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Abstract

This paper studies a setting in which a buyer uses relationships with multiple suppli-

ers in order to screen and incentivize them for good performance, influencing outcomes

via relationship management rather than monetary tools. This leads to starkly dif-

ferent dynamics than standard contracting, in particular on how relationships evolve,

due to extended history dependance. I show that there is an additional competition

value motive for exploration in such a setting, above and beyong the standard option

value motive. After developing a novel structural method for Principal-Agent dynamic

games, I estimate it using outcome-level data on all relationships between a buyer and

their suppliers, engaged in small-scale manufacturing in India. I find that the buyer’s

long term pool of supplier is on average 28% better than the general pool of supplier,

and the buyer’s incentivization scheme improves outcomes by 7% on average.

1 Introduction

The making, breaking, and remaking of relationships is an integral part of the contracting

process across the world, especially in developing countries. The relational nature of these

environments often necessitates incentive provision via promises of closer future engagement

and threats of relationship terminations, in order to ensure that participants in the relation-

ship engage in surplus-enhancing activities when it is in effect.

This paper advances our understanding of relational contracts by examining a novel setting

in the Indian manufacturing sector. I focus on a buyer that incentivizes small manufacturing

firms to produce high quality output by promising them more orders in the future if they

do so. The setting provides fertile ground for exploring how firms deploy dynamic tools
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to navigate the challenges of contract enforcement and quality assurance when traditional

mechanisms are unreliable or prohibitively costly. Theoretically, this leads to a situation

where the principal (i.e. the buyer) may need to offer fully history-dependent contracts at

the optimum. I show that converting this problem into the continuation value space allows

for a recursive formulation, utilizing the fact that effort today by the suppliers depends

on the variation in future continuation values promised by the buyer. This allows me to

build a structural model that can be taken to the data for estimation; as far as I know,

this is one of the first instances of structural estimation of a Principal-Agent dynamic game.

Empirically, the strength of the data lies in the fact that unlike standard datasets used in

IO and organizational economics, outcomes of each order are observed for the entire length

of each relationship. This allows me to track exactly what happens over the course of the

relationship, and how the parties respond to what happens. Estimating the model speaks to

some crucial issues in the development context - why multinational companies multi-source

in developing countries, how much value is added by intermediation in such markets, and

how much value is lost due to weak institutions. In an early preview of the results, I find

that the buyer improves outcomes by 28% over the long term via selection of better types,

and by 7% via incentivization. Even though the buyer selects better types over time, she

keeps some intermediate types in the pool, partly in order to motivate the higher types to

continue performing well.

While the existence of relational contracting has been consistently reaffirmed by many papers

in recent years, the contours of how they are implemented are still being explored. In

textbook relational contracting models (such as Levin (2003)), relationships are long and

feature identical incentive each each period. This project rationalizes the fact that in practice

most relationships end quite early, and values grow substantially over time in those that

survive. Yet another novel contribution of the project is to show that in relational contracts,

learning about the counterparty has a competition value in addition to the traditional option

value. Having a larger pool of good suppliers increases a firm’s outside option, allowing it

to credibly threaten to replace the suppliers more often on bad performance, and hence

ensuring higher quality today. This provides an additional impetus for exploration, which

again reinforces why firms are willing to shop around for suppliers in developing countries.

The findings of this paper have important implications for both economic theory and policy.

The continuation value based structural estimation framework I develop has wide applica-

tions beyond this specific setting. By demonstrating how relational contracts evolve over

time and how firms use dynamic incentives to manage relationships, this paper contributes

to a more nuanced understanding of firm behavior in settings with weak formal institutions.
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These insights can inform policies aimed at improving the functioning of supply chains in

developing countries and highlight the role of intermediaries in facilitating market transac-

tions. Moreover, shedding light on the mechanisms through which firms manage quality and

reliability in their supplier base can help guide strategies for fostering industrial development

and improving the integration of small manufacturers into global value chains.

This paper builds on and contributes to several strands of literature. First, it adds to the

growing body of work on relational contracts, particularly their empirical applications. Early

theoretical work by Bull (1987) and MacLeod and Malcomson (1989) laid the foundation

for understanding self-enforcing agreements in repeated interactions. Levin (2003) provided

a tractable framework for analyzing optimal stationary relational contracts, which has been

extended in various directions. Empirical work in this area includes Macchiavello and Mor-

jaria (2015)’s paper on the the temptation to renege in relational contracts in the Kenyan

rose export market and Macchiavello and Morjaria (2021)’s study of how competition can

degrade relational contracts. This paper contributes to this literature by introducing a struc-

tural approach to estimating relational contracts, allowing for a more direct application of

theoretical tools.

Second, this paper relates to the literature on structural estimation of dynamic games. Fol-

lowing the seminal work of Rust (1987) and Hotz and Miller (1993) on single agent dynamic

estimation, Bajari et al. (2007) and Pesendorfer and Schmidt-Dengler (2008) developed meth-

ods for estimating dynamic games. Our approach builds on these methods, extending them

to a setting with a principal-agent structure and relational incentives. This combination of

relational contracts and structural estimation of dynamic games is a novel contribution to

the literature.

Finally, our theoretical approach draws on the literature on solving dynamic games, partic-

ularly in the context of repeated moral hazard problems. The seminal work of Spear and

Srivastava (1987) introduced recursive methods for analyzing repeated agency problems.

Fudenberg et al. (1994) provided a general framework for analyzing repeated games with

imperfect public monitoring. Our theoretical contribution lies in adapting these methods

to a setting with multiple agents and a principal, incorporating learning and exploration

motives into the dynamic contracting problem.
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2 Model

A buyer, Z (she), sources orders from downstream customers, and selects a supplier s ∈ S

(he) to fulfil each order.

Orders arrive in discrete time t = 1, 2, 3, ... ∈ T according to an order arrival process O :

T → N, where Ot is the number of orders that need to be assigned at time t. The arrival

process is iid across time, i.e. the realization of Ot is independent of the past realizations of

O and identical across time, so the arrival process is identified by the parameter P (Ot = n),

which is the probability that there are n orders to assign in the current period. An order

o has observable characteristics Xo, such as downstream customer identity, delivery date,

metric tonnage, payment to supplier etc, and must be assigned in the same period that they

arrive.

