022), intervention period (February to December, 2023) and post-intervention
period (January-March, 2024).

User Ids were picked randomly at the start of the experiment, and selected users were
assigned to the treatment for the entire duration of the intervention. Similarly, control users
were also selected at the start of intervention, so that their outcomes were not subject to
contamination due to other AB tests/ RCTs running on the platform. For the analysis in
this paper, I use a sample of a quarter million active users (63041 in the treatment group,
and 168773 in the control) who operate the application in Hindi language. A user is said to
be active if she viewed at least 200 posts during the baseline period.

I verify the validity of randomization in treatment assignment among the sample of active
users by assessing balance in observable user characteristics across treatment and control.20 I
consider various observable user characteristics, including gender, state and city of residence,
and the week in which a user first created their account. Treatment assignment was also
uncorrelated with measures of baseline usage, for example, the total number of posts viewed,
or the proportion of toxic posts viewed, during baseline.

Since the treatment was assigned randomly at the user level, I cannot reject the hypoth-
esis that treatment assignment was correlated with user characteristics, either individually
or jointly. Table H.1 provides estimates for a randomly selected set of attributes, as the full
set of user characteristics is too long for the page.

Table H.1 also provides summary statistics for exposure to and engagement with toxic
content at baseline (December, 2022). I am unable to reject the hypothesis that each of these
characteristics (individually or jointly) cannot predict treatment assignment. Further, there
is balance in behavior at baseline with respect to viewing and sharing all types of posts,
including toxic posts, across treated and control users. The randomization procedure was,
therefore, validated, as treatment assignment was not correlated with time invarying user
attributes like gender, or behavior at baseline, like the fraction of engagement during the
weekend or the day time.

It is worth noting, that even though the treatment was randomly assigned, the intensity
of the treatment depends on the user’s baseline engagement with toxic content, or their
type.21 For instance, users with higher baseline exposure to toxic content were more likely to
face a higher treatment intensity because intervention period embeddings were closer to the
mean, while baseline embeddings were further away from the mean. I place both treated and

19Brown University’s data use agreement does not require additional permissions or consent to be obtained
from users, in order to user these data for research purposes.

20The primary test that I performed is represented by the regression, Di = !0 +P
c !c1i(user characteristic = c) + "i, where, treatment assignment (Di) or user characteristics do not vary

over time ⌧ .
21The relationship between user type and their engagement with toxic content is formally established in

Section 5.
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control users into di↵erent quantiles of toxicity, depending on the percentage of their feed
that was toxic at baseline. Therefore, a user is binned with other users who had similar levels
of toxic exposure at baseline, and each bin represents user type in terms of toxic engagement.

Indeed, Figure 3 shows that the change in exposure to toxic content is positive for users
with low baseline exposure to toxic content. As expected, the treatment e↵ect on number
of toxic posts viewed is negative for users with high degree of toxic exposure at baseline
(Q5 to Q10). Finally, the average treatment e↵ect on toxic exposure in Q4 group cannot be
di↵erentiated from zero. Note that this change in toxic exposure is not entirely mechanical.
This is because there is a margin of endogenous response in exposure, because the total
number of toxic posts viewed also changes.

4 Descriptive Statistics: Five Facts

This paper studies the e↵ect of ‘turning-o↵’ feed personalization via content recommendation
algorithms, on measures of satisfaction and engagement on the platform, as well as on socially
undesirable behavior. Treatment e↵ect on measures of overall platform engagement, like
total number of posts viewed and time spent, helps identify the value of the algorithm for
the customers as well as the cost of the intervention to the platform. Further, the change
in the number of toxic posts viewed and shared, helps understand the benefits accrued to
society, by way of reduced propagation of harmful content.

Fact 1: The algorithm keeps users engaged online

Since the content recommendations are tailored according to user tastes, any deviation from
personalized recommendation is expected to reduce user retention and engagement on the
platform. This is because personalization algorithms decrease user’s cost of searching for the
content she prefers (Goldfarb and Tucker, 2019). In reducing ease of content discovery, the
treatment is thought to reduce overall engagement with the platform. The treatment e↵ects
in Table 2 (and Figure G.1) show reduced engagement with the platform, in terms of both
the total number of posts viewed and shared.

Table H.2 notes disengagement in all aggregate measures of platform usage. There are
negative and statistically significant treatment e↵ects on the number of logins per month
(also referred to as retention), the time spent on the platform, as well as the total number
of posts viewed. The negative treatment e↵ect on platform engagement is evidenced by the
44% decrease in the shares-to-views ratio. This means that the intervention was costly for
the firm, because an average treated user reduced the total time she spent on the platform
by 2.5 hours, compared to an average control user, when the average control users spent
close to 7 hours per month.22

Fact 2: Treated users view less toxic content

The objective of this intervention was to understand the role of the customization algorithms
in driving socially undesirable behavior, such as online sharing of harmful or toxic content. I

22The change in time spent is close to 35% of the average time spent by control users.

13



answer this research question using outcomes such as total number of toxic posts viewed and
shared, where toxicity is defined as a binary variable, that takes value 1 when the toxicity
score of a post is at least 0.2.23 The binary outcome variable helps simplify the formal
analysis later.

The direction of the treatment e↵ect on the number of toxic posts viewed, for the average
user, is unclear a priori. This is because the treatment e↵ect on the number of toxic posts
viewed is expected to be positive for users who do not prefer toxic content, but negative
for users who do. This is seen in the simulated recommendation algorithms for treatment
and control groups in Figure 1, where all treated users are exposed to toxic content with
a uniform probability.24 Therefore, the average e↵ect depends on the distribution of user
types in the sample, as well as the number of toxic posts in the corpus of posts.

Figure G.1 shows that, during the first month of implementing this intervention (i.e.
February 10 to March 10, 2023), the treatment group was exposed to less toxic content,
and treated users also shared a lower number of toxic posts in absolute terms. This means
that the average user is used to seeing more toxic content if she weren’t treated, because
random content delivery serves treated users with a lower number of toxic posts. This is
demonstrated in Figure 3, where the negative treatment e↵ect on number of toxic posts
viewed is largest for users in the highest decile of the user toxicity distribution.

Fact 3: Sharing behavior is sticky

The random exposure to content implies that treated users who saw more toxic content at
baseline would now see a lower number of toxic posts. For all such users, I expect to see
a reduction in the total number of toxic posts shared because (1) these users have a lower
number of toxic posts to share from, and (2) seeing more diverse content may change their
otherwise toxic attitudes. However, the average treated user increased the fraction of toxic
posts among her shares.

Table 2 shows that while treatment reduced the proportion of toxic posts viewed by
8.7%, but increased the proportion of toxic posts shared by 7.8% percentage points. This is
because even though an average SM user saw less toxic posts, and shared a smaller number
of toxic posts, the average user shared much less of other types of content. Users seem to be
inelastic, and tend to seek out content that they prefer, even when the algorithm does not
serve it to them readily.

Furthermore, the descriptive statistics indicate that the decrease in toxic shares (19%),
is not as large as the decrease in toxic views (26%). This suggests that sharing behavior
tends to be sticky.

An Illustration of User Behavior

While the treatment significantly decreased the number of toxic posts viewed by an average
user, the reduction in the number of toxic posts shared was not as large. The descriptive
evidence points to the fact that user behavior is not malleable, as sharing behavior does not
change as much as the views. I illustrate the point using a simple example.

23See Appendix F for details on criterion to determine the cut-o↵
24See Appendix E for detailed explanation.
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Consider a user who is served 10 posts in a day, and she shares 2 of them. If the user
is served 5 toxic posts and 10 non-toxic posts, and she shares 2 toxic and 7 non-toxic posts,
then the proportion of toxic posts shared is 22%.

Consider the treated user. Now, the user views 2 toxic posts and 7 non-toxic posts.
Suppose, she shares 1 toxic post, but shares only 3 non-toxic posts. Thus, she is disengaged
from the platform and shares a total of 4 posts, instead of the 9 she would share if she were
not treated. Notice that she also views a smaller number of posts.

This example illustrates that even though the average user views and shares fewer toxic
posts upon being treated, there is an increase in the proportion of shares that are toxic. This
is because 1 out of 4 shares is toxic under treatment, meaning the proportion of toxic shares
is 25%. On the other hand, the proportion of toxic shares is 22% under control. This is true
even though the user shared a lower number of toxic posts.

Another useful statistic to build intuition is the elasticity of toxic shares with respect to
toxic views. Under the control regime, the user was sharing 2 out of the 5 toxic posts she
viewed (40%). However, under the treatment regime, the user shared 1 out of the 2 toxic
posts she viewed (50%). Then, her elasticity of toxic shares with respect to toxic views is
0.8.

Fact 4: Treated users search more

Table H.2 shows that treated users were more likely to use the search feature on the platform.
I find that the share of time spent online seeking out preferred content is higher for the
treated. This complements the evidence on stickiness of sharing behavior, as my measure of
shares includes posts accessed both through the trending feed tab, as well as the search tab.

This finding is also consistent with the fact that treated users were more likely to view
fewer posts during the intervention period, as my measure of views does not include posts
accessed through the search tab. While searching o↵ers an intiutive explanation of the
positive e↵ect on fraction of toxic posts shared (despite the negative e↵ect on the proportion
of toxic posts viewed), it is less likely to be driving these e↵ects. This is because searched
posts constitute 0.01% of viewed posts, and 0.004% of shared posts.

Curiously, the treatment increased the fraction of user activity during the weekends,
but reduced daytime usage. This suggests that treated users were more likely to use the
platform during their leisure time, and less likely to use it during work hours. Such a
finding is especially important for technology policy around questions of platform usage and
addiction, as users seem to be spending less time on compulsive engagement due to lack of
self-control (Thaler and Shefrin, 1981). This is also consistent with the hypothesis that users
seek-out preferred content, as treated users seem to be setting aside leisure time to search
for content they like.

Fact 5: Toxic engagement is not driven by selection among stayers

Treatment intensity, in terms of the number of toxic posts viewed, di↵ers by user behavior
at baseline. Therefore, reduction is exposure to toxic content is primarily driven by users
who saw more toxic content at baseline. The reduction in toxic exposure is not mechanical,
due to changes in the total number of posts viewed by treated users.
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Treated toxic users were also more likely to view a fewer number of posts during the
intervention period, and this endogenous response changes the number of toxic posts viewed
through the total number of posts viewed. This raises serious concerns that the main e↵ects
are driven by selection in the type of treated users who stay back on the platform, because
users who disengage from the platform, or stop using it entirely, may be di↵erent from those
who stay back.

I find that treated users were not more likely to leave the platform (to never login again
after leaving) in the first three months of the intervention. Table H.4 shows that the treated
leavers were not di↵erent from the stayers along any characteristics observable in the data.25

This shows that selection cannot be driving the main results with respect to socially unde-
sirable behavior.

5 Model

Personalization algorithms have been criticized for their role in radicalizing users by creating
echo chambers of like-minded individuals, who may engage with toxic content (O’neil, 2017;
Zubo↵, 2019). I intervened upon online social networks by replacing the personalization
algorithm with a ‘random algorithm,’ where users were recommended a random draw of
posts on their social media feeds. This paper is organized around the costs and benefits of
this intervention administered to randomly selected users. The costs of the intervention were
borne by the platform as it led to a decrease in the time users spend on the platform, and
hence, a decrease in the revenues generated from advertising. This is because treated users
were not served personalized content, and were more likely to see content that they were not
be interested in.

On the other hand, the intervention o↵ers benefits to society by reducing the number of
toxic posts viewed. The intervention may indirectly compound these benefits due to behav-
ioral responses of exposure. For example, users who were more likely to engage with toxic
posts at baseline were shown more neutral posts, and this may influence them to positively
change their minds about minority groups, and change sharing behavior accordingly. The
model disentangles the costs and benefits of this intervention, when a policymaker’s objective
is to reduce engagement with toxic content on social media.

5.1 Setup

User incentives are modeled in the spirit of Akerlof and Kranton (2000), where the user
receives payo↵s from projecting a certain image of herself to her peers. The user cares about
how her action of sharing a post compares with reference to a combination of behavior among
the population as well as one’s own true characteristics. This provides the micro-foundations

25That is, I cannot rule out the hypothesis that, in the following regression equation, �3,c’s are in-
dividually or jointly insignificant, 1i(left platform) = �0 + �1Di +

P
c �2,c1i(user characteristic = c) +P

c �3,c1i(user characteristic = c) ·Di+"i, where, Di is the treatment indicator, and 1i(user characteristic =
c) represents indicator variables for observable characteristics c of user i, including gender, age, days since
account creation, as well as weekday and daytime usage at baseline. This is complemented by evidence in
Table H.3, which shows balance across treatment and control groups, along observable characteristics, in the
sample of stayers.
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to structurally estimate a behavioral model, where the main parameter of interest is the rate
at which users update their engagement behavior when exposed to new content, that may
be slanted (Martin and Yurukoglu, 2017).

The behavioral responses depend on user’s exposure to content through the recommen-
dation algorithm, which enables the user to perceive what is socially acceptable. This can
aid policy instruments aimed at reducing engagement with harmful content, if diversified
feeds expose users to alternative view points. However, other endogenous responses, driven
by fixed tastes for di↵erent types of content, are likely to reduce the time a user spend on
the platform, proving costly to the platform in terms of advertising revenues. The model
shows the channels through which the costs to the platform and the benefits to society are
realized.

5.1.1 Platform and Algorithm

The algorithm’s objective is to optimize post assignment across various types of content to
maximize user engagement with the platform.26 I denote the probability of the algorithm
assigning toxic and non-toxic posts as q

t and q
n, respectively. The total number of posts

viewed by each user, denoted by N , is endogenously determined by the user for given prob-
ability assignments chosen by the algorithm. Therefore, the algorithm optimally chooses q’s
to maximize N for each user, because a user who views a higher number of total posts also
consumes a greater number of advertisements.

In optimizing the total number of posts viewed, the algorithm is essentially maximizing
the attention paid to various advertisements hosted on the platform. This helps the plat-
form increase the advertisement revenues it generates. Therefore, the firm is interested in
maximizing the time users spend on the platform, which is sometimes measured using the
total number of posts viewed. I abstract away from the exact process that translates views
to advertising revenues.

The platform’s problem is a simplification of the actual problem faced by social media
platforms, where the platform also optimizes the number of likes and shares, as well as the
number of ads shown to each user, and the price of advertising.27 This greatly simplifies the
analysis, because the rank of a post on the content feed is now reduced to a single number,
the assignment probability. The objective is to mimic the incentives of a simple algorithm
in order to analyze user responses, and not to analyze the algorithm itself.

26The algorithm’s objective function is known to apriori maximize the weighted sum of the number of
posts a user will view, like, share, or comment upon. Section 2.3 provides a detailed discussion of how this
objective function compares to other open source algorithms, for instance, the one used by X (formerly,
Twitter). https://github.com/twitter/the-algorithm

27While the platform employs its personalization algorithm to cater to user incentives, the modeled al-
gorithm is a fairly coarse representation of more sophisticated technology. In this representation of reality,
the recommendation process is simplified using assignment probabilities, in place of the embedding vectors
described in Section 2.3. In a typical recommendation system, the dot product of user and post embeddings
determines the score of each post that could be recommended to a user on her content feed. These scores
determine the ranking of the posts on users’ feeds, and the order of the posts is especially important for
platforms optimizing for retention and engagement. I abstract away from these orderings, and assume that
the assignment probabilities in the model are obtained by applying some sigmoid function (say, a logistic
distribution) on the dot product of user and post embeddings. The assignment probabilities, are therefore,
isomorphic to the embedding vectors in the actual algorithm.
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5.1.2 User

Consider a social media user who chooses Sr posts of type-r to engage with (and in particular,
to ‘share’), out of the totalN r posts of type-r posts viewed, where r 2 {t (toxic), n (non-toxic)}.
Sharing is assumed to be costly for users, limiting the total number of posts she can share,
S = S

t + S
n. E↵ectively, the user chooses the proportion of posts shared that are toxic as,

s
t = S

t
/S. She also picks the utility maximizing number of posts to view, N = N

t + N
n,

for given assignment probabilities qt and q
n.

Choosing s
r generates some consumption utility. The user obtains consumption utility

from both viewing and sharing posts. However, users also have a taste for conformity,
and derive public recognition utility from sharing posts that are closer to the average user’s
action s̄

t (Butera et al., 2022). The user’s objective is to maximize the utility she derives
from sharing di↵erent types of posts. Then, consider a user’s decision to share toxic posts,

max
st,S,N

u(st, N ; qt, �,↵) = �N � ↵(N � S)2| {z }
consumption utility
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where, � is interpreted as users’ intrinsic motivation to view content or spend time on social
media (Bénabou and Tirole, 2006). Additionally, ↵ parameterizes users’ intrinsic motivation
to share posts of type r, and p

t is the user’s preference parameter with respect to toxic
content. The utility function implies that even when users receive positive utility from
viewing another post (�), she incurs some disutility if the additional posts she views is not
shareable, according to her tastes (↵). ⌘ > 0 results in convex cost of increasing total number
of posts shared, because sharing too many posts may reduce the attention paid to the user’s
shared posts.

Crucially, a user’s behavior is reference dependent on the perception of society’s en-

gagement behavior, qt, as well as user’s own taste toward toxic content, pt. Let �S
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be the disutility when s

t is distinct from average behavior

in the population, qt, and one’s own true type p
t (Becker, 1991; Besley and Coate, 1992).

In this action-signalling model, the user wants to conform with this average behavior, by
choosing s

t that implies individual tastes close to everyone else’s tastes for toxic content
(DellaVigna et al., 2012; Dupas et al., 2024). Therefore, ✓ 2 [0, 1] is the weight users put on
society’s perceived tastes for type-t content, because qt reveals society’s preferences for toxic
posts.
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Notice that users’ infer society’s preferences using the probability with which toxic con-
tent is assigned to them by the algorithm, qt, because engagement with a post is rapidly
changing (Salganik et al., 2006). The algorithm assigns type-r content with probability q

r,
and users infers that other users with similar characteristics also view such content with the
same probability because of the personalization algorithm (Coate and Loury, 1993). I later
show that this belief is indeed correct, because q

t = p
t in the equilibrium.

The argument that users are sophisticated enough to infer society’s tastes from the con-
tent they view on social media platforms is supported by survey evidence. In Figure G.5,
I show that most users in the experimental sample believed that their engagement activity
a↵ects the feeds of other similar users on the platform. Further, these responses were not
primed by the treatment itself. This is because treated users did not di↵erentially observe
that their feeds were not being personalized (Figure ??).28 However, that treated users
viewed fewer posts showed that the treatment was salient to the treated users. This is cor-
roborated by the fact that treated users were more likely to disengage from the platform
during the experiment.

The setup is consistent with the interpretation of algorithmically generated feed moving a
user’s Overton window, which is the range of ideas tolerated in public discourse (Astor, 2019).
Users are assumed to understand that the algorithm provides similar recommendations to
like-minded users. This enables users to update the perception of society’s tastes for di↵erent
types of content, and subsequently act in accordance with these norms to fit in with a
potentially changing group identity (Kim and Loury, 2019).

Users are assumed to update their behavior in line with the perceived norms at some rate
✓. It is worth noting that ✓ will ultimately serve as the measure of ‘influence’ on account
of exposure to the algorithmically generated content feed. This is the main behavioral
parameter of interest, that is estimated in the structural model.

Further, users in this model also derive utility from what their action reveals about their
true characteristics, besides the identity of their social group. They incur a cost if their
action signals characteristics that are di↵erent from their actual tastes (Mullainathan and
Shleifer, 2005). Therefore, the disutility from sharing toxic content depends on how users’
sharing behavior di↵ers from a reference level which is given by a combination of what others
do and their own unobserved intrinsic tastes.

Users solve an analogous optimization problem with respect to non-toxic content, as I
assume that the parameter values are equal, with respect to both types of content.29 The
algorithm, in turn, learns the distortions in user behavior with respect to q

t, and makes
content recommendations accordingly. This game unfolds according to the timing described
in Appendix A, where I also solve for the subgame perfect equilibrium.

28The survey questionnaire was ordered such that the question about noticing changes in the SM feed
was asked after the question about the influence of engagement activity. This was done to ensure that the
responses to the two questions were not correlated. The survey instrument is available in the Appendix.

29The two optimization problems are identical because qn = 1� qt and St + Sn = S. The assumption of
same parameters in both the utility functions is strong, but is validated later, in the discussion of the model.
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5.2 Model Predictions

Consider two time periods in this model, so that ⌧ = 0 represents the baseline and ⌧ = 1
denotes the intervention period respectively. The algorithm assigns toxic posts to each user
i at time ⌧ with probability q

t
i,⌧ , with q

n
i,⌧ = 1 � q

t
i,⌧ . The intervention is symbolically

represented as the average of assignment probabilities in the control group (q̄1t = E[qti,1|Di =
0]).30 Therefore, I represent the treatment e↵ect as the change in an outcome, with respect
to changes in the exogenous probabilities assigned under treatment, all else equal. That is,
the treatment e↵ect is the partial derivative of an outcome with respect to q̄

t.
With the given utility form, and the algorithm’s optimization problem, and the timing

of the game, the equilibrium conditions from the structural model (in Appendix A) provide
a set of testable predictions. These predictions structure the analysis of the main results,
and also shows that the model represents the data well. Then, the estimated parameters
simulate reliable counterfactuals, for di↵erent policy regimes. First, the model predicts that
the treatment e↵ect on the total number of posts viewed is larger for more extreme users.

Proposition 1. For user i with ↵, ⌘ > 0, ✓ 2 [0, 1] and p
t
i > q̄

t
> 0,

@
2
Ni,⌧

@pti@q̄
t
� 0 (1)

That is, for marginal changes in the average probability of being assigned toxic content q̄t,
users with higher proclivity to toxic content view more posts.

Proof. In Appendix B.

When users prefer to engage with toxic content, marginal increases in assignment prob-
abilities lead to larger increases in the total number of posts viewed, for more toxic users.
This is because the treatment exogenously lowers the probability of being assigned toxic
content to the control mean, so deviations from q̄

t bring this probability closer to the user’s
true taste for toxic content, pt. Therefore, the treatment e↵ect on the total number of posts
viewed is negative and smaller, and so has a bigger impact (in absolute terms) on more toxic
users (Figure 3).

In Figure 2, I simulate the model predictions on the posts viewed, under two regimes:
the treatment and the control.31 The control users continue viewing the optimal number of
posts in equilibrium, but treated users are shown to view fewer posts. Indeed, the number
of posts viewed is falling in user tastes for toxic content.32

The model produces similar predictions for the total number of toxic posts shares, Si,⌧ .
However, the utility maximization problem renders two solutions for the total number of
posts shared, one of which is zero. I consider the non-trivial solution for the analysis.

30q̄1t = E[qti,1|Di = 0] because these probabilities are picked uniformly at random, each day during the
intervention period, from the set of all possible assignment probabilities in the control group. Then, the
Law of Large Numbers ensures probability convergence to the average assignment probability in the control
group.

31See Appendix I for simulation details.
32This is true for an arbitrary choice of parameters. The validated model produces the same results, when

the parameters are calibrated by matching moments of the simulated data.
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Proposition 2. For user i with ↵, ⌘, Si,⌧ > 0, ✓ 2 [0, 1], and p
t
i > q̄

t
> 0,

@
2
Si,⌧

@pti@q̄
t
� 0 (2)

That is, for marginal changes in the average probability of being assigned toxic content q̄t,
users with higher proclivity to toxic content share more posts.

Proof. In Appendix B.

The reduction in the total number of posts shared, on account of the treatment, is larger
for users with higher proclivity to toxic content. The intervention is successful in reducing
the number of toxic posts shared by toxic users, either by reducing platform engagement,
or by influencing user behavior through. This result shows that both these mechanisms
necessarily reduce toxic engagement from toxic users. However, for the non-toxic users, the
disengagement mechanism can reduce toxic shares, but the behavior change or influence
mechanism is likely to toxic shares.

The model makes pertinent predictions on the proportion of toxic posts shared, or the
probability of sharing a toxic post, conditional on sharing, St

i,⌧/Si.⌧ . This is the main out-
come variable, as it is informative about societal benefits of the intervention, in terms of
discouraging toxic behavior (total number of toxic posts shared, St

i,⌧ ), relative to the costs
borne by the platform, in terms of losing engagement (total number of posts viewed, Ni,⌧ ,
and shared Si,⌧ ).

Proposition 3. For user i with ⌘, Ni,⌧ , Si,⌧ > 0,

@
2
s
t
i,⌧

@pti@q̄
t
� 0 (3)

That is, a marginal increase from the average probability of assigning toxic content to the
treated, q̄t, leads to larger increases in the proportion of shares that are toxic, for users with
higher proclivity to toxic content.

Proof. In Appendix B.

For the given rate of influence ✓, the decrease in the proportion of toxic posts shared, on
account of the treatment is larger for more toxic users. In particular, Figure 2 shows that
the treatment e↵ect on the proportion of toxic posts shared is negative for users with higher
proclivity to toxic content, while it is positive for users with lower taste for toxic content.
The model explains that the positive treatment e↵ect on the proportion of toxic posts shared
is likely driven by users with lower taste for toxic content. This is because there is a higher
mass of users with lower taste for toxic content, where the treatment e↵ect on proportion of
shares that are toxic is positive.

These results demonstrate how di↵erent type of users respond di↵erently to the treatment.
If users were mechanical, they would all have constant e↵ects such that the proportion of
toxic posts shared is equal to the proportion of toxic posts viewed, irrespective of treatment
status and time period. The comparative statics also show that the treatment e↵ects on
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toxic sharing are unlikely to be mechanical, because they seem to be larger for more toxic
users. This means that users put a positive weight on the new information they receive,
when making sharing decisions. The users are considered to be ‘behavioral’ in this sense.

The changes in toxic sharing would be mechanical if the proportion of toxic posts shared
is equal to the proportion of toxic posts viewed, in each time period.33 This is because
the users share a fixed fraction of the toxic posts they view, and the algorithm served the
toxic posts according to the same proportion, pti. In other words, ‘mechanical’ users would
continue sharing posts in the same proportion, without updating their behavior according

to the new information they receive, when they are treated, i.e.
St
i,⌧

Si,⌧
=

Nt
i,⌧

Ni,⌧
.

The model predicts mechanical behavior if and only if the influence parameter, ✓ equals 0
for mechanical users. Before estimating ✓ in the structural model, I show that this parameter
is in fact non-trivial.

Proposition 4. User i with Ni,⌧ , Si,⌧ > 0, is said to behave ‘mechanically’ when

✓ = � = ⌘ = 0

That is, when ✓ = 0, the elasticity of the proportion of toxic posts shared with the respect to
the proportion of toxic posts viewed is 1.

Proof. In Appendix B.

Users are thought to behave mechanically if the elasticity of toxic sharing with respect
to toxic viewing equals 1. The data suggest that this elasticity is less than 1, implying
that there are decreasing returns to sharing more toxic posts, upon being exposed to an
additional one. The empirical results are interpreted in light of these predictions, and the
main parameter of interest ✓ is estimated using this structural model.

5.3 Structural Estimation

The framework builds a model of user behavior to explain the channels through which the
random algorithm reduces engagement with toxic content. User behavior could either be
sticky according to baseline preferences, or could be malleable on account of new information
users are exposed to. The model provides an estimation strategy for the rate at which users
update their sharing behavior, ✓, in line with what they think is socially acceptable.

5.3.1 Measurement

The data Di,⌧ = {St
i,⌧ , S

n
i,⌧ , V

t
i,⌧ , V

n
i,⌧} consists of measurements on number of toxic and non-

toxic posts viewed and shared by each user, during the intervention period (⌧ = 1) and the
baseline period (⌧ = 0). I measure sharing probabilities during the intervention period as,

s
r
i,1 =

Sr
i,1

Si,1
, for r 2 {t, n}. That is, the probability of sharing a toxic posts is the proportion

of toxic shares out of all the posts shared by user i.34

33This is formally proved in a companion paper studying the e↵ect of exposing users to local news on their
engagement with toxic content.

34Strictly speaking, this is the probability of sharing a toxic post, conditional on sharing any post. If a
user does not share any post, this probability is set to zero in the data.
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I imperfectly measure users’ innate preferences with their sharing behavior at baseline
(⌧ = 0), i.e. pti ⌘ s

t
i,0 and p

n
i ⌘ s

n
i,0. This is true because user behavior at baseline is said to

be in equilibrium, and it has been seen that qti,⌧ = p
t
i. Therefore, Lemma A.1 implies that

s
t
i,0 = p

t
i in equilibrium.

Similarly, I proxy user’s probability of being assigned toxic content with the proportion
of toxic posts viewed, i.e. qti,⌧ ⌘ v

t
i,⌧ . The model predicts that in equilibrium, the optimizing

algorithm assigns toxic content in line with users’ tastes for viewing di↵erent types of content.
This is important because the probability of being assigned toxic content is not observed
during the first month of the intervention.

That is, in arriving at the estimation strategy, I assume that a user views all the posts she
is assigned by the algorithm. This means that N t

i,⌧ = Ni,⌧q
t
i,⌧ ⌘ Vi,⌧q

t
i,⌧ = V

t
i,⌧ , where Vi,⌧ and

V
t
i,⌧ formally denote the total number of posts viewed, and the number of toxic posts viewed

respectively. I later relax this assumption, and employ a measurement error correction to
account for the fact that users only view a proportion of the posts they are assigned.35 Then,
the equilibrium sharing probabilities in Lemma A.1 are represented as functions of sharing
behavior at baseline, and views during the intervention period.

Proposition 5. The optimal sharing functions are written as

log sti,1 = (1� ✓) log sti,0 + ✓ log vti,1 + µ logwt
i (4)

log sni,1 = (1� ✓) log sni,0 + ✓ log vni,1 + µ logwn
i (5)

where, wt
i and w

n
i are taste-based, and time invarying preference shocks for sharing a

post. I postulate that users change their behavior in response to the treatment as they infer
society’s tastes for di↵erent types of content they view. Accordingly, users update their
sharing behavior, at some rate ✓, to remain in step with other similar users. Then, the
main structural parameter, ✓, represents the influence of exposure to toxic content on user
behavior, or the rate at which users expand their Overton windows. This interpretation
of the main parameter of interest, ✓, is in line with the idea that users expand their view
of socially acceptable things to say in public discourse, by observing the content that is
recommended to them by the algorithm.

Proposition 5 gives the required sharing functions that I base the structural estimates
o↵. I estimate the model in order to identify the role of users’ innate preferences, separately
from the rate at which users update their behavior in response to changes in the algorithmic
recommendations. ✓ cannot be directly estimated through equations (4) due to certain
features of the experiment’s design, which are in Appendix C.1.36 A steady state condition
is used to identify ✓.

35The measurement error is an important factor in the estimation strategy, as treated users randomly
sample posts to view from some list of posts assigned by the algorithm. Therefore, the proportion of toxic
posts viewed follows a known sampling distribution, which is discussed in detail in Appendix C.3.

36The main issue is that there is insu�cient variation in proportion of toxic posts viewed for both treated
and control users. This is true for control users probability of sharing toxic content is equal in the steady
state equilibrium. This is true for control users because they are exposed to a constant proportion of toxic
content, q̄t1.
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5.3.2 Steady State

This system of interaction between recommendation algorithms and social media users is said
to be in steady state when the probabilities of assigning toxic and non-toxic posts ([qti,⌧ , q

n
i,⌧ ]),

as well as the probabilities of sharing toxic and non-toxic posts ([sti,⌧ , s
n
i,⌧ ]) are stable over

time. The steady state condition is also the identifying condition as it states that in the
absence of any exogenous changes to assignment probabilities, user behavior should be the
same in each time period. As a result, any changes in the probabilities of sharing toxic
content are due to changes in exposure to toxic content. This allows for the identification of
the updating parameter ✓, which does not change over time or by treatment status.

At ⌧ = 1, users in the control group remain in the steady state, which means that ✓

cannot be correctly estimated using data on shares and views for control users. This is
because the proportion of di↵erent types of content viewed by control users, is correlated
with sharing behavior at baseline, on account of the assignment probabilities generated by
the algorithm.

Lemma 1. ✓ cannot be identified from the relationship between sharing behavior and the
proportion of toxic content viewed during the intervention period among a sample of control
users.

Proof. In Appendix B.

The resulting steady state conditions provide the main identifying assumptions because
endogenous sharing behavior at ⌧ = 1 or ⌧ = 0 is a priori expected to be equal for treated
users. That is, in the sample of treated users, ✓ is identified when the following assumptions
are satisfied,
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(A2)
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I test and discuss this assumption in greater detail in Section ??. Given these identifying
assumptions, ✓ can be estimated using data on current and past shares because q̄t ? s

t
i,0 and

q̄n ? s
n
i,0.

Proposition 6. For some updating parameter ✓, and treated user i, the change in ratio of
toxic-shares to non-toxic shares from the baseline is a function of the log-odds ratio of the
proportion toxic posts viewed at baseline. That is,

log
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sni,1

!
� log

 
s
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i,0

sni,0

!
= (1 + ✓) log

 
q̄t

q̄n

!
� ✓ log

 
v
t
i,0

vni,0

!
(6)

Proof. In Appendix B.

Intuitively, the constructed outcome in Proposition 6 accounts for unobserved di↵erences
in preference for sharing any type of content.37 Details of the estimation are provided in
Appendix C.

37The di↵erence in exposure to di↵erent kinds of content, between baseline and intervention period provides
heterogeneity in treatment intensity, which is exogenous to user tastes. The first di↵erences over time, within
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5.4 Discussion

I use a structural model to formalize the analysis for the following reasons. First, the model’s
equilibrium characterization of user types allows the decomposition of user behavior into its
mechanical and behavioral components (in Appendix A), in a meaningful way. In assigning
random draws of posts to treated users, the intervention directly reduced the proportion
of toxic posts viewed by users who engaged with more toxic content at baseline. This
mechanically left such users with fewer options to share toxic content from.

Second, the model provides micro-foundations for user engagement with harmful content.
The treatment altered the perception of society’s tastes for toxic content, which users infer
from the realized sequence of posts that appear in their feed. Users update their view of
socially acceptable content in order to conform with other users of similar type (Akerlof and
Kranton, 2000; Fang and Loury, 2005). Treated users were served an average user’s feed,
and thought to update their opinion of what other users of the same type might be viewing.
This is supported by the survey evidence, as both treated and control users were likely to
believe that their engagement activity a↵ects the feeds of other similar users on the platform
(Figure G.5).

Third, the model decomposes the treatment e↵ect into two channels, (1) the endogenous
response in the total number of posts viewed and shared, and (2) the influence of exposure
to diverse content on the proportion of toxic posts shared. Treated users endogenously
responded to diversity in content assignment by viewing fewer posts, or spending less time
on the platform. However, the model shows that this e↵ect was more pronounced for users
who were previously engaged with more extreme toxic content (henceforth, toxic users).

The action-signalling model (Butera et al., 2022) helps in disentangling users’ endogenous
response on the total number of posts viewed from the mechanical and behavioral e↵ect on
the proportion of toxic posts shared. This is important because the former provides accurate
estimates of the cost of the intervention to the platform, while the latter predicts the role
of behavioral distortions in driving the treatment e↵ect on toxic sharing. For users more
likely to engage with toxic content at baseline, all these channels drive the exposure to and
engagement with toxic content downward. This provides valuable information to a regulator
interested in policies that reduce the total amount of toxic content shared on social media
platforms.

The structural model estimates the malleability of user behavior by identifying ✓. How-
ever, in so doing, it makes a set of assumptions that are validated below.

5.4.1 Simplifying Assumptions

In writing the utility for structural estimation, I made four simplifying assumptions: (1)
consumption as well as signalling utilities are additively separable for each content type, (2)
action-signalling utility from sharing is equal for both types of content, i.e. ✓t = ✓

n = ✓, (3)
user behavior in the action-signalling model is updated at some constant rate ✓ across all

the treatment group, accounts for unobserved heterogeneity in sharing behavior. Since, exposure to toxic
content among the treated during the intervention period is constant on average, the estimates from this
di↵erencing strategy e↵ectively only uses variation in baseline exposure among toxic users. As a result, ✓ can
be identified using the relationship between di↵erence in shares (from ⌧ = 0 to ⌧ = 1) and levels of views at
baseline (⌧ = 0) in the sample of treated users.
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users, (4) deviating from the reference point of own and society’s tastes generates disutility
which is quadratic in nature.

The first assumption rules out strategic complementarities and substitutabilities between
di↵erent kinds of posts (Train, 2009). This is tenable due to the fact that users scrolling
through social media are assumed to be viewing posts one at a time, and do not know if
the next post they will view is going to be toxic or not. Additionally, the path dependency
of user behavior on the distribution of all types of posts is modeled separately through the
utility from action-signalling.

I test the second simplifying assumption, as I can observe whether the signalling value
from sharing toxic and non-toxic content is equal. This assumption is validated in Table
H.6, as I test for the equality of coe�cients using stacked regressions. The two regressions
estimate the relationship between toxic views and toxic shares, as well as non-toxic views and
non-toxic shares. I cannot reject the hypothesis that the coe�cients from these regressions
are equal.

I test the third assumption, that is, the constant e↵ects with respect to the rate of
updating user behavior in the action-signalling model. Figure G.10 supports this assumption,
as the estimates of ✓ obtained from samples of di↵erent ‘types’ of users are indistinguishable
from each other. Therefore, I cannot reject the hypothesis that the rate of updating user
behavior is equal across di↵erent types of users.

Finally, I have assumed the costs of using social media to be quadratic for ease of com-
putation. The model does not stray far from the literature on strategic interactions in the
presence of social signalling, especially when such models are estimated using structural
methods, for instance, in Butera et al. (2022).