The stage game at each time t has the following sequential form. First, the buyer assigns

a supplier to each order that has arrived at time t. Then, the assigned suppliers select an

effort level and engage in production. This leads to an outcome realization for each order

that the two parties commonly observe.

The outcome of each order is denoted y ∈ {0, 1}. The probability of y = 1 is given by

P (y = 1) = p(θ, e), where θ is the type of the supplier and e is the effort put in by the

supplier, which has a private cost c(e, ξ)1. c is assumed to be convex in e, with c′′(0)

bounded away from 0.

The suppliers get flow benefit b from being assigned an order, and 0 otherwise. Z gets flow

benefit β
1−β

b2 from an outcome of y = 1 and cost −ϕ from y = 0. There is no incentivization

via monetary transfers in this setting, either via monetary bonuses in the same period or via

variation in future transfers3.

Z induces effort via the choice of an order assignment policy A : Ht × Ot → S, where Ht is

the set of all public histories at time t. Here A(ht, ot) specifies how orders are assigned at

time t given the history of the game so far and the number of orders to be assigned today. We

assume Z lacks commitment power, and hence Amust be credible in the dynamic sense. Note

that any policy can be rewritten as a policy that tracks a preference ordering of suppliers,

1We assume that c() is such that the first best effort always leads to an interior probability of the high
outcome.

2Here β is the buyer’s bargaining weight in its relationship with the suppliers
3This is a simplification of the setting based on our observation of the contracts. A justification for the

use of allocation incentives vs monetary ones based on relative credibility is in the works, but will not change
this basic feature.

4



which is just B : Ht →≿ (S).

3 Theory

3.1 Intractability in the time domain

We begin with the observation that the space of policies B(ht) is infinite dimensional, with a

decision to be made at every possible history for infinite time. Moreover, the optimal policy

will in general not be stationary, since it would depend in complicated ways on the outcome

history in order to provide the best possible incentives for effort.

At the same time, the supplier’s optimal response at a given time t to a policy has infinite

dependence on all future decisions according to the policy and her own responses to them i.e.

the supplier’s effort today depends on the effort she will put in at all future points in time.

The reason for this is quite intuitive - supplier effort today is determined by how attractive

she views doing well today, which itself is determined by whether she gets some respite from

working as a result of doing well today.

These factors make working in time space forbiddingly intractable, which motivates a trans-

formation to the continuation value space, along the lines of Spear and Srivastava (1987).

3.2 Moving to the continuation value space

For the purposes of illustration, consider the case of a single supplier. We will relax the

assumption that orders always need to be assigned, so that the supplier can be dropped or

punished by withholding orders.

Suppose at some time t, Z promises some level of discounted lifetime value to the supplier

starting from time t. Then, Z’s problem can be recast as that of “optimally” picking future

continuation values for the supplier conditional on outcome today, in a way that stays true

to this promised value. The key step here that allows this to take on a recursive formulation

is the fact that effort today by the supplier is pinned down by the difference in continuation

values that she is promised on the high and low outcomes respectively. So for any promised

continuation value today, Z effectively just needs to decide the optimal variation in next

period’s promised continuation values, which pins down effort, and then pick the optimal

levels of future continuation values that are consistent with the chosen variation and the
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promised value today. This is how we build a Markovian recursive problem that Z must

solve - in the continuation value space rather than in time.

Formally, suppose Z promises a continuation value of w to the supplier. Then, consider the

problem of choosing the optimal wf (1) and wf (0) i.e. the continuation values to promise

conditional on high outcome and low outcome respectively. This problem can be written as:

V (w) = max
wf

{ ∑
(y)∈{0,1}

p(y)u(y) + δV (wf (y))
}

(1)

where the probability of high output p(y) = yp(e∗, θ) + (1 − y)(1 − p(e∗, θ)), e∗ is supplier

effort, and V is the value to Z from at a given continuation value. This is subject to the

condition that value promised today must be consistent with what is promised tomorrow

w = b1a=1 + δ
∑

(y)∈{0,1}P (y)wf (y)

where 1a=1 captures whether a = 1 i.e. the supplier is assigned an order this period. Note

that a is implicitly specified when w and wf (y) are specified, since only one value of a will

satisfy the above equation.

We still need to specify the optimal supplier effort level e∗ in the above problem. First, note

that given wf (1) and wf (0), e can be deduced from the following problem that the supplier

solves:

e∗ = max
e

{
p(e)wf (1) + [1− p(e)]wf (0)− c(e)

}
Clearly e∗ is a function only of wf (1) and wf (0) - in fact only of ∆w := wf (1) − wf (0).

Moreover, we have the following system of equations for wf (1) and wf (0) in w and ∆w:

∆w =wf (y = 1)− wf (y = 0)

w =b1a=1 + δ
∑

(y)∈{0,1}p(y)w
f (y)

The solutions to this system of equations, which represent the future continuation values

that can be induced, will be labelled as F (w,∆w). An important consequence of recasting

the problem this way is that the optimal effort level e∗ is fixed once ∆w is fixed, and hence

the probability of the high outcome p(y) is fixed. Thus for any given current continuation

value, fixing the difference in future continuation values fixes supplier effort and provides us

with a set of future continuation values that the buyer can induce. This allows us to rewrite
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Equation 1 into a proper constrained Bellman:

V (w) = max
∆w

{
max

(wf )∈F (w,∆w)

∑
(y)∈{0,1}

p(y|∆w)u(y) + δV (wf (y))
}

(2)

Some loose ends remain to be addressed. The set of wi, say W ′, that can be induced by some

supplier assignment policy need not be an interval of the real line - in fact it need not even

be a dense subset of the real line. As a corollary, the set of ∆w that can be chosen given any

wi need not be an interval either. This can mean that the value function V can be hard to

evaluate numerically, with implications for tractability. This motivates a further analytical

innovation - in the theoretical analysis, we allow Z to randomize between supplier assignment

policies. As a result, the set of w that can be induced will lie in W = [infW ′, supW ′].