5.4.2 Identifying Assumptions

The main identifying assumption in this framework is that the probability of sharing toxic
content is equal in steady state equilibrium. Since, the control users remain in steady state
during the intervention and were chosen randomly, I test this assumption in the sample of
control users,

s
t
i,0 = s

t
i,1 (IA)

In order to test this assumption, I estimate parameters of the following regression,

s
t
i,1(Di = 0) = �1s

t
i,0(Di = 0) + "i,1

Under this identifying assumption (IA) I expect �1 = 1 in the sample of control users. As
before, I correct for measurement error in computing the proportion of toxic posts shared.
Table H.7 shows that I cannot reject the hypothesis that �1 = 1, in the measurement error
corrected case.

6 Results

The given framework structures the analysis of my intervention, which turns o↵ the algorithm
for a random subset of users. With di↵erent magnitude of e↵ects for di↵erent types of users,
the model decomposes the e↵ect of changing exposure to toxic content, into two channels:
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change in user behavior due to the change in exposure, and change in overall engagement
with the platform.

6.1 Testing Model Predictions

The model allows a characterization of user types in terms of baseline exposure to toxic
content. I analyze the main outcomes separately for users in di↵erent quantiles of baseline
exposure to toxic content, or the distribution of proclivities to toxic content. The first
quantile, Q1, represents users with lower taste for toxic content. On the other hand, users
in Q5 have a higher taste for toxic content, and are expected to be most a↵ected by the
treatment, due to the reduction in exposure to toxic content.

Prediction 1: Number of toxic posts viewed Upon being treated, toxic users (or
users with higher baseline exposure to toxic content) view far fewer toxic posts during the
intervention period. Lemma A.5 shows that the equilibrium assignment probabilities exactly
equal respective users’ tastes for such content, i.e. qti,⌧ = p

t
i for all i in the control group. If

user i were to be treated, she instead receives toxic content in her feed with probability q̄
t

in time period ⌧ = 1. Then, the model prediction on treatment intensity, or the proportion
of posts viewed that are toxic, during the intervention period, is stated as

v
t
i,1(Di = 1)� v

t
i,1(Di = 0) =

8
><

>:

q̄
t � q

t
i,⌧ < 0 if pti > q̄

t

0 if pti = q̄
t

q̄
t � q

t
i,⌧ if pti < q̄

t

That is, q̄t � q
t
i,⌧ < 0, for more toxic users with p

t
i > q̄

t as q̄t is the average user’s probability
of being assigned toxic content. Similarly, the treatment intensity is positive for users who
dislike toxic posts, because q̄

t � q
t
i,⌧ > 0 if pti < q̄

t. The treatment intensity is smallest (in
absolute terms) for the neutral users with p

t
i = q̄

t.
The simulated experiment and recommendation algorithms also show that the treatment

e↵ect on the assignment probabilities is negative, and smallest in absolute terms for the
most neutral users. In Figure 1, the absolute value of simulated treatment intensities are
highest for extreme users, mechanically. In the experiment, the decrease in exposure to and
engagement with content for more toxic users is, in part, due to the reduction in the total
number of posts viewed. Therefore, exposure is also a↵ected by users endogenously reducing
their time spent on the platform, and this response may also di↵er by user type.

Figure 3 shows that the treatment e↵ect on the number of toxic posts viewed is negative
for toxic users. Additionally, Figure 5 shows that the treatment e↵ect on the proportion of
toxic posts viewed is negative for toxic users. This Figure also shows that the treatment
e↵ect on proportion of views that are toxic is positive and statistically significant for non-
toxic users. However, the absolute value of the negative e↵ects are larger than the positive
e↵ects observed for non-toxic users. These results are key in predicting the treatment e↵ects
on the remaining outcomes, separately for di↵erent types of users.

Prediction 2: Total number of posts viewed Figure G.1 shows that, on average,
the treatment was likely to reduce the total number of posts viewed by users. The model,
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however, makes a finer prediction: the treatment e↵ect on the total number of posts viewed
is likely to be negative and larger (in absolute terms) for toxic users.

Figure 2 shows predictions from the simulated model, under the equilibrium conditions.
Here, I compare key quantities that are produced by the equilibrium conditions generated by
the model under two regimes, (1) treatment: where assignment probabilities are allocated
randomly, and (2) control: where assignment probabilities are allocated according to an
optimizing personalization algorithm. I find that the distance between number of posts
viewed, under the two regimes, is largest for users with more extreme tastes for toxic content,
p
t. This confirms the prediction in Proposition 1 that treated users, with a higher proclivity
to toxic content, viewed fewer posts during the intervention period.

Indeed, Figure 3 shows that the treatment e↵ect on the total number of posts viewed
is negative, and larger in absolute terms, for toxic users. Note that the model predicts no
change in the total number of posts viewed for users who were viewing average quantities
of toxic content at baseline. That is, if 2% of the post corpus contains toxic content, then
users with 2% toxicity in their baseline feeds are likely to view the same proportion of posts
during the intervention period.38 As a result, the treatment may not be salient for these
users, as there is no change in the total number of posts viewed.

In fact, Figure 2 shows that the prediction can be applied to both extreme ends of the
toxicity distribution, as the treatment e↵ect on the total number of posts viewed is also
negative for users who viewed less toxic content at baseline. That is, users on the other
extreme of the toxicity distribution (i.e. non-toxic users in Q1) are also expected to view
fewer posts, or spend less time on the platform in total. This is because, in the model,
exposure is assumed to have constant e↵ects on user behavior, irrespective of user type.
Therefore, user responses are assumed to be symmetric along the toxicity distribution.

Figure 3 shows that the treatment e↵ect on the total number of posts viewed is insignifi-
cant for users in Q1. This points toward the possibility that user responses are not symmetric
across the distribution of user types. Although Figure ?? shows that the hypothesis that ✓
values are di↵erent for di↵erent user types cannot be rejected, I cannot conclude that these
are homogenous either. In fact, Figure G.12 shows that relaxing the symmetry assumption
provides model predictions that are consistent with the empirical results. I tackle this in
greater detail later, when calibrating model parameters to simulate counterfactual policy
outcomes.

Prediction 3: Total number of posts shared Figure G.1 shows that the intervention
led to a decrease in the total number of posts shared, for the average user. However, Propo-
sition 2 predicts that the treatment e↵ect on the total number of posts shared is negative but
larger in absolute terms, for users with higher proclivity to toxic content, because @2S

@q̄t@pti
> 0.

Figure 4 shows that this is indeed the case, as the absolute value of the treatment e↵ect for
users in Q1 is the smallest.

Notice that the magnitude of the treatment e↵ect remains stable for users, even in the
upper quantiles of Figure 4. In Figure 2, the model predicts that when proclivity to toxic
content if high enough, the treatment e↵ect on the total number of posts shared decreases

382% toxicity in baseline feeds means that 2% of the posts viewed by the user, on their main feed, are
toxic.
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at a much slower rate. This is consistent with the interpretation that sharing behavior is
not malleable for users with high enough proclivity to toxic content. As before, relaxing the
assumption of constant ✓ for all user types generates predictions that are consistent with the
empirical results (Figure G.12).

Prediction 4: Proportion of posts shared that are toxic Proposition 3 shows that the
cross-partial derivative of the proportion of toxic posts shared with respect to the assignment
probabilities and user proclivity to toxic content is positive. Intuitively, this means that
marginal increase in the proportion of toxic posts viewed due to the treatment, only changes
sharing behavior by an order of ✓, through the channel of influence from exposure. Then,
users with higher pti are likely to have a larger response (in absolute terms) to treatment.

Figure 2 predicts that the absolute value of the treatment e↵ect on the proportion of
shares that are toxic (St

/S) is the largest for users with higher proclivity to toxic content.
The model also predicts that the treatment e↵ect is positive for users who do not prefer
toxic content, and negative for users who prefer toxic content. This is seen in Figure 2 and
verified in Figure 5. The treatment e↵ect on proportion of shares that are toxic is seen to
be positive in Q1, and negative in Q5.

A regulator or social planner is likely interested in behavior change caused by the inter-
vention, with respect to the total number of toxic posts shared. However, the ratio of toxic
shares to total shares is informative about the composition of shares, and the extent to which
users are engaging with toxic content. It is instructive to learn s

t as it helps analyze if the
average reduction in toxic sharing is stemming from the influence of exposure on behavior,
or if it is driven by disengagement with the platform.

Prediction 5: Mechanical E↵ects The model predicts that if exposure has no influence
of user behavior, i.e. ✓ = 0, users tend to behave mechanically. That is, when ✓ = 0, users
share a fixed proportion of toxic content they view, in each time period.39 The negation of
this implication is also true, and is tested empirically to analyze if user behavior is malleable
or sticky. That is, if users do not behave mechanically, then exposure has an influence on
user behavior, i.e. ✓ > 0.

I find that the treatment e↵ect on the proportion of toxic posts shared is distinct from
the e↵ect on the proportion of toxic posts viewed. Intuitively, the equality of these two ratios
indicates mechanical behavior, because this is the case of unit elasticity of toxic sharing with
respect to toxic viewing. I reject the hypothesis that the elasticity equals 1, because the �

2

statistic from the non-linear test of equality between ratios is 9.44, with a p-value of 0.002.
These empirical results clearly show that there are behavioral responses to diversifying

content feeds, even though the influence of exposure is relatively small, as I will show in the
estimation of the structural model. The prediction helps negate the possibility that ✓ = 0,
which is the case of no updation in user behavior with respect to exposure. Then, behavior
is said to be mechanical because users share the same proportion of toxic content they view,
in each time period. This sets up the rationale for estimating the structural model.

39The formal proof of this statement is found in a companion paper.
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6.2 Complimentary Evidence

The inelasticity of toxic sharing with respect to toxic viewing implies that when a platform
censors toxic content, users are unlikely to change their attitudes or behaviors. This is be-
cause users can seek out the content they want to engage with, irrespective of the algorithm’s
recommendations. One way users can seek out content is by directly searching for it. In
Table H.2, I find that treated users were more likely to use the platform’s text search feature.

The varying treatment intensities also imply that users with higher treatment intensities
should search more. This is because they were assigned less relevant content, and this e↵ect
is expected to be larger for users who saw more toxic content at baseline. Indeed, in Figure
6, I find that Q5 users were more likely to search posts they wanted to engage with.

Note that this is consistent with my finding about negative e↵ects on the number of posts
viewed by toxic users because my measure of posts viewed only considers exposure through
the ‘Trending Feed,’ which is the landing page of the platform. Therefore, the additional
posts that users may have discovered and viewed through the search feature, are not included
in the measure of views. Additionally, this e↵ect is likely to be small because searched posts
comprise 0.1% of posts viewed, and 0.04% of posts shared.40

Figure 6 shows that the treatment e↵ect on the ratio of toxic shares to toxic views is
monotonically increasing in user toxicity. The implication is that toxic users share a larger
proportion of toxic content they are served, by scrolling past the posts they do not want to
engage with. That is to say, toxic users were more likely to share a toxic post when they
found one, but non-toxic users were not more likely to share toxic content even when the
algorithm exposed them. This is also consistent with the assertion that low-type users have
lower ✓, or are even less malleable than users with a higher taste for toxic content.

This is reflected in the fact that even though treated users spent significantly less time
on the platform, there were no significant di↵erences between the treatment e↵ects across
di↵erent types of users (Figure G.6). Note that the intervention only randomized the posts
on the landing page, making this a more likely explanation for the observed treatment e↵ects.

Finally, Figure G.7 shows that the margin of adjustment in platform engagement mostly
comes from reduced usage during working hours. This is because treated users were less
likely to use the app during the day, and were more likely to log in during the evenings
and weekends (Table H.2). This has important implications for technology policy around
questions of platform usage and digital addiction, that are currently beyond the scope of
this paper.

6.3 Structural Estimates

A di↵erence-in-di↵erence estimator measuring the elasticity of toxic shares with respect to
toxic views is not estimable among control users because the proportion of toxic views and
toxic shares is in steady state. This necessitated the need for a structural model, as explained
in Appendix C. I estimate the structural relationship between the di↵erences in probability
of sharing toxic content over time, and the proportion of toxic posts viewed at baseline, using

40This was true later in the post-period, August 2024. I cannot verify this for the intervention period, but
there is no reason to believe these numbers would be any di↵erent.
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the following specification,

(sti,1 � s
n
i,1)� (sti,0 � s

n
i,0) = �0 + �1(v

t
i,0 � v

n
i,0) + "i,1 (7)

where, "i,1 is assumed to be a random error term. This exercise is performed using a sample
of treated users only, and it estimates the share of toxic engagement that is driven by user
behavior at baseline via the feed-ranking algorithms. The resultant estimates are correctly
identified because the treated users are exposed to toxic content during the intervention
period purely by chance, therefore eliminating endogeneity in viewing and sharing over time.

It has been shown that if the relationship of interest is linear, then �̂1 = �✓̂ (Appendix
C.2). I first assess if the relationship between these two variables is linear in Figure G.11a.
Due to the skewness of the distribution of toxic views at baseline, I flexibly fit the probability
of sharing toxic content with respect to the di↵erence in the proportion of toxic posts and
non-toxic posts viewed at baseline (as an approximation to the relevant log-ratios, henceforth
referred as simply the di↵erence).

The function in Figure G.11a approximates a linear relationship between the di↵erence
in toxic and non-toxic exposure at baseline and the di↵erence in these di↵erences over time,
or current engagement with toxic content, in the treatment group. This shows that a linear
fit is appropriate for the data.

6.3.1 OLS Estimates

Table H.8 shows that the estimated e↵ect of a 1% decrease in the proportion of toxic posts
viewed during the intervention period decreases the change in proportion of toxic posts shared
by ✓̂% = 0.08%. This also demonstrates that the estimated stickiness in user behavior, or
the elasticity in sharing behavior with respect to baseline sharing behavior, (1 � ✓̂) is close
to 0.92. Therefore, upon being exposed to toxic content randomly, users barely update their
behavior in line with content they saw during the intervention period.

These estimates support the claim that user behavior is not malleable, and is largely
determined by user preferences at baseline. However, these OLS estimates of ✓ are likely to
be su↵er from attenuation bias. This is because the data on proportion of toxic or non-toxic
posts viewed is likely to su↵er from measurement error, due to the fact that users sample a
fraction of posts to view, after the algorithm assigns them to the feed. I use an IV estimation
strategy outlined in Appendix C.3, to correct for this possibility.

6.3.2 IV Estimates

The IV estimates, in Column (2) of Table 1, indicate that the measurement error indeed
led to attenuation bias in the main OLS estimates shown in column (1) of Table ??. The
first column in Table 1 shows the strength of the first stage for the IV specification, where I
instrument average toxicity in the first half of the posts viewed at baseline, with the average
toxicity in the second half. The measurement error corrected estimate shows that a 1%
reduction in exposure to toxic content reduces engagement with toxic content by 0.16%.

The IV strategy provides the preferred estimate of the elasticity of sharing toxic content
with respect to viewing toxic content. More standard approaches for correcting classical
linear measurement error provide larger estimates of ✓. This first stage also serves as a
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measure of reliability for the main outcome variable, in STATA’s in-built measurement error
correction program, whose result is shown in column (3).

The lack of flexibility in user responses has serious implications for designing regulatory
policies aiming to reduce engagement with toxic content in digital spaces. My results indicate
that the elasticity of the odds of sharing toxic content, with respect to exposure at baseline
is more than 0.84. This leaves little room for policy instruments to alter sharing behavior
through reduced exposure to toxic content, by influencing behavior through exposure to
more desirable content. Note that reductions in exposure to toxic content does not have a
one-to-one relationship with change in sharing behavior. Table 1 shows that user behavior
significantly depends on pre-existing behaviors or preferences.

These results are consistent with a model of user behavior where user response is deter-
mined by both current and previous exposure to toxic content, where previous exposure is
endogenously determined by the algorithm, according to user preferences. This means that
while users update their behavior in line with new information that they are exposed to, a
significant part of their behavioral responses are sticky as they depend on user behavior at
baseline. I perform a series of checks to validate these structural estimates in Appendix C.4.

6.4 Model Based Counterfactuals

I calibrate the model parameters to estimate the counterfactual e↵ect of reducing exposure
to toxic content. This is done by matching moments of the empirical distribution of the total
number of posts viewed and shared, as well as the total number of toxic posts shared, with
the simulated moments generated using the model with ✓ set at 0.16 The calibration exercise,
for various model parameters, is summarized in Table H.10, and detailed in Appendix C.5.

6.4.1 Alternative Behavioral Assumptions

I simulate the counterfactual e↵ects of the intervention, under di↵erent assumptions on
user behavior. That is, I use the calibrated model parameters to construct counterfactual
distributions of the treatment e↵ects, when users share toxic content appearing on their
feed mechanically (i.e. ✓ = 0), and when users fully update their behavior in line with new
information (i.e. ✓ = 1). Figure G.14 shows that malleable users with ✓ = 1, the percentage
change in number of toxic posts shared is decreasing user type. This is because more toxic
users viewed fewer toxic posts, and are more likely to be influenced when ✓ = 1. This Figure
also shows that malleable users with low proclivity to toxic content would view and share a
higher number of toxic posts, upon being treated.

The case of mechanical users confirms that treatment leads to no change in the number
of toxic posts shared, or in its constituent parts. Finally, under the assumption of constant
behavior across user types, ✓ = 0.16 implies that the treatment e↵ect on the number of toxic
posts shared approximates an inverted V, when plotted against user toxicity. Since I am
interested in behavior change of toxic users, I focus on the right-hand side of the distribution
of user types. Here, the decrease in number of toxic posts shared is larger in absolute terms
when users are malleable (✓ = 1), than when the users behave according to the observed
degree of malleability, ✓ = 0.16.
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6.4.2 Treatment E↵ect Decomposition

Next, for the calibrated model parameters, including ✓ = 0.16, I decompose the treatment
e↵ect on the total number of toxic posts shared into two channels: (1) Engagement: the
change in engagement with the platform, or the number of posts of any kind, that were
viewed and shared by treated users, and (2) Influence: the change in the probability of
sharing toxic content, given the number of posts shared. Simply put,

S
t
i,1 = Ni,1 ·

Si,1

Ni,1
· sti,1

=) % change in S
t
i,1 = % change in N

t
i,1 +% change in

Si,1

Ni,1| {z }
change in engagement

+% change in s
t
i,1| {z }

change in influence

For ✓ estimated at 0.16, I simulate the e↵ect of exogenously changing q̄
t for di↵erent types

of users, and analyze how these two components of the treatment e↵ect change the number
of toxic posts shared. Figure G.15a shows that the treatment e↵ect on total number of
posts viewed and shared reduces the treatment e↵ect on the number of toxic posts shared,
and is negative for more toxic users. For this low value of the influence parameter, the
decreasing e↵ect on the probability of sharing toxic Content seems to be largely driven
change in engagement (both views and shares). This means that even when ✓ is low enough,
the negative e↵ect on the number of toxic posts shared is dominated by the engagement
e↵ect.

In this counterfactual decomposition, the influence e↵ect, represented by s
t, is surely

decreasing in user toxicity. However, the decrease in N is even larger, with increasing toxicity
in user-type. Note that, when users are fully malleable with ✓ = 1, as in Figure G.15c, the
treatment e↵ect in number of toxic posts shared in entirely driven by the influence e↵ect, or
the change in proportion shares that are toxic, st.

6.4.3 Counterfactual Policies

Finally, the model predicts the main outcomes, for di↵erent policies that can be implemented.
It is hard to conceive of a policy where platforms would agree to turn o↵ their algorithms for
all their users, and deliver posts by a random draw instead. It is however, completely realistic
to imagine a policy where platforms are required to diversify their feeds, by randomizing a
portion of the posts that users see.

Randomizing part of the feed makes for good policy because the platform algorithm can
learn about changing, and sometimes inconsistent, user preferences, from their engagement
with randomly served content (Kleinberg et al., 2022). Platforms typically want to be at
some point on the exploration-exploitation frontier, where they are able to retain users by
showing them content they like, and continuously learning about their preferences (Zhan
et al., 2021). This paper shows that introducing diversity into feeds may also be beneficial
from a societal viewpoint, as it may persuade users to share less toxic content.

A social planner may be interested in the optimal mix of algorithmic and random feeds,
also because personalization algorithms have been demonstrated to hold high value for the
users themselves. Therefore, I simulate the main policy outcome, number of toxic posts

33



shared, and its component parts, under di↵erent mixes of algorithmic and random feeds in
Figure 7. This shows that even when 60% of the feed is randomized, the e↵ect on toxic
sharing for toxic users is driven by the influence e↵ect, or the change in the probability of
sharing toxic content, given the number of posts shared (st). However, the social gains in
terms of reduction in toxic sharing are fairly limited.

On the other hand, if at least 80% of the feed is randomized, the e↵ect on toxic sharing
for toxic users is driven by the engagement e↵ect. Under the assumption of constant ✓, the
platform loses both extremely toxic and non-toxic users. If a platform is willing to admin
that ✓ = 0 for non-toxic users, then the complete randomization strategy would still benefit
societal gains. This is because the decrease in toxic engagement is driven by toxic users dis-
engaging with the platform. This may be consistent with a planner’s objective. At any rate,
this counterfactual exercise shows that a planner can optimally choose a degree of random-
ization, to balance the trade-o↵ between user engagement with social media platforms, and
the dissemination of toxic content. Table H.11 shows the contribution of each component,
under di↵erent policy regimes, for the average user.

7 Conclusion

Content recommendation algorithms are often accused of boosting engagement with misin-
formation, like hate speech, on social media platforms, all around the world (Pariser, 2011;
Weinstein et al., 2021; Fisher, 2022).41 Personalization algorithms have also been linked to
hate-crimes and politically motivated violence. The failure to prevent incitement to violence
has brought these platforms under scrutiny, especially in the case of the Capitol Hill riots on
January 6, 2021 in Washington DC,42 as well as the recent indiscriminate killings in Myan-
mar and Ethiopia.43 In a congressional hearing on social media’s role in extremism in March
2021, Rep. Mike Doyle (Pa.) addressed chief executives of Google, Facebook, and Twitter,
“the power of this technology is both awesome and terrifying, and each one of you has failed
to protect your users and the world from the worst consequences of your creations.”44

It is, however, unclear if these harms are propagated solely due to algorithmic exposure
to toxic content, or by users’ pre-existing preferences over such content. This is because
the algorithms are optimized to enhance user satisfaction using revealed preferences that the
algorithm learns from users’ engagement in the past. On the other hand, user preferences for
content could be influenced by the content they view, so that users can convincingly signal
that they are engaging with posts that are perceived to be popular in their network.

This paper studies the role of user preferences and personalization algorithms in driving
engagement with extreme content. I conducted a large-scale randomized evaluation of such
algorithms by e↵ectively turning it o↵ for one million treated users, on a popular TikTok-like
platform in India. This ensures that the content users are exposed to during the intervention

41See also, https://www.techtransparencyproject.org/articles/two-studies-social-media-alg
orithms-fuel-online-hate

42See https://www.nytimes.com/2021/03/25/business/jack-dorsey-twitter-capitol-riot.html
43See https://bit.ly/3smUoUE
44See https://www.washingtonpost.com/technology/2021/03/25/facebook-google-twitter-heari

ng/
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is uncorrelated with their behavior and therefore, distinguishes the influence of technology
from that of human behavior. I examine whether the content presented by algorithms
substantially impacts user choices, or if, conversely, users would seek out content consistent
with their existing behavioral patterns.

I show that the while the intervention significantly reduced user exposure to toxic con-
tent, there was an increase in the proportion of toxic posts shared. I developed a structural
model to rationalize these results, so that di↵erent types of users formally respond to the in-
tervention in heterogeneous ways. The model decomposes the total e↵ect of the intervention
into two components: change in engagement with the platform, and change in the type of
content viewed. I find that while more than 80% of the behavioral response is due to changes
in engagement, the remaining 20% is attributed to the influence of the content viewed.

This paper analyzed the e↵ects of a specific algorithm on a specific platform. These
results are generalizable to other platforms, to the extent that they use similar algorithms to
personalize content. Further, the current analysis is restricted to the e↵ects of the ‘random
algorithm’ for one month only. Future work will focus on understanding the long-term e↵ects
of the intervention, using administrative data for later months, and survey data for 8,000
users who were part of the experiment. The broader implications of this intervention, on
mental health outcomes and digital addiction, are also important to study, but were outside
the scope of this paper. I aim to contribute to these strands of knowledge in future research.

My findings have important implications for policy makers looking to regulate platforms
that employ new, and seemingly opaque technologies. This is because the total e↵ect of
an intervention that decreases user exposure to toxic content is, in part, determined by
behavioral responses of users. Therefore, any technological regulations that stipulate that a
problematic piece of content be removed from social media must necessarily take into account
these behavioral e↵ects. This would help in estimating the di↵erence between intended and
actual e↵ects of the policy, before it is implemented.
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Tables and Figures

Figure 1: Example of correlation between simulated user preferences and recommendations
from a simulated personalization algorithm

(a) Distribution of the first dimension of the embedding
vector across treatment and control

(b) Treatment e↵ect on the embedding values assigned,
sorted by baseline embedding value

Notes: This Figure shows that there is a positive correlation between the user preferences (measured
using embedding vectors at baseline), with the type of posts recommended by a simple personalization
algorithm. The algorithm used to simulate the embeddings for both treatment and control groups
uses Singular Value Decomposition to factorize a simulated matrix of engagement. This generates two-
dimensional embedding vectors for each user and each post, where each dimension users’ preference
weights on di↵erent post attributes, e.g. tragedy, toxicity, comedy, etc. To fix ideas, this graph shows
the first dimension of the embedding vector, which represents the toxicity of the post (as an example).
In breaking this correlation between user preferences and the preferred content, treatment is expected
to have a smaller e↵ect (in absolute terms) on users with embeddings closer to the average, at baseline.
This is because the treatment algorithm assigns toxic content with the average probability in the control
group, as the treated users are simply assigned the average control embedding (as shown by the flat
curve in panel (a)). On the other hand, users with more extreme preferences had bigger absolute e↵ects
in content exposure. Embeddings from the treatment group were uniformly drawn from an epsilon ball
centered around the mean control embedding. Therefore, the embedding values for the control users
form an upward sloping curve, with respect to user preferences for toxic content (which is the first
dimension of the embedding vector). There is no correlation between the user embeddings in the
treated groups, and users baseline embeddings, by design of the experiment. Details of the simulated
personalization algorithm, and the intervention’s random algorithm, are in Appendix I.
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Figure 2: Model predictions, by user type or tastes for toxic content, pt

(a) Total number of posts viewed

(b) Total number of posts shared

(c) Proportion of shares that are toxic

Notes: This graph provides the model’s predictions for key outcomes, for di↵erent types of users, where
user type is defined by user tastes for toxic content, pt. Panels (a) and (b) show that more toxic users
(towards the extreme right in the pt distribution) are expected to view and share smaller number of
posts upon being treated. Panel (c) shows that users with lower proclivity to toxic content, in the
treated group, are predicted to share toxic content with higher probabilities. This means the main
reduced form result that the average treatment e↵ect on the proportion of posts shared that are toxic
is positive, is driven by non-toxic users. The Figure shows that the treatment e↵ect on the proportion
of shares that are toxic is expected to be negative for toxic users, due to two reasons: (1) the reduction
in total usage of the platform is larger for toxic users, and (2) behavioral changes in the probability of
sharing toxic content, due to reduced exposure to such content. These predictions are obtained using
calibrated parameters from the structural model, by matching moment conditions for heterogenous
users. Note that, for homogenous parameter values for users with di↵erent preferences, this model
generates symmetric predictions for the number of posts viewed and shared. This is addressed later
using di↵erent influence factors ✓, for di↵erent user types.
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Figure 3: Treatment e↵ects on viewing behavior, by user type

Notes: This figure shows that the treatment e↵ect on the number of toxic posts viewed is monotonically decreasing in the
exposure to toxic posts at baseline. The model formally characterized user types by the proportion of toxic posts viewed
at baseline, and predicted that the treatment e↵ect on the number of toxic posts viewed is negative and larger (in absolute
terms) for toxic users. As expected, this e↵ect is positive for users in Q1, and negative for users in Q5. However, this is not
mechanically true, because the total number of posts viewed also changes by treatment status and user type, in the second
panel. In fact, the treatment e↵ect on the total number of posts viewed is larger (in absolute terms) for more toxic users.
This is because of lower exposure to toxic content, and the disengagement e↵ect. The axis corresponding to the bottom plots
show the magnitude of treatment e↵ects (as coe�cient plots), while the top panel is scaled according to the control mean of
the outcomes for each quantile. All regressions were run at the user level, and inference about the treatment e↵ects is based
on robust standard errors.
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Figure 4: Treatment e↵ects on sharing behavior, by user type

Notes: This Figure shows that the treatment e↵ect on the number of toxic posts shared is negative for toxic users (Q3 to Q5),
but is statistically insignificant (yet, positive) for users in Q1. This shows that even as there is a decrease in the number of
toxic posts shared by toxic users, these users disengage with the platform by sharing fewer posts overall. From this Figure, it
is therefore unclear if toxic users share fewer toxic posts because they are exposed to less toxic content they can share, they are
influenced by the non-toxic content they are exposed to, or they are disengaging with the platform. Overall, the proportion
of shares that are toxic is positive, despite big reductions in the number of toxic posts shared. The axis corresponding to the
bottom plots show the magnitude of treatment e↵ects (as coe�cient plots), while the top panel is scaled according to the
control mean of the outcomes for each quantile. All regressions were run at the user level, and inference about the treatment
e↵ects is based on robust standard errors.
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Figure 5: Treatment e↵ects on toxic behavior, by user type

Notes: This figure shows that the treatment e↵ect, on the proportion of posts shared that are toxic, is non-negative
for all users except those in Q5 (with the highest exposure to toxic content at baseline). This is true, even in the cases
of Q3 to Q5, where user type is toxic enough that the treatment e↵ect on toxic views is negative (left panel). The
model predicts positive treatment e↵ect on the proportion of toxic shares for users with lower degree of proclivity to
toxic content, but decreased overall engagement with the platform from more toxic users. On average, the ratio of
toxic shares to toxic views is higher among the treated, and this is likely driven by users with low to medium proclivity
to toxic content. The axis corresponding to the bottom plots show the magnitude of treatment e↵ects (as coe�cient
plots), while the top panel is scaled according to the control mean of the outcomes for each quantile. All regressions
were run at the user level, and inference about the treatment e↵ects is based on robust standard errors.

46



Figure 6: Complimentary evidence on seeking out behavior, by user type

Notes: This figure provides complimentary evidence explaining the ‘stickiness’ in user behavior. User behavior is not mal-
leable, because the ratio of toxic shares to toxic views is always less than 1 for all user types, across treatment and control
groups. This means that user behavior is only partly influenced by the content they are exposed to, and this influence is
quantified using the structural model. The first panel also suggests that toxic users are more malleable, while non-toxic users
are mechanical, because there is no change in the proportion of toxic sharing to toxic viewing. The second panel shows that
the treatment e↵ect on the ratio of searches to views was positive and higher for users with higher toxic exposure at baseline.
That is, toxic users were more likely to seek out content in the time they spent on the platform, by using the ‘text search’
feature. The axis corresponding to the bottom plots show the magnitude of treatment e↵ects (as coe�cient plots), while the
top panel is scaled according to the control mean of the outcomes for each quantile. All regressions were run at the user
level, and inference about the treatment e↵ects is based on robust standard errors.
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Figure 7: Counterfactual policy predictions for di↵erent levels of randomization in content
feeds

(a) No randomization in content feeds (b) 20% content feed randomized

(c) 40% content feed randomized (d) 60% content feed randomized

(e) 80% content feed randomized (f) Entire content feed randomized

Notes: This Figure simulates the counterfactual policy predictions for di↵erent levels of randomization
in content feeds. The di↵erent degrees of randomization are achieved by considering linear combinations
of the probabilities of being assigned toxic content in the control and treatment groups. That is, the
counterfactual probabilities of being assigned toxic content under di↵erent policy regimes is given by
qt,ai = a · q̄t + (1� a) · qti . This shows that a policy when a = 60%, the decrease in the number of toxic
posts is driven by the decrease in the probability of being assigned toxic content for toxic users. This
is ideal for a policymaker who wants to reduce the number of toxic posts viewed and shared, without
a↵ecting the overall engagement of the platform. However, as the degree of randomization increases to
80%, decrease in engagement by toxic users contributes more to the decrease in the number of toxic
posts shared. Therefore, the policymaker can choose the degree of randomization, a, to balance this
trade-o↵ between reducing toxic engagement and overall engagement with the platform.
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Table 1: Structural estimation of influence parameter ✓, with measurement error correction

(1) (2) (3)
Di↵erence in Toxic and non-Toxic Di↵erence in Toxic Shares

Views (Baseline, half-2) (Intervention - Baseline)
Di↵erence in Toxic and non-Toxic 0.572⇤⇤⇤ -0.155⇤⇤

Views (Baseline, half-1) (0.004) (0.0580)

Di↵erence in Toxic and non-Toxic -0.183⇤⇤

Views (Baseline) (0.0652)
N 63041 63041 63041

Notes: This Table provides estimates for the structural parameter ✓ in the model of sharing behavior,
where ✓ captures the rate at which users update behavior, according to the perceived social norms. ✓
is, therefore, the influence e↵ect of one month’s exposure to non-personalized feeds. This is modelled
as the extent to which users share content to signal their conformity with the behavior of other users in
their network, to derive benefits of public recognition. Column (1) shows relevance of the instrument,
i.e. the di↵erences between probability of viewing toxic and non-toxic content, computed using only the
first half of posts viewed by user at baseline, when they were arranged in a random order (half1). This
instrument is used to correct the measurement error, on account of treated users randomly sampling
toxic posts to view from their feeds. The independent variable in Column (1) is the di↵erence between
proportion of toxic and non-toxic posts viewed at baseline, computed using only the second half of posts
viewed by a user at baseline, when they were arranged in a random order (half2). Column (2) shows
results of a 2SLS regression of the di↵erence between baseline and intervention period in di↵erences
between probability of sharing toxic and non-toxic content. Here, the independent variable is half1,
which was instrumented with half2. Column (3) estimates the model with classical measurement error
correction in STATA, where the correlation between half1 and half2 serves as the reliability measure
for the proportion of toxic posts viewed. Estimated slope coe�cient estimates �1 is always negative
and statistically significant. Estimated ✓ is therefore, positive, and estimated to be 0.16, according to
the preferred specification in Column (2). Baseline period is December, 2022 and intervention period
data spans from February 10, 2023 and March 10, 2023. Robust standard errors are in parentheses.
p < .0001⇤⇤⇤, p < .01⇤⇤, p < .05⇤.
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Table 2: Experimental E↵ects on Post Views and Shares

Num Posts Viewed Num Posts Shared
Treatment E↵ect -35.497⇤⇤ -6.367⇤⇤

(2.208) (0.206)
Control Mean 246.654⇤⇤ 18.396⇤⇤

(1.361) (0.131)

Num Toxic Posts Viewed Num Toxic Posts Shared
Treatment E↵ect -5.024⇤⇤ -0.093⇤⇤

(0.172) (0.010)
Control Mean 18.806⇤⇤ 0.474⇤⇤

(0.129) (0.006)

% Toxic Posts Viewed % Toxic Posts Shared
Treatment E↵ect -0.641⇤⇤ 0.120⇤⇤

(0.033) (0.038)
Control Mean 7.416⇤⇤ 1.547⇤⇤

(0.018) (0.018)
N 231814

Notes: This table shows that the treatment e↵ect on the number of posts viewed and shared, as well as
the number of toxic posts viewed and shared, in one month, is negative and statistically significant. Each
cell reports estimates of the regression coe�cient from a linear regression of the outcome aggregated at
the user level, over days in the first month of the intervention period (February 10 to March 10, 2023).
Robust standard errors are in parentheses. p < .0001⇤⇤⇤, p < .01⇤⇤, p < .05⇤.
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A Details of Behavioral Model

This theoretical framework outlines users’ incentives to view and share di↵erent types of
content. That is, (1) users have some innate tastes for toxic content, and (2) they want
to signal their type to conform with society’s tastes (as perceived by the user). Users are
assumed to update their perception of norms based on the content they view, and the
algorithm in turn internalizes distortions from users’ desire to conform to social norms.

A.1 Timing

First, nature randomly assigns user specific parameters {↵, �, pt, ✓}. These parameters not
only reflect how a user values consumption of di↵erent types of content, but also how she
values conformity with peers. That is, nature assigns user tastes for viewing and sharing,
� and ↵ respectively. The utility weight user places on conforming with social norms, i.e.
✓, is also realized. Later, I show that ✓ is e↵ectively the rate at which users update their
behavior or are influenced by the content they view.

Second, the platform optimizes its ad-revenue by algorithmically assigning content that
users are more likely to stay and engage with. Assuming there are two types of posts on the
platform, toxic and non-toxic, the algorithms’ choice variable in this model is qt only, with
q
n = (1 � q

t). The algorithm chooses these probabilities to maximize the total number of
posts viewed by each user, N . Next, for the given assignment probabilities, the user decides
the total number of posts she will view N , or the total time she will spend on the platform
upon observing the assignment probabilities. The user is thought to learn the distribution of
content recommendations that the algorithm would make, so that the choice of N determines
the expected number of posts of each type that she views.

The user responds to the realization of the number of toxic and non-toxic posts viewed,
through her engagement behavior, i.e. by sharing a viewed post. That is, the user chooses
the total number of posts to share, S, which o↵ers the user with some consumption utility,
and also scales the behavioral response. Finally, the user chooses the fraction of shared
posts that are toxic, st = S

t
/S, in order to maximize utility, for given exposure and sharing

decision.

A.2 Equilibrium

I solve for the subgame perfect equilibrium, and introduce user (i) and time (⌧) subscripts.
All four stages of the game are assumed to be played in sequence, in both the time periods,
⌧ = 0 (baseline) and ⌧ = 1 (intervention period). By backward induction, users first
maximize utility by choosing the total number of posts to share, and also the number of
toxic posts to share, i.e. Si,⌧ and S

t
i,⌧ , respectively. Users’ best response characterizes one of

the main outcome variables, i.e. proportion of toxic posts to share, sti,⌧ = S
t
i,⌧/Si,⌧ .