Denoting the objective in Equation 2 as U(wi,∆w), the value function becomes:

V (wi) = max

{
max

α∈[0,1]:αw′+(1−α)w′′=wi

[αV (w′) + (1− α)V (w′′)] ,max
∆w

U(wi,∆w)

}
(3)

Now, we can state our first result.

Proposition 1. The value function V is concave. Moreover, it has at least one interior

maximizer.

Proof. To see concavity, note that a linear combination of two points on the value function

would be one of the candidates in the inner maximization in Equation 3. As a result,

the linear combination of values of the two points cannot be greater than the value at the

combination. A concave function on a bounded interval must attain a maximum. The fact

that at least one is interior can be seen from the fact that the maximizer cannot be at the

extreme points. At the lower extreme, the supplier gets her lowest promised continuation

value, which means she never gets employed. At the other extreme, she gets her highest

promised continuation value, which means she is always employed. Z can improve on the

first policy by employing her sometimes, and on the second by firing her sometimes.

The following proposition hints at some sort of tenure system being optimal in this setting.

Proposition 2. The optimally chosen wf (1|w) is increasing in w, while ∆w is decreasing

in w.

Moreover, given the value function V and the optimal control distribution w̃, the associated

allocation decision can be constructed inductively as follows:
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1. Calculate w0 = argmaxw V (w)

2. B(h0) = 1 iff w∗ = b+ δE[w̃(w0)]

3. For each wt ∈ supp[w̃(wt−1)]: B(ht;wt) = 1 iff wt = b+ δE[w̃(wt)]

3.3 Multiple suppliers

The case of multiple suppliers and multiple assignments each periods require further inno-

vations. For simplicity, consider the case with two suppliers at two orders to be assigned

each period. Extending to more suppliers and more orders will be straightforward once the

binary case is solved, as will become clear shortly.

Z’s value function now can be written as:

V (w1, w2) = max
B⊆N,

wf
1 :{0,1}2→R,

wf
2 :{0,1}2→R

{ ∑
(y1,y2)∈{0,1}2

P (y1, y2)
[
u(y1, y2) + δV (wf

1 (y1, y2), w
f
2 (y1, y2))

]}

subject to

P (y1, y2) =
∏
i

[yi(θi + (1− θi)ei) + (1− yi)(1− θi)(1− ei)]

ei = argmax
e

[b⊮i∈B + δ
∑

(y1,y2)∈{0,1}2P (y1, y2)w
f
i (y1, y2)− c(e)|e−i]

wi = b⊮i∈B + δ
∑

(y1,y2)∈{0,1}2P (y1, y2)w
f
i (y1, y2)

There are two inconveniences in this formulation. First, the optimization is over a 2n di-

mensional set of continuous-valued continuation values. Second, conditional on any choice

of these continuation values, there is an induced game between the suppliers on effort choice:

each supplier’s incentive is affected by the effort choice of the other. This can become ex-

tremely unwieldly when scaled to multiple suppliers - both theoretically and computationally.

But a reformulation of the problem can take care of these inconveniences. Consider the

following reformulation:

V (w1, w2) = max
∆w1,∆w2

{
max

(wf
1 ,w

f
2 )∈F (w1,w2,∆w1,∆w2)

∑
(y1,y2)∈{0,1}2

P (y1, y2)u(y1, y2)

+ δV (wf
1 (y1, y2), w

f
2 (y1, y2))

}
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subject to

P (y1, y2) =
∏
i

[yi(θi + (1− θi)ei) + (1− yi)(1− θi)(1− ei)]

ei = argmax
e

[b+ δe(1− θi)∆wi − c(e)]

and F (w1, w2,∆w1,∆w2) is the set of solutions to the following set of equations:

∆wi =[θ−i + (1− θ−i)e−i][w
c
i (yi = 1, y−i = 1)− wc

i (yi = 0, y−i = 1)]

+ [1− (θi + (1− θi)ei)][w
c
i (yi = 1, y−i = 0)− wc

i (yi = 0, y−i = 0)]

wi =b+ δ
∑

(y1,y2)∈{0,1}2P (y1, y2)w
f
i (y1, y2)

Fixing ∆w1,∆w2, the effort choices of the suppliers are determined directly. Thus, the key

here is that Z must promise them an expected variation in continuation values rather than

the full array of continuation values, so that the supplier problems become decision theoretic

rather than game theoretic. Given the solutions to these supplier problems, Z needs to pick

the right array of continuation values that is consistent with those solutions.

Having multiple suppliers allows me to speak more directly to the underlying mechanisms

that we will encounter in the empirical setting. In particular, we have the following results

on how the buyer will select among the suppliers.

Proposition 3. Consider the case with two suppliers with known types θ1 > θ2. Fixing the

higher type θ1, increasing θ2

1. Increases the optimal value for the buyer

2. Increases the equilibrium effort of the higher type

3. Decreases the initial continuation value of the higher type

Moreover, when θ1 >> θ2, the higher type is always picked, and when θ1 ≈ θ2, the buyer’s

optimal rule picks one supplier until they produce a high outcome and switches immediately

to the other on a low outcome.

This proposition also speaks to the novel competition effect in this setting. Given an inside

supplier pool, the buyer has an additional competition reason to explore from the outside

pool, since having a higher second type makes the higher type exert more effort.
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Finally, a note on tractability. Plugging this problem into a constrained optimizer can

be computationally taxing for even a reasonably sized grid for value function iteration.

However, computational burden can be eased using the following approach. The equations

that determine F (w1, w2,∆w1,∆w2) are linear in the variables, so it defines a convex polytope

in 2n dimensions. Computationally, it can be cheaper to calculate the extreme points of

this polytope, which enables a reasonably efficient algorithm to do the inner optimization

(fixing ∆w1,∆w2) - just sample random weights for the extreme points and take their convex

combination using those weights to generate points in the interior of the polytope.