Lemma A.1. For a utility maximizing agent i,

s
t
i,⌧ =

�
q
t
i,⌧

�✓�
p
t
i

�1�✓
(8)

That is, users place a weight of ✓ social norms, as perceived by the user through her feed,
while choosing the proportion of posts shared that are toxic.
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Proof. The claims follow from users’ first order condition (with respect to s
r
i,⌧ ) from the

utility maximization problem stated above in (??).

The optimal sharing strategy is a combination of user’s own tastes and the content she
is shown, qti,⌧ , weighted by (1 � ✓) and ✓, respectively. The distribution of toxic posts on
a user’s content feed informs her about the type of content that a similar user is engaging
with, and is therefore, socially acceptable. She values conformity with these perceived norms
according to some factor ✓. Otherwise, sharing decisions are made according to the user’s
own immutable tastes for toxic content, pti. The user also decides the number of non-toxic
posts she will share, if any, upon viewing posts in their feed.

Lemma A.2. For a utility maximizing agent i,

Si,⌧ =
1

2(⌘ + ↵)

⇥
2Ni,⌧↵� �✓(1� ✓)

��
log pti

�2 � 2 log qti,⌧ log p
t
i +
�
log qti,⌧

�2�⇤
(9)

That is, total number of posts shared is higher for more engaged users, with higher Ni,⌧ ; but
is decreasing in the cost of sharing, ⌘ and the cost of viewing content that is not shareable,
↵.

Proof. The SPE’s are solved for using backward induction. This follows from the first order
condition of the user’s utility maximization problem, after substituting optimal sti,⌧ in the
utility function.

The number of posts shared seems to be increasing in user’s own taste for toxic content,
p
t
i, as well as their perception of society’s tastes, conveyed by q

t
i,⌧ . However, the correct

comparative statics with respect to Si,⌧ take into account the fact that total shares depend
on the endogenous response to the total number of posts viewed N . Then, a forward-looking
rational user i solves for the total number of posts to view, N , or the total time she spends
on the platform looking at posts.

Lemma A.3. For a utility maximizing agent i,

Ni,⌧ =
1

2↵⌘

"
�(↵ + ⌘)� �↵✓(1� ✓)

 
log

q
t
i,⌧

pti

!2#
(10)

That is, users view a smaller number of posts when there is a mismatch between their pref-
erences and the algorithmically generated preferences, qti,⌧ 6= p

t
i.

Proof. I begin by substituting the optimal sharing behavior (from Lemmas A.1 and A.2)
into the utility function. User’s first order condition, with respect to the total number
of posts viewed generates the required expression. This shows that Ni,⌧ is decreasing in 
log

qti,⌧
pti

!2

> 0. Therefore, Ni,⌧ is maximized when q
t
i,⌧ = p

t
i.

This clearly shows that when users are assigned content randomly, they are likely to
spend less time on the platform. This is because the recommendations do not match user
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preferences, as extreme reated users are recommended the average user’s feed. Lemma ??
describes the total number of posts viewed in terms of the model’s primitives. Subsequently,
N

t
i,⌧ in equilibrium helps in determining the total number of posts shared, Si,⌧ . The given

utility form provides two solutions for the total number of posts shared, one of which is zero.
I describe the non-zero solution in terms of model primitives.

Lemma A.4. For a utility maximizing agent i,

Si,⌧ =
1

2⌘

"
� � �✓(1� ✓)

 
log

q
t
i,⌧

pti

!2#
(11)

That is, users share a smaller number of posts when there is a mismatch between their
preferences and the algorithmically generated preferences, qti,⌧ 6= p

t
i.

Proof. This expression is obtained by substituting (10) into the optimal sharing function in

(11). This shows that Si,⌧ is decreasing in

 
log

qti,⌧
pti

!2

> 0. Therefore, Si,⌧ is maximized

when q
t
i,⌧ = p

t
i.

The solution to the user’s problem is therefore, fully characterized for the given prob-
ability of being assigned toxic content, q

t
i,⌧ . For the given timing of the game, I finish

characterizing the equilibrium by solving for the algorithm’s optimal assignment probabili-
ties. The platform’s customization algorithm is trained to maximize the expected number
of posts viewed in order to increase eyeballs on advertisement posts that are interspersed on
the users’ ranked content feed. Therefore, the platform feeds the objective function in (10)
to the algorithm, which in turn optimally chooses qti,⌧ to maximize advertisement revenues.

Lemma A.5.
q
t
i,⌧ = p

t
i (12)

That is, the algorithm assigns toxic posts with probability equal to user’s intrinsic tastes for
toxic content.

Proof. This follows directly from the first order conditions of an algorithm that is set to
maximize Ni,⌧ in (10), by choosing q

t
i,⌧ optimally. The same result follows if the algorithm’s

objective is defined more broadly, choosing q
t
i,⌧ to maximize N

t
i,⌧ , or S

t
i,⌧ , or some linear

combination of the two. This is because the number of posts viewed and shared is decreasing

in

 
log

qti,⌧
pti

!2

� 0, which equals zero when q
t
i,⌧ = p

t
i.

Recall that the assignment probabilities provide a heuristic for the algorithm, that pro-
vides an intuitive explanation for what the algorithm actually does. This intuitive result
shows that the algorithm caters to users’ intrinsic tastes for viewing toxic content. The
algorithm internalizes users’ incentives to signal their type and their conformity, but in equi-
librium the algorithm assigns toxic content according to user’s intrinsic tastes.45 The result

45That is, the algorithm enables the self-fulfilling prophecy characteristic of statistical discrimination
models, where user types determine the type of content users are assigned, and users share these posts to in
turn, signal their type (Coate and Loury, 1993).
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provides concrete basis to analyze behavior according to user type, where types are char-
acterized according to the proportion of toxic posts assigned to them at baseline. This is
because, in the equilibrium at baseline, the assignment probabilities are necessarily equal
to user’s intrinsic tastes for toxic content. The model provides comparative statics, that
generate implications tested in the data.

B Proofs for Theoretical Framework

B.1 Proof of Proposition 1

For user i with ↵, ⌘, Ni,⌧ > 0, and p
t
i > q̄

t,

@
2
Ni,⌧

@pti@q̄
t
� 0

That is, the reduction in the total number of posts viewed, on account of the treatment, is
larger for users with higher proclivity to toxic content.

Proof. Lemma A.3 implies

Ni,⌧ =
1

2↵⌘

"
�(⌘ + ↵)� �↵✓(1� ✓)

 
log

q
t
i,⌧

pti

!2#

With random content assignment during the intervention period (q̄t),

@Ni,⌧

@q̄t
=

�1

2↵⌘

"
2

q̄t
�↵✓(1� ✓) log

q̄
t

pti

#

Note that, pti > q̄
t is both necessary and su�cient for the derivative to be positive. That

is, for users with higher proclivity to toxic content, randomly increasing the probability of
assigning such content increases the number of posts viewed. Consider, the cross derivative
with respect user tastes, pti gives,

@
2
Ni,⌧

@pti@q̄
t
=

1

2↵⌘

"
2

q̄tpti

�↵✓(1� ✓)

#
� 0

because ✓ 2 [0, 1], q̄t, pti 2 (0, 1), and ↵, ⌘, �, � > 0.
Then, for pti > q̄

t, random increases in probability of assigning toxic content increases the
number of posts viewed, and the increase is larger for more toxic users. Conversely, when
exogenous reductions in q̄

t decrease the number of posts viewed for toxic users, the reduction
is larger for more toxic users.

B.2 Proof of Proposition 2

For user i with ↵, ⌘, Si,⌧ > 0, and p
t
i > q̄

t,

@
2
Si,⌧

@pti@q̄
t
� 0
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That is, the treatment e↵ect on the total number of posts shared is larger for users with
higher proclivity to toxic content.

Proof. Lemma A.4 implies

Si,⌧ =
1

2⌘

"
� � �✓(1� ✓)

 
log

q̄
t

pti

!#

For users with higher proclivity to toxic content, i.e. pti > q̄
t, the treatment leads to exogenous

increases lead to increases in the number of posts shared, because

@Si,⌧

@q̄t
� �✓(1� ✓)

⌘q̄t
log

 
q̄
t

pti

!
� 0

when p
t
i > q̄

t, because log(x) < 0 for x 2 (0, 1). Then, the cross derivative with respect to
user tastes, pti gives,

@
2
Si,⌧

@pti@q̄
t
=

�✓(1� ✓)

⌘q̄tpti

� 0

for q̄t, pti 2 (0, 1), ✓ 2 [0, 1] and ↵, ⌘, �, � > 0.

B.3 Proof of Proposition 3

For user i with ⌘, Ni,⌧ , Si,⌧ > 0,
@
2
s
t
i,⌧

@pti@q̄
t
� 0

That is, the treatment e↵ect on the proportion of toxic posts shared is negative and smaller
for users with higher proclivity to toxic content.

Proof. From Lemma A.1 shows that,

s
t
i,⌧ =

�
q
t
i,⌧

�✓�
p
t
i

�1�✓

Then, we can see that
@
2
s
t
i,⌧

@pti@q̄
t
= ✓(1� ✓)

�
q
t
i,⌧

�✓�1�
p
t
i

��✓ � 0

for ✓ 2 [0, 1], and q
t
i,⌧ , p

t
i 2 (0, 1).

B.4 Proof of Proposition 4

User i with Ni,⌧ , Si,⌧ > 0, is said to behave ‘mechanically’ when ✓ = � = ⌘ = 0. That is,
when ✓ = � = ⌘ = 0, the elasticity of the proportion of toxic posts shared with the respect
to the proportion of toxic posts viewed is 1.
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Proof. If, ✓ = 0, the utility maximization problem becomes,

max
st,S,N

= ↵(N � S)2 � �S

 
log

q
t

pt

!2

� ⌘S
2 (13)

Utility is maximized with respect to s
t when s

t
i,⌧ = p

t
i. Then, by definition,

S
t
i,⌧

Si,⌧
= s

t
i,⌧ = p

t
i

We know that in equilibrium, qi,⌧ = p
t. Then, assuming users view all the posts they are

assigned, i.e. � = 0, we have, N t
i,⌧ = q

t
i,⌧N . Therefore,

S
t
i,⌧

Si,⌧
=

N
t
i,⌧

Ni,⌧
= p

t
i = q

t
i,⌧ (14)

Then the treatment implies that,

@s
t
i,⌧

@q̄t
=

@v
t
i,⌧

@q̄t
= 1 (15)

where, vti,⌧ =
Nt

i,⌧

Ni,⌧
, and, elasticity of toxic sharing with respect to toxic viewing is

@s
t
i,⌧/@q̄

t

@vti,⌧/@q̄
t
= 1

B.5 Proof of Lemma 1

Estimates of ✓ from the relationship between sharing behavior and the proportion of toxic
content viewed during the intervention period among a sample of control users is not iden-
tified.

Proof. Consider the linear structural relationship,

log sti,1 � log sti,0 = ✓v
t
i,1 + logwt

i

and suppose that, by contradiction, ✓ is estimable, using control users. This necessarily
implies that E[logwt

i | log vti,1] = 0. The steady state condition implies that the left-hand side
of the equation is always zero, meaning

E[log sti,1 � log sti,0| log vti,1] = 0

This implies that ✓ = 0. However, this contradicts Proposition 4 which shows that ✓ > 0.
Therefore, ✓ is not estimable from this relationship, in the sample of control users.
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B.6 Proof of Proposition 6

For some updating parameter ✓, and treated user i, the change in ratio of toxic-shares to
non-toxic shares from the baseline is a function of the log-odds ratio of the proportion toxic
posts viewed at baseline. That is,
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Proof. The optimal sharing function for treated users is given by
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The steady state condition is
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This simplifies to
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By design of the experiment, the treated users view a constant proportion of toxic content
during the intervention period. Reiterating,

v
t
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t and v
n
i,1 = q̄n (22)

Then, define log
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as the log-odds of sharing toxic content. Plugging values from (16),

(20) and (22) into the definition of the log-odds ratio of sharing toxic content in (??), so
that
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which is the required expression in the stated proposition.

C Details of Structural Model and estimation

This Appendix provides supplementary information on the structural model that enables
estimation of some key parameters of interest. First, I discuss why the setting requires a
model to estimate ✓, and the reasons that standard estimation strategies are not applicable.
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C.1 The Necessity of Structure

Since exposure and engagement with toxic content are endogenous variables due to the
personalization algorithm, the demand and supply factors that drive problematic behavior
cannot be disentangled using the control group data. This is because the algorithm is trained
on some underlying user preferences that also determine user behavior, but are not observed
by the researcher. This is the main identification problem that the experiment solves. The
experiment replaces algorithmically generated content recommendations with a random draw
of posts to identify user ‘demand’ for di↵erent types of content.

However, the reduced form relationship between toxic exposure and engagement across
treatment and control does not identify the main mechanism of interest: the influence of
exposure to toxic content on engagement behavior with respect to such content. Without
additional assumptions, the experimental variation cannot distinguish between the com-
ponents of user behavior: innate tastes for toxic content and behavioral responses due to
preference for conformity. This is because a draw of posts is picked randomly for the treated
users each day, and the Law of Large Numbers implies that the average proportion of toxic
posts viewed by treated users is constant over time, at the average probability of being
assigned toxic content in the control group.

The random algorithm assigns content in a way that is independent of both these com-
ponents of user behavior, because the assignment probabilities are drawn from the control
distribution of assignment probabilities, each day. The Central Limit Theorem (CLT) pre-
dicts that due to these daily random draws, the probability of assigning toxic posts for
the treated group converges to a normal distribution centered at the average probability of
assigning toxic posts in the control group. Further, the variance of the assignment probabil-
ities in treatment is much lower than the control (by a factor of

p
|{i|Di = 1}|) (Hayashi,

2011). In fact, exposure to a particular type of content is almost always constant among
treated users, rendering the relationship between exposure and engagement unidentifiable in
a regression of engagement on exposure, in the treatment group.

The concentration of the treatment embeddings around the mean of the control embed-
dings is also demonstrated in a simple personalization algorithm that is trained on simulated
engagement data (See Section 3 and Appendix I). I further belabor this point about the
absence of a straight forward identification strategy using the reduced form relationship be-
tween toxic viewing and sharing in the treatment group. Consider a di↵erence-in-di↵erence
estimator to identify the behavioral chain of e↵ects from the change in toxic views because
of the intervention, to the change in toxic shares
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where, Di is an indicator for treatment status. This does not identify the main parameter of
interest ✓, because the algorithm and control users remain in steady state during the inter-
vention period. As a result, di↵erences in toxic views and shares from baseline for the control
users is always zero. Moreover, the distribution of toxic views for treated users is constant
during the intervention period, as the treatment assignment probabilities approximate the
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mean in the control distribution, for each treated user. Therefore, ✓ is not estimable using
a standard di↵erence-in-di↵erence approach.

The di↵erence-in-di↵erence estimator is also amenable to incorrect interpretation, if not
correctly grounded in economic theory. The DiD specification implies that ✓ is the change
in sharing behavior due to a change in exposure to toxic content. Suppose I incorrectly
estimated the DiD estimator using the data, and found a negative coe�cient (Table 3 shows
this to be the case). This would imply that exposure influences behavior negatively, so that
users who saw more toxic content during the intervention period shared less toxic content.
However, this is not the case, as the structural model shows that the influence parameter is
positive, and between zero and one.

Table 3: Faulty estimates from a di↵erence-in-di↵erences model

(1) (2)
Avg toxicity in sharing Total toxicity in sharing

DiD estimate -0.041 0.003⇤⇤⇤

(0.028) (0.001)

N 231814 231814
Notes: This table shows that the di↵erence-in-di↵erences estimate of the treatment e↵ect on sharing
toxic content is negative, although statistically insignificant. Column (1) shows the e↵ect on the change
in the average toxicity of shares, while Column (2) shows the e↵ect on the change in the total number
of toxic posts shared. Column (1) is the closest analog to the structural equation estimated, and the
results in Column (2) may be biased because more toxic users may be as treated users may also change
the number of non-toxic posts they share. Robust standard errors in parentheses. p < 0.05⇤, p <
0.01⇤⇤, p < 0.001⇤⇤⇤.

A model-free interpretation of this estimator implies that the treatment promoted a
backlash against the posts treated users were randomly exposed to. The model provides an
estimator for the e↵ect of content exposure that is generalizable to all users, by using exposure
to toxic content among treated users at baseline only. This enables an interpretation of the
mechanisms driving the treatment e↵ects, as the model of behavior below is well identified
and accounts for unobserved heterogeneity across users. I distinguish between two channels
that drive the treatment e↵ect of switching o↵ the content recommendation algorithms:
(1) users’ innate tastes for problematic content (measured by baseline shares), weighted by
1�✓, (2) influence of users’ perception of society’s preferences (measured by toxic exposure),
weighted by ✓.

C.2 Estimation

I estimate the updating parameter ✓ from the relationship between baseline exposure to toxic
content (vti,0), and the odds of sharing toxic content during the intervention period (sti,1/s

n
i,1)

among treated users only. This measures the degree of malleability of user behavior, in
the face of algorithm’s content recommendations. ✓ is estimated in a linear regression due
to the absence of correlation between toxic views in the pre-intervention period and those
during the intervention period among treated users, as shown above. However, notice that
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regression with logs is not independent of the units of measurement, and the presence of
zeroes in the data can generate misleading results (Thakral and Tô, 2023). Further, adding
a small constant to the logs that may generate estimates that can be incorrectly interpreted
(Chen and Roth, 2023).

I approximate the log-ratios in Proposition 6 with first di↵erences to estimate ✓ using
a Taylor Series approximation (Abbott et al., 2001). Define, Ai,⌧ = v

t
i,⌧ � v

n
i,⌧ and Bi,⌧ =

s
t
i,⌧�s

n
i,⌧ . Further, �Bi,⌧ = Bi,⌧�Bi,⌧�1. Then, the following procedure states the estimation

strategy implemented in the data.

Proposition 7. The behavioral e↵ect of exposure, ✓ is identified in a linear model of treated
users responding to exposure to toxic content if

(SA1) treated users update their beliefs and sharing behavior in accordance with exposure
to toxic content as

d log(sti,1/s
n
i,1)

d log(q̄t/q̄n)
= ✓

(SA2) the influence e↵ect, ✓, is constant across time and users.
(SA3) users engagement in equilibrium is stable over time s

t
i,0 = s

t
i,1 and s

n
i,0 = s

n
i,1

(SA4) assignment probabilities are orthogonal to user preferences conditional on user’s
observed behavior, E[qti,1(Di)|wt

i , s
t
i,0, Di] = E[qti,1(Di)|sti,0, Di]

(SA5) users view all the content assigned to them, qti,⌧ = v
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i,⌧ and q
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i,⌧ , with q

t
i,⌧ +

q
n
i,⌧ = v

t
i,⌧ + v

n
i,⌧ = 1

Then, ✓ can be estimated using the following regression equation

E[�Bi,1|Di = 1] = �0 + �1Ai,0 (23)

where, �1 = �✓.