4 Data

I use a comprehensive dataset from a large buyer in the Indian manufacturing space. The

buyer acts as an intermediary, contracting with mostly small and medium scale suppliers to

deliver a range of products to its customers. The customers are often major construction

MNCs, and the orders are for customer-ordered metal parts, such as steel beams and rods.

The order records span from 2019 to mid-2022. These records detail the interactions between

downstream customers, the buyer, and approximately 200 suppliers who fulfill various orders.

Over this period, we observe repeated transactions, offering a rich temporal view of buyer-

supplier dynamics.

Each order is composed of multiple parts, with a median of around 50 parts per order,

amounting to a total of approximately 94,000 parts across 700 orders. In most cases, parts

are individual manufactured items, such as a steel beam. Multiple parts are inspected and

delivered in lots, which can be though of as one truckload worth of parts. Beginning end of

2019, the dataset captures detailed part-, lot-, and order-level information. This includes the

supplier and customer numbers, contract numbers, and the managers associated with each

transaction. We also observe the planned and actual dates for key stages in the production

and delivery process, such as raw material acquisition, cutting, welding, polishing, painting,

shipment from the supplier’s factory, and final arrival at the destination.

The dataset also includes granular information about each part: its description, size, weight,

and type, as well as its associated lot number. Quality check outcomes are recorded for each

part, with binary indicators (0/1) specifying whether a part meets the technical specifica-

tions, along with the identity of the inspector conducting these quality checks. This binary

check is what we use as a measure of the quality of that part. In addition to product specifics,

the data tracks payments made to suppliers and the total order value, categorized into four
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broad buckets, and includes information on auxiliary services provided by the buyer, such

as credit, cash upfront, or sourcing of primary inputs.

Suppliers in the dataset are geographically dispersed across many states (which we collapse

into three self-contained regions) and exhibit varying degrees of specialization and certifica-

tion. We also observe the contract terms between the buyer and suppliers, which are decided

at the beginning of the relationship, without renegotiation ex post.

5 Preliminary empirical analysis

5.1 Summary stats

Since this is a paper about the relationship between the two parties, Figure 1 presents a

histogram of the length of relationships, across all suppliers. Most relationships we see

consist of a single order, which is consistent with the buyer learning about supplier types.

Some relationships last quite long, indicating that the buyer settles on a set of standard

suppliers.

Figure 1: A large percent of relationships end after the first order.

Finally, there is substantial heterogeneity in how suppliers fulfil orders, as Figure 2 shows.

Supplier performance is averaged over all orders4.

4This is with a synchronization exercise using the common orders to make the two regimes consistent,
but even restricted to just one regime, the histogram is essentially the same.
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Figure 2: There is substantial heterogeneity in supplier performance.

5.2 Rewarding high performance

Next, we note that the buyer is responsive to performance. Tables Table 1 and Table 2 show

that suppliers that have lifetime better performance get more orders, and higher average

past performance leads to more orders today.

Table 1: Total orders for a supplier based on all time performance of a supplier

Dependent variable:

Total lifetime orders

Lifetime performance 3.0∗∗∗

(1.0)

Constant 1.4∗∗

(0.7)

Observations 274
R2 0.03
Adjusted R2 0.03
Residual Std. Error 4.0 (df = 272)
F Statistic 9.2∗∗∗ (df = 1; 272)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Supplier monthly order statistics based on past average performance

Dependent variable:

Orders per month Probability of getting an order

OLS Multinomial log-linear

(1) (2)

Past average performance 0.251∗∗∗ 2.845∗∗∗

(0.037) (0.389)

Constant −0.159∗∗∗ −6.925∗∗∗

(0.046) (1.051)

Month FE Yes Yes
Observations 3,424 3,424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

PS: The observations are at the Supplier X Month level, recording numbers of order
(and whether or not an order was received).

5.3 Evidence of moral hazard

Finding reduced form evidence of moral hazard is trickier, since it is an equilibrium choice

object rather than a fundamental parameter (like type). But it is possible to present structure

informed reduced form evidence of moral hazard here. For this, recall that the buyer should

be more likely to drop a supplier after bad performance rather than good. As a result,

suppliers that have a bad first order should strive to make up for it in their second order.

This is exactly what Figure 3 demonstrates. The right hand panel in the figure shows that

this result is not driven by a reversion to the mean phenomenon, since average performance

in fact rises in the second order.

Another way to showcase this is to note that supplier performance is higher whenever the

performance of existing competitors are higher, which is what Table 3 shows.

In fact, we can take this logic even further. Suppliers that do well initially are more likely

to slack off later, since the optimal incentive scheme will involve some sort of “tenure”

system, whereby the buyer incentivizes high effort in the beginning by promising a less

future punishment for good performance today, which translates into a greater likelihood of

getting orders in the future even when future performance is low. Figure 4 illustrates that

13



Figure 3: Suppliers who do badly on first orders try to make up for it on second orders, and
vice versa.

Notes: This plot is for all suppliers that saw at least two orders in our full dataset.

Table 3: Suppliers perform better when competitor pool is better.

Dependent Variable: Performance of supplier

Variables
Performance of competitor pool 0.81∗∗∗

(0.08)

Fixed-effects
Month Yes
Supplier ID Yes

Fit statistics
Observations 682
R2 0.43
Within R2 0.06

Clustered (month, supplier ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

this trend is observed in the data.
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Figure 4: Suppliers who do well initially slack off later, and vice versa.
Notes: This plot is for all suppliers that saw at least ten orders in the course of their relationship with the

buyer. Suppliers in red have an average performance that is more than 0.1 less than their first order

performance, and vice verse for those in green. The rest are grey.
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6 Structural analysis

The buyer and suppliers interact in the equilibrium of a game, with a specific structure

that dictates how the outcomes realize. As is clear from the preliminary empirical analysis,

this equilibrium interaction makes it hard to separate the effect of types from the effect of

incentivization, which necessitates a structural model that can take into account the game

form.