Proof. Consider Proposition 6 which gives
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This gives the right-hand side of the required expression. Similarly, consider Taylor series
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expansion of the following term around
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which gives the required expression on the left-hand side, as the constant 1 cancels out from
both sides of the relationship of interest, due to the constant term.

So, ✓ measures the behavioral e↵ect of current exposure to toxic content as it gives
the rate at which users update their behavior in line with lower exposure to toxic content.
Intuitively, ✓ measures user preference for conformity with societal tastes, that are reflected
on user feeds through q

t. Subsequently, ✓ is the influence parameter, measuring the e↵ect of
social norms relayed to a user through exposure to content feeds. This is true in the sample
of treated users where, ��1 = ✓ is estimable. Then, 1� ✓ provides the appropriate elasticity
of user behavior during intervention with respect to user behavior at baseline, or with respect
to users’ inherent tastes for such content.

This model provides the machinery to identify estimates of the stickiness or malleability
in human behavior, in addition to the correct interpretation of these results. Furthermore,
this interpretation is generalizable for users in both treatment and control groups. Therefore,
the model arrives at a non-standard estimation strategy for an important parameter, that
cannot be estimated on a social media platform that is typically in steady state. I exploit
unique features of this setting and the structural model to estimate parameters that may
not be estimated or correctly interpreted using a standard di↵erence-in-di↵erence approach.

C.3 Measurement Error

The estimation strategy above shows that ✓, or the influence of exposure to toxic content,
is measured using a sample of users in the treatment group, whose exposure to content was
completely random. The di↵erence in odds of sharing between the two time periods corrects
the bias induced by the omitted variable: users’ unobserved preference for sharing content.
Still, features of the platform and design of the experiment may induce measurement error
in the proportion of toxic content viewed. This is because of sampling errors, i.e. users view
only a fraction of content in the ranked lists of content (in a set order), that the algorithm
generates for them in each time period.

Among treated users at baseline, each toxic post viewed is assumed to be a Bernoulli
trial with probability q

t
i,0. Similarly, each non-toxic post viewed is assumed to be a Bernoulli

trial with probability q
n
i,0. In each session therefore, the total number of toxic posts viewed

is subject to measurement error, on account of the sampling procedure itself. However,
since the sampling distribution of toxic and non-toxic views is known, the estimates can be
corrected for measurement error using IV approaches (Schennach, 2016).
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Consider the following linear classical measurement error set up. Suppose, vt⇤i,0(1) and
v
n⇤
i,0(1) denote the true proportions of toxic and non-toxic content viewed respectively, that
are observed with measurement error in the data.

v
t
i,0(1) = v

t⇤
i,0(1) + ev

t
i,0(1)

v
n
i,0(1) = v

n⇤
i,0(1) + ev

n
i,0(1)

where, ev
t
i,0 and ev

n
i,0 denote the measurement error in the proportion of toxic and non-

toxic content viewed respectively. In general, assume that Cov(vt⇤i,0(1), ev
t
i,0(1)) = 0 and

Cov(vn⇤i,0(1), ev
n
i,0(1)) = 0. The estimators constructed from the strategy above are therefore,

likely to su↵er from attenuation bias due to the unobserved measurement error on the right-
hand side of the estimating equation. I construct an instrumental variable to address this
issue.

Note that vti,0 is the average of toxic posts viewed over all the posts viewed (of any type)
by a user. Consider the proportion of toxic posts viewed out of half of the total posts viewed,
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where, j 2 {1, . . . , J} indexes each post viewed by user i, so that tij,0 is a binary variable
indicating whether post j was toxic or not, and J/2 indexes the median post. The first
expression averages over the first half of posts per user (arranged in a random order) and

is henceforth referred to as half1. Similarly, v
t

2(+)

i,0 denotes the fraction of toxic posts out of
the second half of the total posts viewed (for brevity, this variable is henceforth referred to
as half2). However, assuming that the measurement errors pertaining to each half of the
posts, per user, are uncorrelated to each other, this fraction computed over the first half of
posts can be instrumented by this variable constructed using the second half of the posts.
That is to say,
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i,0 (1)) = 0 (AME)

Under this exclusion restriction, the attenuation bias in a 2SLS estimate of �1 is reduced to
zero.

Proposition 8. Measurement error in average toxic views is corrected by instrumenting the
fraction of toxic posts viewed in the first half of posts viewed (half1), with the fraction of
toxic posts viewed in the second half of posts viewed (half2) by a user in a session.

Proof. The measurement error in these variables constructed using half the viewed posts, is
written as
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Note the first stage regression using half2 as the instrumental variable,
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i,0 (1), µi,0) = 0. Then, any bias in the estimates from the IV specification,
due to measurement error in fraction of toxic posts viewed would depend on
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Therefore, the IV approach eliminates measurement error, due to the exclusion restriction
stated in (AME). The same strategy is applied to all users with regards to non-toxic content
as well. This shows that the IV estimation strategy only depends on the true distribution of
the main explanatory variable.

The OLS estimates suggest that this strategy does not account for measurement error,
indeed the OLS strategy produces estimates that are biased towards zero. The IV estimates
of ✓ show that a significant portion of user behavior is determined by user tastes. This
implies that user behavior is not malleable with respect to exposure to new information.

C.4 Validation of structural estimates

The structural estimates show that users largely follow their old behavioral patterns, and
that behavior is barely malleable according to new exposure to toxic content. I validate my
estimation procedure that measures the rate at which users update their sharing behavior
upon being randomly exposed to more non-toxic content during the intervention period.46

This model correctly estimates the updating-behavior only for treated users, because for
these users, exposure to toxic content in the baseline period is related to the engagement
with such content only through the channel of behavioral response.

In the case of control users, exposure in the baseline period is related to engagement
with toxic content during the intervention period through two channels, (1) Direct: User
behavior is correlated across time, and (2) Algorithmic: Feed-ranking algorithms that
expose users to toxic content to maximize engagement using prior user behavior. Since
both these channels are correlated in the steady state, by design of the algorithm, the said
relationship cannot be estimated in the sample of control users.

✓ estimated using the control sample would be biased upwards as the omitted variable
(vti,1/v

n
i,1) is correlated with both the sharing behavior (sti,1/s

n
i,1) as well as the exposure at

baseline (vti,0/v
n
i,0) in the main estimating equation (23). This is true if there were su�cient

variation in equilibrium sharing behavior across the two time periods, as control users are
always in steady state. This relationship is not estimable when the outcome is the di↵erence
in sharing behavior between the two time periods (sti,1/s

n
i,1 � s

t
i,0/s

n
i,0), in order to account

46This is true for toxic-type treated users.
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for unobserved heterogeneity in tastes among users. The steady state condition implies that
the ratio of shares at baseline and during the intervention period is equal.

Therefore, estimates that employ the control sample are expected to be distinct from the
main estimates above. Table H.9 and Figure G.11c show that this is indeed the case. This
validates the main estimation strategy because the estimates from the same exercises using
the distinct samples of treated and control users yield very distinct results. Additionally,
Figure G.11b shows that exposure to toxic content during the intervention period has a
much smaller e↵ect on the odds of sharing such content. This also validates the main result,
because the intervention period exposure is very likely concentrated around the average
user’s exposure, and is expected to produce di↵erent estimates.

C.5 Calibration

After uncovering the measurement error corrected estimates of the influence parameter ✓,
the model is calibrated using the data to estimate the parameters. This is helpful in under-
standing the extent to which the model is able to capture the underlying mechanisms of user
behavior, and also to analyze the counterfactual distributions of treatment e↵ects, under dif-
ferent possible values of ✓. The model decomposes the contribution of each of these channels
in driving the treatment e↵ect, and o↵ers insight into the e↵ectiveness of the intervention,
had users been more or less malleable to the content they were exposed to (i.e. for di↵erent
values of ✓).

The sample of treated users generates an estimate of ✓ = 0.16, after correcting for the
measurement error. I match moments of the empirical distribution of various outcomes, with
the distributions simulated by the model, where ✓ is set to 0.16. This enables calibration of
four main parameters of the model: (1) �, the consumption value of viewing posts, (2) ↵, the
disutility from viewing unshareable posts, (3) ⌘, the cost of sharing an additional post, (4) �,
the utility weight on conformity with societal norms. I use the method of simulated moments
to estimate these parameters, using the data {sti,1, vti,1, Si,1, Ni,1}, which is the proportion of
toxic posts shared and viewed respectively, as well as the number of posts shared and viewed,
respectively. I compute the empirical mean of each of these outcomes, separately for users
with above and below median exposure to toxic content at baseline.

E[X] =
1

n/2

nX

i=1

xi

Then, the model is defined by the following functions using the equilibrium conditions, as
shown in section A.
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where, vt, the proportion of viewed posts that are toxic, is the empirical analog of qt, the
assignment probabilities. Then, the moments of these functions are computed over some
distribution of vt, given by some density function f(vt). The moment conditions for users
with lower proclivity to toxic content is given as,
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Z mt

0

�
v
t
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t
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0
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t
, p

t) · f(vt)dvt (30)

where, mt denotes the median value of the proportion of toxic posts shared, vt, at baseline.
Similarly, I write the moment conditions for users with higher proclivity to toxic content as,
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I use numerical integration methods to evaluate these integrals, assuming v
t ⇠ EV T1. Sub-

sequently, the empirical moments are matched with the simulated moments. The objective
is to minimize the distance between the empirical and simulated moments, using the six
moment conditions, given by equations (28) to (31). I use the Nelder-Mead simplex method
to estimate the parameters of the model, which converge to the following values in 800
iterations, in this case (Gao and Han, 2012).

D Contextual Details

This Appendix provides the contextual background that makes this study highly timely and
relevant. The context of this study is India, which is the second-largest market for social
media platforms. However, the implications of the study are global, as the problems of
misinformation and hate speech are universal.

D.1 Social Media and Indian Politics

The harms of social media have garnered significant attention in the US, but are arguably
more severe in India. This is because as more Indian get connected to the Internet, they
are more likely to be exposed to misinformation in an already polarized society. As a result,
social media has been linked to organized hate crimes against minorities in India (Mukherjee,
2020).

The 2015 mob lynching of Mohammad Akhlaq, a Muslim farm worker, just outside of the
National Capital Region of Delhi, highlighted the role that platforms like WhatsApp play in
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spreading misinformation and exacerbating hate (Arun, 2019). This unfortunate incident is
by no means an isolated one, making it especially important to study the factors that drive
online political divisions in India.

Social media platforms like WhatsApp, Facebook, and Twitter face an unprecedented
challenge of moderating content in this massive market. Attempts at moderating social
media in the US have met with loud criticism from both sides of the political spectrum
(Kominers and Shapiro, 2024). This task is even more di�cult in India because these are
American companies operating in a vastly di↵erent context, where hate speech on social
media propagates in very atypical ways. The enormity of this task was most recently high-
lighted by Meta’s inability to control anti-Muslim disinformation campaigns, just ahead of
the Indian election of 2024.47

Context-driven content moderation is a di�cult challenge, also because the production of
hate in the Indian context is very often linked with institutions that enable these platforms
to do businesses. In agreeing with the government, social media platforms may be biased
against opposition parties and pressure groups. This was seen, for instance, when Twitter
suspended various accounts linked with the Farmer’s Movement during massive protests
against the controversial farm bills passed by the Indian Parliament (Dash et al., 2022).
Similarly, the Wall Street Journal has alleged that Facebook India’s Public Policy Head
selectively shielded o↵ensive posts of leaders of the ruling Bharatiya Janata Party (BJP),
which has been variously described as Prime Minister Modi’s Hindu Nationalist Party48.

D.2 SM: ‘Indian TikTok’

SM is one of the most popular platforms in the country, as users can create and share content
in over a dozen regional languages. On this platform, users interact with content generated
by other users, who are typically super-stars or influencers in a particular genre, on the
platform. Super star content creators could be comedians, dancers, or singers, who are some
times supported by the platform, to enhance engagement.49 While the platform is home
to organic content creators, various politicians, and Bollywood celebrities also sometimes
interact with their follower base on this platform.50

Content based social networks, such as SM, are centered around topics like Politics, Reli-
gion, and Good Morning messages.51 Religious posts (both relating to Islam and Hinduism)
are by far the most popular genre on the platform. India’s young population seem to seek out

47See https://thewire.in/tech/meta-approved-ai-manipulated-political-ads-during-india
s-election-report

48WSJ has alleged that BJP leader, T. Raja Singh, has said in Facebook posts that Rohingya Muslim
immigrants should be shot, called Muslims traitors and threatened to raze mosques to the ground. PMModi’s
BJP has, in many instances, encourages blatant calls for violence against the country’s largest religious
majority, i.e. Muslims.

49See, for instance, the Instagram profile of ‘India’s First Trending Transgender Model’, who rose to fame
through her dance videos on SM: https://www.instagram.com/khushi1216/?hl=en.

50The source of this information is the author’s personal correspondence with the platform engineers and
data scientists, via channels on Slack

51For context on the enormity of the ‘Good Morning!’ genre, see https://www.wsj.com/articles/the
-internet-is-filling-up-because-indians-are-sending-millions-of-good-morning-texts-15166
40068
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relationship and dating advice, while older populations seem more invested in motivational
content. Figure D.1 provides details on the treatment e↵ects on the popularity of various
genres on the platform.

Politics is the least favored genre on the platform, but 20% of the content in this genre
was classified as toxic, during the first month of the intervention. I used the Perspective
API to classify content as toxic or non-toxic, irrespective of the genre it belonged to. Posts
are automatically classified into broad genres in the data, potentially using the user gener-
ated hash-tags associated with each post. The algorithms used to classify content were not
disclosed by the platform to this author.

Figure D.1: Treatment e↵ects on viewing and sharing content from various genres

(a) F-stat: 6122.932, p-value: 0.000 (b) F-stat: 1317.659, p-value: 0.000

(c) F-stat: 451.112, p-value: 0.000 (d) F-stat: 276.637, p-value: 0.000

Notes: These plots show that the treatment a↵ected the number of posts shared and viewed in di↵erent
genres. Although there was a large increase in exposure to devotional or religious content, the treatment
e↵ect on number and proportion of religious posts shared was much smaller. The treatment e↵ect on
views in educational, romance, bollywood, and greetings genres was negative. However, there was no
commensurate decrease in the number of posts shared in these genres. Standard errors are robust at
user lebel, and are computed at the 5% level of significance.

The interactions on SM are mostly conducted through the ‘trending’ feed, which is also
the landing page when a user logs onto the platform (See Figure D.2). In this way, the
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platform’s interface resembles that of TikTok, than the more widely studied platforms like X
(formerly, Twitter). User interaction in this network is possible only because of the similarity
in content that users have shown to engage with. Therefore, SM is distinct from platforms
like Facebook, where users engage with content from ‘Friends’ or from the ‘Groups’ they
join.

Figure D.2: Landing page and trending tab on SM

Notes: This image shows the landing page and trending tab on the social media platform, SM. Users
see a feed of image posts and the creator generated hashtags on the landing page, much like Instgram.
Users can share, comment, like, or download the post to their phones. Sharing refers to sharing on
WhatsApp, and not on the platform itself, for instance on user’s own profile. This makes SM’s interface
very di↵erent from other platforms like X (formerly, Twitter), where users can share posts with their
followers, through their profile on the platform. A user can see other users who liked and commented
on a post, but not the users who shared the post. SM posts are classified into broad categories or
genres like ‘politics’ (in this image), ‘devotional,’ ‘romance,’ ‘Bollywood,’ ‘greetings,’ and ‘educational.’

E Embedding Model

Matrix Factorization algorithms provide some approximation of user preferences from their
previous engagement with posts on the platform. This is done with the objective of opti-
mizing user retention and engagement by serving them the type of content they have shown
a�nity towards in the past. The algorithm factorizes a matrix of engagement at the user-post
level for some abstract set of user and post features.

E.1 Illustration: Control Algorithm

Consider an example with three users and two movies in Figure E.1. I use singular value
decomposition (SVD) to factorize the engagement matrix into two-dimensional user and post
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latent features. If we interpret dimension 1 of the factor matrices as movies relating to toxic
genre, and dimension 2 as movies relating to comedy genre, then the factorization process
generates a vector of weights for each user with respect to these attributes. In this example,
the weights (or embeddings) reveal that users 1 and 3 have a higher proclivity for toxic
movies, while user 2 is likely to rate comedy movies higher. As a result, these attribute
weights enable a platform to serve toxic movies to users 1 and 3, and comedy movies to user
2, in order to maximize user satisfaction.

Figure E.1: An example of SVD decomposition into two-dimensional user embeddings U ,
eigenvalues ⌃, and movie embeddings V T

(a) Matrix representation of vector embeddings
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(b) Graphical representation of vector embeddings

Dimension 1 (toxic)

Dimension 2 (comedy)

u1

u2

u3

Notes: In this example, a user-movie rating matrix is given by R, where three users rate two movies
on a scale of 1 to 5. The idea is to learn user tastes in some low-dimensional space of latent features.
This is because the dimensionality of the R matrix rises with the number of users and movies. Singular
Value Decomposition (SVD) breaks this matrix down as (1) U represents the user embeddings (u1
and u2), showing how users relate to the abstract features; (2) ⌃ is a diagonal matrix containing
singular values (�1 and �2), which scale the importance of each feature; (3) V T represents the movie
embeddings (v1 and v2), showing how movies relate to the abstract features. By multiplying U , ⌃, and
V T back together, the original matrix R is reconstructed. The embeddings in U and V are plotted in
a 2D space to visualize their relationships. These plots show that the first user is more interested in
the first movie (or movies of that type), while the second user is more interested in the second movie
(or movies of that type). The two dimensions represent abstract features that summarize the original
data’s structure and relationships. For example, dimension 1 could represent the toxic genre, while
dimension 2 could represent the comedy genre. Then, the user embeddings would show how much each
user likes toxic and comedy movies. In this example, the first user is more interested in toxic movies,
while the second user is more interested in comedy movies.

More generally, this factorization process generates a vector of weights for each user
with respect to some post attributes, so that a cross product of weights for user and post
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latent features gives the predicted engagement matrix, or the scores that generate ranking
of various posts for each user. These vector-weights in the space of some latent post/ user
features are known as embeddings in the machine learning literature (Athey et al., 2021).
The user features produced are latent representations of user behavior revealed in the past,
and are produced by minimizing a known loss function using Stochastic Gradient Descent
(Hastie et al., 2015). These latent features are represented as a multi-dimensional embedding
vector, where each element in the vector represents the weight each user is predicted to put
on some latent post attributes.52

E.2 Illustration: Treatment Algorithm

In this experiment, the content recommendations for the control group are generated as per
the usual personalization algorithm. For the treatment group, the algorithm is modified to
randomly select user embeddings from the control group distribution. In the example below,
user 2 is randomly chosen to be treated, and the embeddings for user 2 are replaced with
the average of the embeddings for users 1 and 3.

Figure E.2: Matrix representation of vector embeddings, for treated and control users
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Notes: This figure shows the user embeddings for the control group (in black) and the treatment group
(in red). The treatment group embeddings, e.g. user 2, are generated by randomly selecting from the
distribution of control group embeddings. This determines the order of di↵erent types of posts that
are recommended to each user.