6.1 Taking the theory to data

The theory cannot be taken directly to the data, however. The state space for the value

function, which is the promised continuation value for each supplier and the type (or current

belief) of each supplier, would be prohibitively large for a pool of suppliers that numbers in

the hundreds. To overcome this, I will leverage a key fact and some important simplifications:

1. The buyer uses a tiered structure to classify suppliers. At any point in time, a supplier

is classified as Gold, Silver, Bronze, or Blacklisted. These tiers are functions of history,

but also connote a promise of future interactions. This naturally leads me to use these

tiers to fix levels of CVs that the suppliers can be promised.

2. I will assume that the buyer tracks the type distribution at the tier level rather than

the individual level, with a two step choice process for choosing the supplier for an

order. In the first step, the buyer chooses a tier, given the distribution of types within

each, and in the second, the buyer chooses from the available suppliers. This is mainly

to make choice probabilities consistent across different supplier pool sizes.

With this tiered structure, fixing the promised CV for each tier implies that what is relevant

at any point in time is the number of suppliers in that tier. Multiplying the number by the

respective promise yields the total promise made to that tier, which can then be used to

construct value functions. Thus, the number of suppliers in each tier and the average type

of suppliers in each tier function as the state. The value from picking a supplier of type θ of

a given tier T can then be written as:

VT,θ(NG, NS, NB, HθG , HθS , HθB , θ) = max
∆w

max
Nf

G,Nf
S ,N

f
B

u(p(e(wT ,∆w), θ))+δV (N f
G, N

f
S , N

f
B, H

f
θG
, Hf

θS
, Hf

θS
)
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where

V (NG, NS, NB, θG, θS, θB) = max
T

{VT (NG, NS, NB, HθG , HθS , HθB) + εT}

VT (NG, NS, NB, HθG , HθS , HθB) = max
θ

{VT,θ(NG, NS, NB, HθG , HθS , HθB , θ) + εθ}

I discuss the ε shocks in the next section. These value functions can then be used to

calculate the appropriate choice probabilities. This is implemented via a value function

iteration algorithm, starting from some initial guess. For a fixed vector of promises per

supplier in each tier, we get an upper bound on the number of possible suppliers in each

tier since we know the maximum possible value each supplier can get, so NG, NS, NB lie

between 0 and this upper bound. For simplicity, I start with just two types in the support

of F . Before the iteration, (N f
G, N

f
S , N

f
B, H

f
θG
, Hf

θS
, Hf

θB
) is obtained for the choice of each

tier given (NG, NS, NB, HθG , HθS , HθB) and ∆w using an extreme points approach. I get the

extreme points of the set and then during the VFI process, for each state I sample from the

set to find the maximizer.

6.2 Choice probabilities

There are a lot of factors that go into selecting a supplier for an order, many of which I see,

but there are still quite a few that I cannot. For example, at the time of a given order, a

supplier might have other external orders pending which make her less likely to be available

for the order. This motivates the addition of logit shocks to the current utility from picking

a supplier, in order to account for unobserved reasons for picking suppliers.

Adding logit shocks to this model is not straightforward. To see this, note that the principal

provides incentives to suppliers via variations in future continuation value subject to some

promised value today. In general, starting with some ex ante promised value, it is possible

that the principal could find it optimal to condition the ex post value (post realization

of the preference shocks) on the preference shocks, in a way that in expectation the ex

post values equal the ex ante value. This adds an additional layer of optimization into the

principal’s problem, which can make it intractable to calculate choice probabilities directly.

As an alternative, we restrict the buyer’s ex ante and ex post promised values to coincide,

circumventing this issue5.

5Two additional source of randomness that might be important to incorporate (depending on fit of
previous model) will be random shocks to availability of suppliers, and random relationship-level shocks. The
former can be tempered with capacity information, which we have for a significant subset of the suppliers.
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Recall that the buyer makes tier-specific promises and tracks types at the tier level, so the

buyer’s choice is effectively at the tier level first i.e. which supplier tier to select at any given

composition of each tiers, and then which supplier to select from within the tier. We add

logit preference shocks to both of these stages. As a result, the choice probability of picking

a supplier of tier T directly follows as a product of the probability of choosing tier T , and

then choosing the supplier from tier T .

P (T ) =
VT (NG, NS, NB, HθG , HθS , HθB)∑
T ′ VT ′(NG, NS, NB, HθG , HθS , HθB)

Vs|T (NG, NS, NB, HθG , HθS , HθB)∑
s′ Vs′|T (NG, NS, NB, HθG , HθS , HθB)

Given the choice probabilities for every order, we can then construct a likelihood function:

L(θ|X) =
∑
o∈X

log(Po(To))

where o denotes an order, To denotes the tier of the supplier that was chosen for that order,

and Po is the associated CCP of that tier at that time. Note that tiers of the suppliers

update dynamically over time, as outcomes realize, so the choice probabilities keep track of

whether a supplier’s choice was justified given the history of observed outcomes.

6.3 Moment construction

I use the choice probabilities to construct a likelihood function from the observed actions.

This process, however, is not straightforward and requires addressing several complexities

inherent in the data and modeling assumptions.

At any given time, the states are not fully observed. While we may estimate the number

of suppliers the buyer is considering, their tier assignments are unknown during each choice

occasion. To address this, I track a probability distribution for each supplier over each tier,

derived from the buyer’s optimal choices. For example, if the buyer selects supplier A at

a specific time, given a distribution over tiers for all suppliers, I update the suppliers’ tiers

for the next period using the buyer’s optimal . This update operates at the tier level, so

movements across tiers for suppliers not chosen are probabilistic. Ideally, both the value

function and the movements would be at the supplier level rather than the tier level, but

this approximation ensures computational feasibility.

Given this probabilistic tracking of states, the choice probability at any time is calculated as

the expectation over choice probabilities across all possible states. This approach accounts
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for uncertainty in state assignments and integrates over the probabilistic structure to yield

the overall likelihood of observed actions. To make this computation tractable, I assume a

ceiling on the supplier pool size, which simplifies the construction of states from individual

supplier tier probabilities and the associated moments.