This example makes another subtle point. The embeddings generated for each treated
user are equal to the average of the embeddings for the control group users. Therefore, there
is not enough variation in the embedding assignment within the treatment group, as the
treatment embeddings are concentrated around the mean embedding value, by application
of the Central Limit Theorem (CLT). This is depicted in Figure E.3, for the simulated (two-
dimensional) recommendation algorithm. This necessitates the need for a structural model
to identify the e↵ect of exposure on engagement.

Figure E.4 shows the distribution of a randomly selected set of user embeddings. As
expected, the treatment group embeddings are more concentrated around the mean than the
control group embeddings. Further, the CLT predicts that the treatment group embeddings
follow a normal distribution, with a variance smaller than the control group embeddings. The
dimensions of these embedding vectors could not be interpreted in any human-intelligible
terms.53

52See (Ludwig and Mullainathan, 2024) for a recent and highly innovative use of contextual embeddings
in a labor economics application.

53This was not for a lack of trying.
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Figure E.3: Distribution of simulated two-dimensional embedding vectors

Notes: This graph shows that the two dimensions (components) of the embedding vector follow a
Gaussian distribution, where the embeddings were simulated using a simple SVD algorithm and a
matrix of engagement in the control group. An embedding is a representation of complex data in a
lower-dimensional space. The dimensions of these vectors are abstract features that summarize the
original data’s structure and relationships. Then, the randomly selected embeddings for the treated
users are centered around the mean of each embedding dimension, and the spread of control user
embeddings is larger than the embeddings generated for treated users. This is because the treatment
embeddings are drawn uniformly at random, each day, from a given sample of control embeddings
during the intervention period (CLT).

Figure E.4: Treatment e↵ect on embeddings across various Dimensions

(a) 3 (b) 7 (c) 13 (d) 19

(e) 23 (f) 27 (g) 29 (h) 31

Notes: This figure shows the empirical distributions of randomly selected dimensions of user embeddings
in the treatment and control groups. On average, the user embeddings for the treatment group were more
concentrated around the mean than the control group, as predicted by the simulated embeddings.
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F Text Analysis

The post data is characterized by broad tag genres, employing user generated hashtags. The
administrative data also consists of text on the images/ videos in the user generated posts,
that was obtained through an automated optimal character reader (OCR). This is a rich
source of information, and I adopt various methods to analyze the text data, in order to
understand the qualitative nature, tone, and political slant of these posts.

F.1 Tokenization, Word Clouds, and Topic Models

I begin describing the text data by translating from the original Hindi, and summarizing
the most common words in the political posts in Figure F.1. This summary measure is
based on more than 20 million posts that were viewed and shared by users in the baseline
and intervention periods. The text analysis currently excludes a dozen other Indian regional
languages in which users can consumer or post content.

Figure F.1: Word clouds depicting words associated with highly toxic posts

(a) High Toxicity (b) Low Toxicity

Notes: This Figure shows word clouds constructed using the TF-IDF vectorizer, on posts classified into
high and low toxicity categories respectively. Cut-o↵ to classify posts into high and low toxicity cate-
gories is 0.2, based on the toxicity scores provided by Perspective API. The figure demonstrates overlap
in words pertaining to religion in both categories, for example ‘Islam’ and the Hindu mythological god-
king ‘Ram,’ who is also central to Hindu nation building agenda of the current ruling government.
This highlights the need for contextual embeddings to characterize the text data. Perspective’s toxicity
algorithm uses human labelled comments and BERT models to provide toxicity scores to each post, by
representing posts in some latent space as embedding vectors.

Figure F.1 shows that the most common word in posts labelled as toxic is ‘Ram,’ which
is a reference to legendary Hindu deity, who is said to have blessed the Hindu Nationalist
project.54 The Hindu nationalist project is a political ideology that is associated with the
ruling party in India, that has been accused of promoting anti-minority sentiments, and even
promoted outright calls for ethnic cleansing in extreme instances (Ja↵relot, 2021).

54For instance, see Kalra (2021) for details on a coordinated campaign carried out in the name of Lord
Ram, that was aimed at inciting violence against Muslims in di↵erent parts of India. This campaign, the
Ram Rath Yatra, was a precursor to the 1992 Babri Masjid demolition. The temple built in place of this
mosque was inaugurated by the current Prime Minister of India, Narendra Modi, in Junuary 2021. See
https://www.bbc.com/news/world-asia-india-68003095
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However, I find a significant overlap in the most common words across posts that were
classified as toxic or not. For instance, the words ‘Ram,’ ‘Islam,’ ‘Allah’ are common in both
toxic and non-toxic posts. This demonstrates that analyzing tokenized vector of words may
lead to misleading conclusion. The text analysis must include su�cient information about
the context in which the words are used. Therefore, I tried to gather a better sense of the
context in which the words were used, by employing topic models on the text data (Handlan,
2020).

The LDA and BERT topic models provide useful information about the context in which
the words are used, but the variation in topics, especially in the Politics genre, was too
limited to be useful. Since, I am interested in the harm that posts can cause, I currently
limit my analysis to hatefulness or toxicity of posts. This is a task best suited for some
o↵-the-shelf classification algorithms, that I describe later. Therefore, I use semi-supervised
Machine Learning methods that take contextual embeddings into account, while achieving
a narrower objective: classifying posts as toxic or not.

F.2 Toxicity Algorithm

In keeping with the literature on social media harms, I use the Perspective API to classify
posts as toxic or not (Aridor et al., 2024). The Perspective API is a machine learning
algorithm developed by Jigsaw at Google, that provides a machine learning solution to
detect posts that are likely to harm a participant in a discussion. I provide examples to
illustrate the toxicity classification algorithm in Table F.1.

Figure F.1 shows the most commonly occurring words (in English) across posts that were
classified as toxic or not, and the overlap in words across the two groups. The overlap in
words across the two groups also testifies that the toxicity scores are sensitive to contextual
embeddings, that the Perspective algorithm extracts from the text data. This validates the
need for contextual embeddings for text classification.

In Figure F.2, I plot and cluster the first principal component of the vectorized TF-IDF
word representation for each document, against the corresponding toxicity scores for that
post (Gentzkow et al., 2019; Ash and Hansen, 2023). I find that the separation between
the word clusters corresponds to the 0.2 cut-o↵ in the toxicity measure. I validate the
performance of this method for multi-lingual abusive speech detection by comparing results
with a choice of hate speech classification algorithms and with manually annotated posts
that were viewed on SM for di↵erent toxicity thresholds. The confusion matrices in Figure
F.3 show that the 0.2 cut-o↵ has the best performance in terms of correctly classifying toxic
posts. This criterion is important because toxicity is a rare outcome and can, therefore,
make automatic detection di�cult (Banerjee et al., 2023).
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Figure F.2: Validating toxicity score threshold to construct binary outcome

Notes: The X-axis plots the first principal component of words in each document (post), obtained using
PCA on the TF-IDF matrix of words. Y-axis corresponds to the toxicity score for the corresponding
documents (posts), computed using the Perspective API. A k-means clustering algorithm is used to
cluster the posts based on the first principal component. Toxicity scores for most posts in the first (blue)
cluster of the first principal component rarely exceed 0.2. Therefore, 0.2 is chosen as the appropriate
threshold for the binary outcome variable, indicating whether a post is toxic or not.
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Figure F.3: Confusion matrices for di↵erent cut-o↵s in toxicity scores

(a) Toxicity score cut-o↵ = 0.2 (b) Toxicity score cut-o↵ = 0.25

(c) Toxicity score cut-o↵ = 0.3 (d) Toxicity score cut-o↵ = 0.35

Notes: These confusion matrices show Type I and Type II errors for four thresholds for classifying a
post as toxic, namely 0.2, 0.25, 0.3, 0.35. User posts were assigned continuous toxicity scores using
the Perspective API, and then classified as being toxic or not for the two thresholds. These scores
were compared with posts annotated as hateful by two human annotators hired at Brown University.
The threshold of 0.2 was chosen because toxic posts are correctly identifies at this threshold with high
accuracy. I argue that this is the most important criterion for the classification task, because toxic
posts are a rare occurrence in the data.
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Table F.1: Examples of text data (English translations) with toxicity scores

Text Toxicity Score Toxicity Classification
Break those rocks Jai Shri Ram which are
standing in the path of religion and shoot
those criminals who have dirty intentions on
the women of our country

0.399 Toxic

LIVE LATEST UPDATES 0.01% population
wants ‘Khalistan.’ 18% want ‘Ghazwa-e-
Hind’ and 80% want cheap onions and toma-
toes. It is bitter but true.

0.327 Toxic

People travelling on ”Bharat Jodo” route are
now facing problem with the name ”Bharat”
instead of India.

0.172 Non-Toxic

Mohammed Shamim’s disgusting act !
Lakhs of pilgrims kept trusting Mohammed
Shamim... Mohammed Shamim used to
make tea from urine water and sell it. Mo-
hammed Shamim used to run a shop in Ker-
ala’s Sabarimala temple premises.

0.479 Toxic

00 Death does not occur only when the soul
leaves the body. He is also dead who remains
silent even after seeing his religion and cul-
ture being attacked. 00

0.174 Non-Toxic

Giqa Bihar wire procession of thieves (temple
thief) (coal thief) (fodder four) (land thief)

0.361 Toxic

Bhajanlal Sharma will be the new Chief Min-
ister of Rajasthan.

0.008 Non-Toxic

Don’t make us jokers, when Christians being
2% do not celebrate Ramnavami, why do we
Hindus being 80% celebrate Christmas, joke
our children on 25th December, Jai Satya
Sanatan

0.361 Toxic

In this I.N.D.I.A alliance Everyone is against
”Ram” and those who are not with Ram are
of no use to us Jai Shri Ram

0.267 Toxic

Why has it been proved that sycophants are
the biggest problem? Who is the master of
sycophants? He is the biggest problem.

0.061 Non-Toxic

Notes: The table shows examples of text data in English, with toxicity scores provided by the Perspec-
tive API. The toxicity score is a continuous measure that ranges from 0 to 1, with 0 indicating healthy
contributions and 1 indicating very toxic content. The Perspective API uses a mix of supervised and
semi-supervised machine learning methods, and is sensitive to context while assigning toxicity scores.
The Perspective API is widely used in academic research and by publishers to identify and filter out
abusive comments.
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G Supplementary Figures

Figure G.1: Comparison of means across treatment and control, for key outcomes

Notes: This Figure shows the trade-o↵ between user engagement and the propagation of harmful content
on social media. During the first month of the intervention, treated users were, on average, exposed
to less toxic content, but were also less active on the platform. This highlights the costs (in terms of
reduced user engagement with the platform), and benefits (in terms of reduced engagement with toxic
content) of the intervention. Further, the decrease in toxic shares is not as large as the total decrease in
shares, or the decrease in toxic views. User behavior is said to be inelastic with respect to toxic content
because the ratio toxic shares to total shares is significantly higher in the treatment (3.16%), than in
the control group (2.55%). Stickiness in sharing behavior with respect to toxic content is explained
by the structural model, which quantifies the extent to which reduced toxic sharing is driven by the
influence of reduced exposure to toxic content. Standard errors are depicted using confidence intervals
around the means.
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Figure G.2: Distribution of exposure to toxic content during intervention period

(a) Number of toxic posts viewed (with binary indicator for post
toxicity)

(b) Average toxicity scores on posts viewed (with continuous toxicity
scores)

Notes: This Figure plots the raw data on the number of toxic posts viewed by users during the
intervention period. The top panel uses the 0.2 threshold to classify a post as toxic, which generates a
binary variable. The bottom panel uses the continuous toxicity score to measure the average toxicity
of a user’s feed. The distribution of toxic views for control users is to the left of the distribution for
treated users. This is consistent with the main result that the intervention reduced exposure to toxic
content for the average user in the treated user in the experimental sample.
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Figure G.3: Distribution of engagement with toxic content during intervention period

(a) Number of toxic posts shared

(b) Percentage of posts shared that are toxic

Notes: This Figure plots the raw data on toxic shares for treated and control users, and shows that
the distribution toxic posts shared by control users first order stochastically dominates the distribution
for treated users. Panel (a) provides the number of toxic posts shared, where a toxic share is defined
as a shared post with toxicity score greater than 0.2. Panel (b) provides the percentage of shares that
are toxic, where the proportion is defined as the number of toxic shares divided by the total number of
shares.
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Figure G.4: Di↵erence between toxic views at intervention period and baseline, by user
engagement at baseline

Notes: This Figure plots the raw data showing di↵erence between toxic views during the intervention
period and baseline, for users with di↵erent levels of toxic engagement at baseline. The averages have
been normalized to have a mean of 0 and a standard deviation of 1. Percentage of users of a type (by
engagement at baseline) in the experimental sample is given in parentheses. For example, 98.3% of
users in the sample viewed at least two toxic posts at baseline. This Figure shows that these users saw
fewer toxic posts during the intervention period. Users who saw exactly one toxic post at baseline, form
about 4.4% of the experimental sample, and saw a larger number of toxic posts if they were treated.
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Figure G.5: Salience of personalization algorithms

Notes: This Figure shows that the personalization algorithm is salient to users. A subset of users in the
experimental sample were randomly selected for a follow-up survey (N = 8, 387), and asked whether
they thought their likes and shares changed the content in other users’ feeds. More than 65% of the
users said that they believed that their SM activity changes other people’s feeds, and there were no
di↵erences in this response by treatment status. Uncertain responses were dropped before computing
these percentages, and the error bars report standard errors of the means. The survey was conducted
at the end of the intervention period, with 4, 236 users randomly sampled from the treatment group,
and the remaining 4, 151 users sampled from the control group.
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Figure G.6: Treatment e↵ects on overall platform usage, by user type

Notes: This figure shows that the treatment reduced both the total time spent on the platform (in hours)
and the number of times they logged on to the app. Further, there seems to be a significant reduction in
the time spent for users in Q5 compared to Q1. The bottom panel in each figure shows the magnitude of
treatment e↵ects (coe�cient plots), and the top panel shows the means of the outcome variable in each
quantile of treatment and the control group. All regressions were run at the user level, and robust standard
errors were computed.
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Figure G.7: Treatment e↵ects on auxiliary outcomes, by user type

Notes: This figure shows that the intervention changed the quality of user engagement on the platform.
This is because treated users were more likely to use the platform during the weekend, or in the night.
Users spent less on the platform during their working hours. This has significant implications for the
labor-leisure trade o↵, and questions about digital addiction, that are explored in a companion paper.
The bottom panel in each figure shows the magnitude of treatment e↵ects (coe�cient plots), and the top
panel shows the means of the outcome variable in each quantile of treatment and the control group. All
regressions were run at the user level, and robust standard errors were computed.
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Figure G.8: Preferences over redistribution, by user type

Notes: This Figure shows that the treatment did not a↵ect users’ preferences over redistribution, as
reflected in the survey data (N = 8,387). This is consistent with the main results that the intervention
led to very limited behavioral changes. Users in the random sample survey were asked if they thought
that wealth should be redistributed, and the surveyor explained what a wealth tax would mean, in the
telephonic surveys. Respondents could say ‘Yes,’ ‘No,’ or ‘Don’t know.’ The uncertain responses were
dropped before computing these percentages, standard errors, and p-values. Based on these responses,
I also created a progressiveness index, from respondents’ answers to di↵erent questions relating to
a�rmative action and wealth redistribution. Details of the survey instrument are contained in a
companion paper. Respondents were further divided into toxic and non-toxic groups, based on their
exposure to toxic content at baseline in the admin data. If a user’s exposure to toxic content was above
the median level at baseline, they were classified as a toxic user. Each group was balanced in terms of
treatment status, on account of the random assignment and sample selection.
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Figure G.9: Elasticity of sharing di↵erent types of content

Notes: This Figure shows the elasticity of sharing behavior with respect to exogenous content exposure
due to treatment. Each marker shows the ratio of treatment e↵ects to control means with respect to
views and shares for di↵erent content types. Elasticities are computed by dividing the blue marker
(triangle) with the green marker (circle). Relevant elasticities are shown in parentheses next to the
labels for each content type. The plot highlights that while sharing behavior for toxic content is inelastic,
user behavior for romantic, religious, and educational content is even more inelastic. Standard errors
are robust and are computed at the 5% level of significance.
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Figure G.10: Testing simplifying assumption in action-signalling model

Notes: This Figure shows that I cannot reject the hypothesis that heterogeneous users update their
behavior, or are influenced by exposure, at equal rates. This justifies the use of a single parameter
✓ to capture the rate at which users update their behavior according to the perceived behavior of
others, despite their underlying taste for such content. The plot was obtained by estimating the
main structural equation from the model, in di↵erent sub-samples of users, based on their baseline
toxic exposure. Later, I relax the assumption to estimate the model with malleable toxic users, and
mechanical non-toxic users. All regressions were run at the user level, and robust standard errors were
computed.
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Figure G.11: Structural Estimates and Validation

(a) Baseline views and intervention period
shares in the treatment group

(b) Intervention period views and shares in the
treatment group

(c) Baseline views and intervention period
shares in the control group

(d) Intervention period views and shares in the
control group

Notes: Panel (a) shows that �1 = �✓ is negative, and the relationship between di↵erences in toxic
shares and toxic views at baseline approximates a linear one, as predicted by the structural model.
Panel (b) shows that the relationship between di↵erences in toxic shares (from baseline to intervention
period) and in the toxic views during the intervention, produces a relationship that can be positive,
as well as distinct from �✓. This is because the estimation strategy uses proportion of toxic views at
baseline. The intervention period variation in toxic views is concentrated around the mean, by design
of the intervention. As a result, this variation is not informative about the rate at which users update
their behavior according to the perceived behavior of others, or the prevalent social norms. Panels
(c) and (d) reiterate that the relationship between toxic views and di↵erences in toxic shares, in the
control group, do not convey any meaningful information because control users are always in steady
state. This means that the said relationship is not estimable in the control group. The binscatter plots
constructed using the control group data are distinct from the main plot in panel (a).
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Figure G.12: Simulating key quantities in the model for heterogeneous influence factors (✓),
by user type

(a) Number of posts viewed

(b) Number of posts shared

(c) Percentage of toxic posts shared

Notes: This figure shows that there is a larger decrease in engagement (number of posts viewed or
shared) for toxic users, on the right extreme ends of the pt distribution, when such users are assumed
to be more malleable. The prediction di↵ers from the main results in Figure 2 because of the assumption
that ✓ = 0.01 for non-toxic users, and ✓ = 0.16 for toxic users. Then, total number of views and shares
are decreasing in pt, and the e↵ects on overall engagement are not symmetric. This is still consistent
with the e↵ects on proportion of toxic shares being driven by users with low to medium proclivity for
toxic content.
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Figure G.13: Simulating policy counterfactuals for heterogeneous influence factors (✓), ran-
domizing content feeds half the time

(a) Number of posts viewed

(b) Number of posts shared

(c) Percentage of toxic posts shared

Notes: This figure simulates outcomes when the counterfactual policy randomizes half the content feed.
As before, it shows that there is a larger decrease in engagement (number of posts viewed or shared)
for toxic users, on the right extreme ends of the pt distribution, when such users are assumed to be
more malleable. Notably, users with lower proclivity to toxic content do not change their behavior, as
the treatment e↵ect on the probability of sharing toxic posts is zero. On the other hand, toxic users
decrease both the number of posts viewed and shared, and the proportion of toxic posts shared.
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Figure G.14: Treatment e↵ects on total number of toxic posts shared for di↵erent influence
factors, ✓

Notes: This figure shows that the simulated treatment e↵ects on number of toxic posts shared is
negative for more toxic users, when the rate at which exposure influences behavior is ✓ = 0.16, as
estimated using the structural model and the empirical distributions of various outcomes. This shows
that, for the parameter values calibrated using the method of matching moments (See Appendix C.5
for details), the structural model correctly predicts that the treatment e↵ect on the number of toxic
posts shared is negative for toxic users. The treatment e↵ect is then simulated for di↵erent influence
regimes: ✓ = 0, when users share content mechanically, and ✓ = 1, when users are fulling malleable.
The treatment e↵ect on the number of toxic posts shared is constant at zero, in the case of mechanical
users (i.e. ✓ = 0). However, when ✓ = 1, users with lower proclivity to toxic content share more toxic
content, because they are fully influenced by the content they are exposed to. Note that, the sharp
decrease in the predicted treatment e↵ect when ✓ = 0.16 is driven by the model prediction that changes
in overall engagement with the platform are symmetric across extreme users.
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Figure G.15: Decomposition of treatment e↵ects, in di↵erent updating regimes

(a) Estimated ✓ = 0.16

(b) Mechanical users, ✓ = 0 (c) Malleable users, ✓ = 1

Notes: This Figure shows that if users were updating their behavior at the same rate ✓, the decrease
in the number of toxic posts shared is largely driven by the disengagement e↵ect, especially for more
toxic users (on the right extreme of the pt distribution). It decomposes the treatment e↵ect into its
two constituent parts, namely, the engagement e↵ect, on number of posts viewed N , as well as the
shares to views ratio S/N , and the influence e↵ect, on the probability of sharing toxic content st. Panel
(a) shows that the reduction in total views (or the disengagement e↵ect) has a higher contribution to
the reduction in toxic shares, than the reduction in the probability of sharing toxic content. Panel
(b) shows that there is no change in behavior if users were completely mechanical (✓ = 0). Panel (c)
shows that treatment e↵ect is entirely driven by the influence e↵ect if users were completely malleable,
and that the number of toxic posts would increase for non-toxic users if ✓ = 1. The model generated
simulated outcomes that are consistent with the data, on the right side of the pt distribution. The
behavior of non-toxic users is not predicted by the model with constant ✓ across users, and is consistent
with the idea that non-toxic users are not as malleable.

H Supplementary Tables
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Table H.1: Balance in treatment assignment across all observable characteristics

Variable Control Mean Di↵erence (T - C) Std.Err.
Observable User Characteristics

State: gujarat 0.021 -0.019 0.014
State: uttar pradesh 0.105 -0.012 0.012
City: aligarh 0.002 0.019 0.027
City: bareilly 0.002 -0.010 0.024
City: dehradun 0.001 0.012 0.028
City: faizabad 0.002 -0.038 0.026
City: hardoi 0.002 -0.020 0.025
City: jaunpur 0.003 -0.028 0.022
City: khandwa 0.001 -0.007 0.037
City: latur 0.001 -0.068 0.033
City: north east delhi 0.001 -0.054 0.034
City: pratapgarh 0.002 0.031 0.024
City: raipur 0.004 -0.005 0.023
City: sitapur 0.002 -0.017 0.026
Gender: Male 0.699 -0.002 0.003
Age: 19-30 0.006 0.000 0.016
Week: 2016-28 0.000 -0.662 10.698
Week: 2022-38 0.012 -0.748 10.696
Baseline Behavior
Num Posts Viewed 777.126 0.000 0.000
Num Posts Shared 22.045 -0.000 0.000
Num Logins 9.250 -0.000 0.000
Time Spent (in hours) 16.341 -0.000 0.000
Prop Activity during Daytime 0.097 -0.001 0.004
Prop Activity during Weekends 0.346 -0.007 0.005
Num Searched per Post Viewed 0.175 0.001 0.002
Prop Views in Humor Genre 0.051 -0.009 0.030
Prop Views in News Genre 0.058 -0.008 0.030
Prop Shares in Bollywood Genre 0.010 -0.037 0.012
Prop Shares in News Genre 0.009 -0.010 0.014
Prop of Views Toxic (%) 2.681 0.007 0.007
Prop of Shares Toxic (%) 2.241 -0.029 0.042
Tox Share to Tox View Ratio 1.023 -0.000 0.000
F-statistic: 0.984 p-value: 0.506
N 231814

Notes: This table shows balance in treatment assignment across all observable characteristics, using a
single regression run at the user level. Di = �0 +

P
c �c1i(user characteristic = c) + "i, where Di is

binary variable taking value 1, when user i was assigned to the treatment group. The table shows a
randomly selected set of coe�cients. Weeks correspond to the date on which a user created her account.
None of the observable characteristics are correlated with treatment assignment. I cannot reject null
hypothesis of joint insignificance, with an F-statistic of 0.984 and p-value of 0.506. The regression was
estimated at the user level. Robust standard errors in parantheses.
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Table H.2: Regression results for all outcome variables

Num Logins Time Spent (in hours) Num Posts Viewed
Treatment -1.270⇤⇤ -2.531⇤⇤ -35.497⇤⇤

(0.042) (0.584) (2.208)
Mean Dep. Var. in Control 21.594⇤⇤ 7.104⇤⇤ 246.654⇤⇤

(0.021) (0.583) (1.361)

Time Spent per Post Num Posts Shared Shares to Views Ratio
Treatment -0.053⇤⇤ -6.367⇤⇤ -0.114⇤⇤

(0.002) (0.206) (0.007)
Mean Dep. Var. in Control 0.127⇤⇤ 18.396⇤⇤ 0.261⇤⇤

(0.001) (0.131) (0.004)

Prop Activity on Weekends Prop Activity during Daytime Num Searches per Post Viewed
Treatment 0.010⇤⇤ -0.035⇤⇤ 0.016⇤⇤

(0.001) (0.002) (0.001)
Mean Dep. Var. in Control 0.261⇤⇤ 0.214⇤⇤ 0.104⇤⇤

(0.001) (0.001) (0.001)

Extreme Embedding Value Num Toxic Posts Viewed Perc Toxic Posts Viewed
Treatment -0.005⇤⇤ -5.024⇤⇤ -0.641⇤⇤

(0.001) (0.172) (0.033)
Mean Dep. Var. in Control 0.030⇤⇤ 18.806⇤⇤ 7.416⇤⇤

(0.000) (0.129) (0.018)

Num Toxic Posts Shared Perc Toxic Posts Shared Tox Share to Tox View Ratio
Treatment -0.093⇤⇤ 0.120⇤⇤ 0.007⇤⇤

(0.010) (0.038) (0.001)
Mean Dep. Var. in Control 0.474⇤⇤ 1.547⇤⇤ 0.040⇤⇤

(0.006) (0.018) (0.001)
N 231814

Notes: This table shows that the intervention caused disengagement with the platform, by showing
negative and significant estimates of treatment e↵ects on total number of posts viewed and shared,
number of times users logged on, and total time spent. Each cell estimates the following regression
equation with di↵erent outcomes (Yi), Yi = �0 + �1Di + "i. The average user viewed and shared
fewer toxic posts, but the proportion of toxic posts shared increased. This table also shows that the
intervention increased users’ search costs of using the platform, as measured by the number of searches
performed. This could explain why the treatment e↵ect on proportion toxic shares is positive, despite
the treatment e↵ect on proportion toxic views being negative. Robust standard errors in parenthesis.
p < .0001⇤⇤⇤, p < .01⇤⇤, p < .05⇤.
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Table H.3: Balance in observable characteristics among stayers

Variable Di↵erence (T - C) Standard Error
Observable User Characteristics

State: gujarat -0.023 0.017
City: auraiya -0.038 0.047
City: bhiwani -0.055 0.042
City: durg -0.009 0.038
City: gwalior -0.051 0.040
City: jalandhar -0.024 0.045
City: kutch 0.009 0.045
City: mahendragarh -0.010 0.050
City: mandsaur -0.041 0.041
City: rajnandgaon -0.047 0.043
City: ranga reddy -0.010 0.039
City: ratlam -0.035 0.041
City: sagar -0.088 0.039
City: samastipur -0.050 0.045
City: surat -0.028 0.033
City: udaipur 0.045 0.043
City: udham singh nagar -0.005 0.043
Gender: noneStated -0.002 0.004
Age: 18-24 -0.000 0.005
Age: 45+ -0.016 0.012
N 159248
F-stat: 0.942 p-value: 0.704

Notes: This table shows that there were no systematic di↵erences in observable characteristics among
treated users who continued to use the platform during the intervention period. The table displays a
randomly chosen subset of characteristics and corresponding coe�cients from the estimating equation
Di = �0 +

P
c �c1i(user characteristic = c) + "i, where Di is binary variable taking value 1, when

user i was assigned to the treatment group. This regression estimated the relationship between the
characteristics on the right hand side, and treatment status on the left hand side, in the sample of
stayers. None of the coe�cients are individually or jointly significant when this regression was estimated
using a sample of stayers, with an F-statistic of 0.942 and p-value of 0.704.
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Table H.4: User characteristics correlated with the probability of leaving the platform

Probability of Leaving �c �c ⇥Di

Treatment E↵ect 0.010 N/A
(0.011) N/A

Number of Views (Baseline) -0.0000⇤⇤⇤ 0.0000
(0.0000) (0.0000)

Number of Shares (Baseline) -0.0000 0.0000
(0.0000) (0.0000)

Toxic Shares (Baseline) 0.0000 -0.0000
(0.0000) (0.0001)

Toxic Views (Baseline) -0.0001 -0.0004
(0.0004) (0.0008)

Gender: Male -0.0062⇤⇤⇤ -0.0026
(0.0011) (0.0024)

Days since account created 0.0000⇤⇤⇤ -0.0000
(0.0000) (0.0000)

User Age 0.0000 0.0001
(0.0001) (0.0003)

Proportion content viewed on weekends -0.0004 0.0050
(0.0029) (0.0062)

Proportion content shared during daytime -0.0010 0.0028
(0.0013) (0.0028)

Share of views in Bollywood Genre 0.0094 -0.0093
(0.0053) (0.0103)

Share of views in Devotion Genre -0.0107⇤ -0.0001
(0.0045) (0.0092)

No Assigned Genre 0.0088 0.0281
(0.0094) (0.0200)

Share of views in Greetings Genre 0.0044 -0.0131
(0.0046) (0.0093)

Share of views in Humor Genre 0.0206⇤⇤ 0.0085
(0.0079) (0.0174)

Share of views in News Genre 0.0067 -0.0178
(0.0066) (0.0137)

Share of views in Politics Genre 0.0150 -0.0603
(0.0405) (0.0651)

Share of views in Romance Genre 0.0172⇤⇤ 0.0066
(0.0055) (0.0112)

N 231814
Notes: This Table shows that, conditional on observable user characteristics, treatment assignment is
not correlated with the probability of leaving the platform. This also shows that the treatment does not
di↵erentially impact the probability of leaving the platform, for given observable user characteristics.
This means that the treated leavers are not systematically di↵erent from the control leavers. These
results are obtained by estimating the regression equation 1i(left platform = yes) = �0 + �1Di +P

c �c1i(user characteristic = c) +
P

c �1cDi1i(user characteristic = c) + "i, where 1i(left platform =
yes) is an indicator taking value 1, when user i leaves the platform. Column (1) reports estimated
�c’s, while column (2) reports estimated �1c’s. Standard errors are robust at user level. p < .0001⇤⇤⇤,
p < .01⇤⇤, p < .05⇤.
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Table H.5: User characteristics correlated with the probability being exposed to more toxic
content at baseline

Variable �c �c ⇥Di

Treatment E↵ect 0.032 N/A
(0.032) N/A

Number of Views (Baseline) -0.0000⇤⇤⇤ 0.0000
(0.0000) (0.0000)

Number of Shares (Baseline) -0.0000 0.0000
(0.0000) (0.0000)

Toxic Shares (Baseline) 0.0002 -0.0001
(0.0002) (0.0003)

User Gender -0.0158⇤⇤⇤ -0.0099
(0.0035) (0.0074)

Days since account created 0.0000⇤⇤⇤ -0.0000
(0.0000) (0.0000)

User Age -0.0002 -0.0000
(0.0003) (0.0007)

Proportion content viewed on weekends -0.0133 0.0202
(0.0085) (0.0187)

Proportion content shared during daytime 0.0025 0.0049
(0.0041) (0.0090)

Share of views in Bollywood Genre -0.0617⇤⇤⇤ -0.0169
(0.0137) (0.0278)

Share of views in Devotion Genre -0.0821⇤⇤⇤ 0.0024
(0.0131) (0.0266)

No Assigned Genre -0.0308 0.0398
(0.0261) (0.0516)

Share of views in Greetings Genre -0.1031⇤⇤⇤ -0.0521⇤

(0.0126) (0.0252)
Share of views in Humor Genre 0.2879⇤⇤⇤ 0.1203

(0.0408) (0.1051)
Share of views in News Genre 0.1262⇤⇤⇤ -0.0591

(0.0278) (0.0585)
Share of views in Politics Genre 0.0640 -0.1950

(0.1455) (0.2219)
Share of views in Romance Genre 0.0042 0.0246

(0.0169) (0.0341)
N 231814

Notes: This Table shows the observable characteristics correlated with the probability of being exposed
to more toxic content at baseline, irrespective of treatment assignment. This also reiterates that
treatment assignment was balanced in baseline exposure to toxic content. These results are obtained by
estimating the regression equation propToxV iew baseline = �0+�1Di+

P
c �c1i(user characteristic =

c) +
P

c �1cDi1i(user characteristic = c) + "i. Column (1) reports estimated �c’s, while column (2)
reports estimated �1c’s. Standard errors are robust at user level are in parantheses. p < .0001⇤⇤⇤,
p < .01⇤⇤, p < .05⇤.
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Table H.6: Testing simplifying assumptions on sharing behavior

(1) (2)
Total Toxic Posts Shared Total non-Toxic Posts Shared

Total Toxic Posts Viewed 0.012⇤⇤⇤

(0.001)

Total non-Toxic Posts Viewed 0.011⇤⇤⇤

(0.001)

Mean Dep. Var. in control group 1209.2⇤⇤⇤ 34.30⇤⇤⇤

(47.54) (1.465)
N 63041 63041
Notes: This Table provides evidence that the consumption value from sharing both toxic and non-toxic
content is equal, which allows the simplifying assumption that each user has the same ✓ with respect
to toxic and non-toxic content. The coe�cient estimates are obtained from stacking regressions of
(non-)toxic shares on (non-)toxic views. The statistical test of equality of coe�cients could not reject
the hypothesis that the coe�cients from the two regressions are equal. Robust standard errors are in
parentheses. p < .0001⇤⇤⇤, p < .01⇤⇤, p < .05⇤
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Table H.7: Testing identifying assumption in structural model using control sample

(1) (2) (3)
Probability of sharing toxic post during intervention period

Proportion of toxic 0.112⇤⇤⇤ 0.820⇤⇤⇤

posts shared at baseline (0.012) (0.091)

Proportion of toxic posts among first 0.290⇤⇤⇤

half of posts shared at baseline (0.057)

N 52663 52663 52663

Notes: This Table tests the identifying assumption, derived from the steady state condition sti,0 = sti,1.
That is, all else equal, the probability of sharing toxic content for each user is expected to be equal
in each time period. Column (3) shows that the measurement error corrected estimates of the slope
coe�cient is close to 1. The sample includes control users who shared at least one post at baseline.
Robust standard errors in parenthesis. p < .0001⇤⇤⇤, p < .01⇤⇤, p < .05⇤
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Table H.8: Structural estimates using OLS regressions with treated sample

Di↵erence in shares (Current - Baseline)
Di↵erence in views at Baseline -0.085⇤

(0.039)
Constant -8.486⇤

(3.745)
N 63041

Notes: This table shows that the structural estimates of ✓ obtained using an OLS regressions are biased
downwards. Dependent variable is di↵erences in di↵erences between probability of sharing toxic and
non-toxic content, between intervention period and baseline, for treated users only. The explanatory
variables are constructed by averaging di↵erences between proportion of toxic and non-toxic posts
viewed by treated users. Robust standard errors in parentheses. p < 0.05⇤, p < 0.01⇤⇤, p < 0.001⇤⇤⇤.
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Table H.9: Validating structural estimates using OLS regression with control sample

(1) (2)
Di↵erence in shares (Current - Baseline)

Di↵erence in views at baseline 0.312⇤⇤

(0.046)
Di↵erence in views -0.060⇤⇤

(0.004)
Constant -3.953 -38.561⇤⇤

(4.414) (0.355)
N 168773 168773

Notes: Dependent variable is di↵erences in di↵erences between probability of sharing toxic and non-
toxic content, between intervention period and baseline, for control users. The explanatory variables
are constructed by averaging di↵erences between proportion of toxic and non-toxic posts viewed by
control users. ✓ estimated in the control sample, in Column (1), is biased upwards. Robust standard
errors in parentheses. p < 0.05⇤, p < 0.01⇤⇤, p < 0.001⇤⇤⇤.
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Table H.10: Estimation strategy for di↵erent model parameters

Parameter Description Source

✓ Rate of influence of exposure OLS/ IV estimation
� Consumption value of viewing posts Calibration
↵ Cost of viewing unshareable content Calibration
⌘ Cost of sharing a post Calibration

{pti} Inherent taste for toxic content Assumption
{qti} Probability of being assigned toxic content Assumption
{sti} Probability of sharing toxic content Model Inversion

Notes: This table shows the parameters of the structural model and the measurement approaches.

Table H.11: Decomposition of treatment e↵ect on toxic shares, expressed as percentage of
row totals

a Contribution of N (views) Contribution of S/N (shares to views ratio) Contribution of st (probability of sharing) Total treatment e↵ect on S
t

0.00 0.00 0.00 100.00 100.00
0.20 100.82 0.03 -0.85 100.00
0.60 100.09 0.03 -0.12 100.00
0.80 99.49 0.03 0.46 100.00
1.00 98.54 0.03 1.46 100.00

Notes: This table shows the decomposition of the treatment e↵ect on toxic shares, expressed as percent-
age of the row totals, for the average user, for di↵erent levels of randomization in user feeds, denoted
by a. The treatment e↵ect on toxic shares is decomposed into three components: the contribution of
the number of toxic posts viewed (N), the contribution of the shares to views ratio (S/N), and the
contribution of the probability of sharing toxic content (st). The total treatment e↵ect on toxic shares
is 50%.

I Algorithms

In this Appendix, I provide details on the algorithms used to simulate a simple recom-
mendation algorithm. I also simulate the treatment using this illustrative personalization
algorithm. This builds intuition on how the treatment was implemented in practice. Fi-
nally, this Appendix also details the calibration of the model parameters, by using method
of matching moments.
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