Having the right supplier pool is crucial to accurately estimate the likelihood of a supplier

being chosen. Many suppliers are observed only briefly before disappearing from the buyer’s

records, which I interpret as the supplier being dropped from active consideration. This

interpretation aligns with suppliers’ strong preference for regular loading and their aversion

to idle capacity due to its shadow cost. When a supplier is observed as dropped, I incorporate

the probability of this event as part of the choice probability, ensuring that these dynamics

are reflected in the likelihood function.

6.4 Parameters

The estimation process will broadly recover two sides to the structural aspects of the buyer-

supplier relationship. First, the buyer’s preferences: the share of order surplus β that flows

to the supplier if the high outcome realizes, and the scale of the logit shocks σ that the buyer

faces. Second, the supplier’s preferences. The value to the supplier is treated as known, and

the cost of effort c(e) required to achieve a high outcome will be estimated. These preferences

influence the supplier’s decisions and, ultimately, the outcomes observed.

In the process of estimating these parameters, other aspects of the buyer-supplier relationship

will be estimated alongside them. The distribution of supplier types will be one. We know

that suppliers are assigned to Gold, Silver, Bronze, or Blacklisted tiers based on average

past performance. The parameters of the buyer’s tier system will also be recovered in the

process.

It is important at this stage to clarify that our interest is not in these parameters per se, but

what their estimation will enable us to do. These parameters will be key to tease apart the

effects of incentivization versus supplier types on order outcomes, and hence get a sense of

how the buyer is adding value to this setting. It also sheds light on the optimal allocation

rule for the buyer and how far the current system deviates from it. By quantifying the

buyer’s value to the system under assumptions about what would happen in the absence

of relational constraints, we will also be able to speak to the quantitative impact of these

constraints.
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7 Identification

In standard dynamic models, identification is based on the fact that observing states and

actions allows the construction of (CCPs). By inverting these probabilities, value functions

can be determined. Assuming a distribution for the preference shocks, and because transition

probabilities can be read off the data, fixing the discount factor leads to identification of

utilities using the value functions.

In this model, there are some major departures that prevent directly applying identification

results. First, there are two sets of agents that make choices in an interactive manner -

the buyer and the suppliers - instead of one entity making repeated choices. Furthermore,

the choices of some of them - the effort that suppliers choose - is not directly observed.

Second, the state w is not directly observed. The value w that is promised to a supplier is a

function of both how many orders they will get in the future and how much effort they will

be expected to put into each future order. Third, transition probabilities today are functions

of future variation in the state, since they depend on effort, which depends on ∆w. However,

I show that identification can be approached in an appropriately modified manner.

The data essentially consists of the choices made by the buyer and the outcomes that re-

alize as a result of these choices. Thus the choice probabilities P (S|ht) and the outcome

probabilities P (y|ht, s) are the observables that will be used for formal identification. These

probabilities may need to be constructed based over many independent settings of choices

made by the Principal, but they can also be constructed within a single choice environment

- if, for example, all suppliers are eventually replaced, the same history vector for active sup-

pliers can repeat over time. The model parameters Fθ, p, β, c, uZ will need to be identified

off of the variation in these probabilities.

The first step is to show that the supplier side can be identified under some restrictions. A

key insight that makes this possible is the fact that the supplier problems can be separated

out, given the observed choice and outcome probabilities. The suppliers value w can be

rewritten as if she is chosen every period, precisely because the principal’s promise does not

condition on the realization of preference shocks. Even with this simplification, we need

fairly strong restrictions to be able to say something useful about the supplier side. The

reason behind these restrictions can be understood by examining the moments that will

allow us to identify the supplier’s parameters. Consider the effort FOC for the supplier -

p2(θ, e)∆w = c′(e) - and the outcome equation P (y|ht, s) = p(θ, e). With e and θ both

being unobserved, fully nonparametric estimation of p and c is a tall order. So I place some

minimal restrictions on both, in a manner that is consistent with some ground truths. For
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p, the type θ is supposed to represent some intrinsic capabilities of the supplier, with effort e

enabling her to push beyond her capabilities. This motivates a functional form where p = θ

when effort is 0, and then an additive effect of effort. For c, I restrict the effect of effort to

a power form, capturing both increasingness and convexity, with both properties allowed to

vary in sufficient generality to capture different ways that effort can affect costs.

Assumption 1. The outcome probability function p(θ, e) is strictly monotonic both argu-

ments and p(θ, e) = θ + κq(θ)e for some non-homogenous function q.

Assumption 2. The marginal cost function is log separable (e,X) i.e. c′(e;X) = γd(X)c̃(e)

such that d is non-homogenous and bijective on R+ → R+, and c̃−1 exists, is log separable,

and is non-homogenous. Further, d satisfies an index restriction i.e. log(d(X)) = X1 +

d̃(X−1). The cost shocks X have full support on R+.

Assumption 3. The type distribution F has full support on [0, 1].

Proposition 4. Assume Assumption 1, Assumption 2, Assumption 3. Then κ, q, γ, d are

identified, and hence p and c are identified. Moreover, w(ht) and Fθ are also identified.

Proof. Fix a t and T >> t. Select the set of historiesH0 such that PS(ht′|ht, 1) = PS(ht′ |ht, 0)

for all t < t′ < T i.e. the choice probability tree for a supplier is the same regardless of the

outcome at t. For these histories, e = 0, so θS = P (y = 1|ht, S). Denote these suppliers

as Θ(S). Since F is full support, this is a non empty set, since there is a high enough type

θ < 1 such that (θ, 1) ⊂ Θ(S).

Consider the set of histories H1 where P (s|ht) > 0 for some s ∈ Θ(S) i.e. there is a supplier

in Θ(S) who could be selected. For these histories, take the supplier’s FOC

p2(θ, e)∆w(ht) = c′(e;X)

and substitute it into the outcome equation

P (y = 1) = θ + κq(θ)e

=⇒ P (y = 1)− θ = κq(θ)c′−1(q(θ)∆w(ht);X)

=⇒ log(P (y = 1)− θ) = log(κq(θ)) + log(c̃′−1(
κq(θ)∆w(ht)

γd(X)
))

Thus we get

log(P (y = 1)− θ) = log(κ) + log(c̃′−1(κ))− log(c̃′−1(γ)) + log(q(θ)) + log(c̃′−1(q(θ))) (4)

− log(c̃′−1(X1))− log(c̃′−1(d(X−1))) + log(c̃′−1(∆w(ht))))
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Fixing a supplier in Θ(S) and varying only X1

log(P (y = 1|X ′
1)− θ)− log(P (y = 1|X1)− θ) = − log(

c̃′−1(X ′
1)

c̃′−1(X1)
) (5)

Note that the LHS is known for the set of histories H1. This allows us to estimate c̃, since

it is non-homogenous and invertible. Next, fixing ∆w,

log(P (y = 1|X ′
−i)− θ)− log(P (y = 1|X−i)− θ) = −1

ρ
log(

c̃′−1(d(X ′
−1))

c̃′−1(d(X−1))
)

Since d is non-homogenous, the log ratio has sufficient variation, and hence, d is identified.

Fixing the shock X and fixing ∆w (which can be within order, or across orders where the

choice probability tree is the same), for θ1, θ2 ∈ Θ(S)

log(P (y = 1|θ1)− θ1)− log(P (y = 1|θ2)− θ2) = −(1 +
1

ρ
) log(

q(θ1)

q(θ2)
)

Since q is non-homogenous, the log ratio has sufficient variation, so at this step we can q

within Θ(S).

Finally, for the scale parameters κ and γ, going back to the FOC

κq(θ)∆w = γd(X)eρ (6)

=⇒ ∆w =
d(X)eρ

κ
γ
q(θ)∆w

(7)

We can recover ∆w as a function of κ
γ
using the following recursive method. First, fix any

ht ∈ H1. Then, consider a θ ∈ Θ(S). Let T >> t. For all t′ > T , denote ŵt′(ht′) as the

expected value without accounting for the cost of effort i.e. defined recursively as

ŵt′(s, ht′ , o) =bo1{P (s|ht′ ,o)>0} + δP (y = 1|s, ht′ , o)ŵt′+1(s, (ht′ , 1), o)

+ δ(1− P (y = 1|s, ht′ , o))ŵt′+1(s, (ht′ , 0), o)

Thus, for any hT , we can define ∆wT (hT ) = ∆ŵT (hT ) + ϵhT
for some error ϵhT

. Approx-

imating ∆wT (hT ) = ŵT (hT ), we can derive et′−1(
κ
γ
) using 6. For t′′ < T this allows us to
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recursively get

ŵt′′(s, ht′′ , o) =bo1{P (s|ht′′ ,o)>0} − c(et′′(
κ

γ
)) + δP (y = 1|s, ht′′ , o)ŵt′′+1(s, (ht′′ , 1), o)

+ δ(1− P (y = 1|s, ht′′ , o))ŵt′′+1(s, (ht′′ , 0), o)

as a function of κ
γ
, and hence get et′′−1, with error that only depends on the no cost assumption

made T onwards. Recursively applying this until t, we recover ∆w(κ
γ
) within the bounds

of an error that vanishes as T → ∞. Plugging this back into 4, we can identify κ and

γ separately using the two resultant equations - utilizing the variation in the LHS as ∆w

varies, and using the constant in that equation.

To identify q outside of Θ(S), consider a supplier’s FOC at the null history i.e. when they

are first picked:

κq(θ)∆w0 = γd(X)c(e;X)

Note that at the null history, every supplier necessarily has the same ∆w0. Thus, we know

∆w0 from the previous step, since we know it for suppliers in Θ(S). As a result, we can

invert the equation to write

e∗0(θ) = c̃−1

[
κq(θ)∆w0

γd(X)

]
as the effort they will choose at the null history given their type. Plugging this back into

the outcome equation, we get

P (y = 1) = θ + Aq(θ)c̃−1(q(θ))

where A is a known number that depends on X. Fix a supplier. Since the X shocks are

full support, there will be observations such that A is close to 0, which allows recovery of θ.

Then, fixing any A > 0, we can recover q(θ). Doing this for different suppliers recovers q.

The distribution F (θ) is also recovered in the process since θ is recovered for every supplier.

Using the recovered q, we can now identify w at all histories for all types.

For the buyer’s preferences, we will assume that the buyer also sees an estimate of P (y|s, ht)

before t + 1, as happens in our data. Although this assumption is not necessary to get the

net utility from choices, it enables us to separately identify the benefit from a high outcome

and the cost from the low outcome, which is important for the counterfactuals that we want

to conduct.

Proposition 5. Suppose p, c, w are identified. Then us(w) is identified if δ is fixed.
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Proof. Since w is identified, the transition probabilities F (w′|w) can be fixed by inspection.

Choice probabilities P (w) are also known since w and P (ht) are known. Given logit shocks,

we can use the standard CCP inversion method to obtain the relative conditional choice

functions Vs(w)−VS(w) for any supplier s, relative to some choice S (which can be drawing

from the outside pool). Fixing δ, this allows us(w)− uS(w) to be identified.

Next, taking any two suppliers s1, s2 in Θ(S) such that θs1 ̸= θs2 , we know us1(w) − uS(w)

and us2(w)− uS(w). We also know P (y = 1|s1, w) and P (y = 1|s2, w). Using the fact that

us(w) = P (y = 1|s, w)bz + (1− P (y = 1|s, w))cz

we can write

us1(w)− us2(w) = [P (y = 1|s1, w)− P (y = 1|s2, w)](bz − cz)

Thus (bz − cz) is identified.

Finally, note that we observe variation in order value to the supplier. Taking two order

values b1 and b2, we know that β
1−β

b1 + ϕ and β
1−β

b2 + ϕ are identified. Thus, β and ϕ are

identified.

Turning to the specific data that this paper works with, I delve deeper into the sources

of identification. First, the buyer’s cost of a low outcome is identified by the extent to

which the buyer punishes a higher-type supplier for poor performance. To illustrate, if the

buyer faces a high cost from a low outcome and their best supplier performs poorly on an

order, the buyer may hesitate to assign the next order to a lower-type supplier, even though

incentivization requires it. Next, the split of surplus between the buyer and suppliers is

identified by the buyer’s preference for assigning higher-value orders to higher-type suppliers.

For example, if the buyer’s share of the surplus is large, the relative value of higher-value

orders increases more significantly, doubling the marginal benefit of giving high-value orders

to higher-type suppliers. The cost of effort is identified by how order performance responds

to shocks in the cost of effort, such as changes in steel or labor prices. If larger shocks

result in a sharper decline in performance, we infer that the function governing effort cost

is larger. The type distribution is identified by the outcome distribution under the buyer’s

incentivization scheme. Since the probability of success is a function of both type and effort,

and effort is known under the scheme, the type distribution can be inferred. Finally, the

cutoffs are identified by how the buyer selects suppliers based on observed performance.
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8 Estimation

Given that the requirement that choice probabilities and outcome probabilities be known

for every possible history is onerous, I work with some assumptions to make the estimation

tenable. As we saw in the previous section, the buyer chooses a tiered rule, which allows

me to restrict the continuation value w that suppliers can be assigned to. I also fix κ = 1,

q(θ) = 1, c(e) = eρ,and d(X) = X1 = 1
psteel

for the first pass, which reduces the estimation

burden.

With these restrictions, I implement the estimation in the following manner:

1. Cost parameters initial choice: (Imperfect version of Step 3) I set ρ = 1 and run a

regression of the following equation at the lot level

P (y = 1) = αp

[
E[∆w]

p−1
steel

]0.5
where I use an empirical estimate of the average ∆w in the sample. This recovers

γ = 2
αp
.

2. Given the cost parameters, I solve for the value function and then run GMM to select

the bargaining parameter β and logit shock scale σ that rationalizes choice probabilities

at each history.

3. Cost parameters update: Given the estimated θ for each supplier and ∆w at each

history from the previous step, I then run a lot-level regression derived from Equation 5

log(P (y = 1)− θ) = αρ log(p
−1
steel) + αo

which recovers ρ = 1
αρ
. This regression incorporates order level fixed effects to ensure

that the residuals are orthogonal to the cost shocks, since ∆w, which is the only possible

confounder as can be seen in Equation 4, is at the order level. Then I estimate γ by

matching the FOCs at the order level:

P (y = 1)− θ = αγ

[
∆w

p−1
steel

] 1
ρ

which recovers γ = 1
αρ
ρ
. I perform this regression with supplier level fixed effects in

order to capture unobserved relationship specific variations in the FOCs.
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Steps 2 and 3 can be re-run until a desired level of convergence. The cost parameter regres-

sions are displayed in Table 4 and Table 5.

Table 4: Regression for cost exponent

Dependent Variable: log(P̂ (Y ) - θ̂)
Model: (1)

Variables
log(p−1

steel) 0.42∗

(0.23)

Fixed-effects
Order number Yes

Fit statistics
Observations 2,680
R2 0.382
Within R2 0.002

Clustered (at the order level) standard-errors in parentheses

P̂ (Y ) calculated at the lot level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5: Regression for cost scale

Dependent Variable: P̂ (Y ) - θ̂
Model: (1)

Variables

(∆̂w /p−1
steel)

(1/ρ̂) 8.52e-5∗

(4.2e-5)

Fit statistics
Observations 336
R2 0.016
Within R2 0.004

Clustered (at the supplier level) standard-errors in parentheses.

P̂ (Y ) calculated at the order level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The value function iteration in Step 2 is run as detailed in the previous section. This gives

me a vector of conditional choice probabilities pi,θ(nG, nS, θG, θS) in two stages - first, the

probability of choosing different type θ, fixing the group i that is chosen, and then with the

26



implied group level value function, the probability of choosing the groups i ∈ {G,S,O} where
O is the outside option of drawing from the external pool. This gives me 3×|Θ|−1 moments

that I can potentially construct, based on which group and which type was observed selected

at each observation. There is, however, an unusual complication. Since there is a distribution

over possible states today, depending on the probability of high outcomes yesterday, each

supplier has a distribution over possible groups she could be in (or having been dropped

completely). Thus, the moment conditions must be averaged over this distribution of states

for each observation. Moreover, I also add a moment condition for the probability with

which a supplier that is selected today has already been dropped. This probability should

be zero for the correct parameter.

I implement a two step GMM with these moments. Since the routine expects an unbounded

parameters space, I use the transformation:

βnorm = G(βunbounded) =
β2
unbounded

1 + β2
unbounded

Then, to calculate standard errors, I run a Bayesian bootstrap procedure.

The full set of results are in Table 6.

Table 6: Parameter Estimates

Category Parameter Method Estimate

Buyer side
Bargaining weight β GMM 0.77

(0.4)
Shock scale σ GMM 33.78

(25.4)

Seller side
Cost function exponent ρ OLS 2.38

(1.3)
Cost function scale γ (1000 INR) OLS 2.6

(1.23)
Common Discount Rate δ Exogenous 0.95

9 Counterfactuals

A major motivation for performing the estimation is to enable counterfactual analyses that

address key dimensions of this setting. One crucial aspect is the value of intermediation. The

buyer, by fostering competition among suppliers, improves outcomes by increasing equilib-

rium effort. Bilateral relational contracts, in contrast, would feature weaker incentives and

27



consequently lower effort. Estimation results will quantify the value that the buyer adds

through this mechanism.

I present some results in Figure 5 and Figure 6 that speak to this aspect. This is incomplete

however, since a full counterfactual simulation remains to be run.

Figure 5: The buyer selects a high performing long term pool.

Another important question concerns the sufficiency of simple rules. With estimates of

the underlying parameters, we can evaluate how much the buyer could improve outcomes

by transitioning from their current simple rule to an optimal rule. This comparison will

highlight the trade-offs between simplicity and optimality in rule design.

Finally, the analysis will address the surplus loss arising from contracting frictions. In this

setting, incentives depend on surplus-destroying punishments along the equilibrium path due

to these frictions. By running the optimal mechanism without such frictions, we can measure

the extent of surplus loss and better understand the cost of these constraints.
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