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Abstract

We study a model where a single good can be produced using a
diminishing-returns technology (Malthus) and a constant-returns tech-
nology (Solow). We map the former to agriculture and show that the
share of agricultural employment declines at a constant rate and that
recent observations on the share are sufficient to estimate the onset of
economic transition. Our model implies that output growth is higher af-
ter the onset of transition and that the share of agricultural employment
is a sufficient statistic to describe output growth during the transition.
Our quantitative results are consistent with these implications.
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1 INTRODUCTION

The standard of living was roughly constant prior to the 19th century despite
technological change. Malthus (1798) and Ricardo (1817) accounted for this
stagnation with a theory of population and diminishing returns in production.
The past two centuries, however, have seen unprecedented growth in living
standards, which has spawned a vast literature on the transition from stagna-
tion to growth. Our paper belongs to a strand of the literature where a single
final good can be produced with two technologies and the economy transitions
from one technology to possibly both. Two prominent examples of this strand
are Hansen and Prescott (2002), where the transition occurs when physical
capital and total factor productivity (TFP) reach a threshold, and Tamura
(2002), where endogenous human capital accumulation lowers trade costs and

delivers the transition without relying on any exogenous forces.

We develop a simplified version of their models. Our economy has one good
that can be produced using two technologies—Malthus and Solow. The Malthus
technology is subject to diminishing returns, as land is a fixed factor, and the
Solow technology has constant returns. Labor is the only factor of production.
TFP in the two technologies and population grow exogenously at possibly

different rates.

We map the Malthus technology to agriculture and deliver two results. First,
we determine the onset of transition to modern growth using only the share of
agricultural employment; we do not need information on real gross domestic
product per capita (GDP, hereafter). Specifically, the share declines at a
constant rate in the model during the transition, so we can use a few recent
observations to estimate the rate of decline and project backward to determine
the onset of transition. This result provides a testable implication for countries
with historical data on GDP: Does GDP growth change at the agricultural
employment-based onset of transition? This result is also useful for estimating
the onset of transition for today’s developing economies, which typically do

not have a long time series of GDP.



Second, during the transition, the share of agricultural employment is a suf-
ficient statistic for GDP dynamics in the model: GDP growth is a first-order
autoregressive process with a coefficient that is pinned down by the rate of
decline in the share of agricultural employment. We do not need to know the
structural parameters, TFPs, or population. This result offers another testable
implication: Is GDP growth since the onset consistent with the constant rate
of decline in the share of agricultural employment estimated from a few recent

observations?

Our economy uses only the Malthus technology initially, but it transitions
to using both the Malthus and Solow technologies when the two TFPs and
population reach a threshold. The onset of economic transition is when em-
ployment in the Malthus technology starts declining—Ilabor is employed only
in the Malthus technology initially, but it is employed in both technologies
during the transition and increasingly more in the Solow technology. Quanti-
tatively, we estimate the constant rate of decline in the share of agricultural
employment using post-World War II data from Herrendorf, Rogerson, and
Valentinyi (2014) and infer the onset of transition. For the United States the

economic transition started in 1875.

Annual GDP data for the U.S. is available starting in 1800 (Delventhal, Fernandez-
Villaverde, and Guner, 2021). When we test the implication from our first
result, we find that U.S. GDP growth is higher after 1875 than it is before.

To test our second result, we estimate the autoregressive coefficient for U.S.
GDP growth from 1875 to 2016. We find that the coefficient is almost identical
to the one implied by the constant rate of decline in the post-World War II
share of agricultural employment. It is surprising that recent agricultural
employment would account for the GDP dynamics over 140 years, especially

given the structural changes since 1875.

We repeat the calculations for the United Kingdom. Our estimate of the
onset of transition is 1812, which is consistent with lower U.K. GDP growth

before 1812 and higher growth after. The autoregressive coefficient for GDP



growth is almost the same as the one implied by post-World War II agricultural

employment. We report similar results for several Western European countries.

Next, we examine the transition from Malthus to Solow for today’s developing
economies. We consider a sample of countries whose GDP is less than 25%
of U.S. GDP in 2016. Using the share of agricultural employment, available
only after 1991 for these countries, we estimate the onset of transition. For
instance, the onset of transition for India is 1965. The autoregressive coefficient
for GDP growth for most of these countries is consistent with the country’s

rate of decline in the share of agricultural employment.

This paper differs from the transition literature in a few ways. First, previous
papers are concerned with the “how”—the channels that led from stagnation
to growth. Their focus is not on the “when.” In their quantitative implemen-
tations, the onset of economic transition is chosen using narratives or historical
evidence on GDP, and the model parameters are calibrated to deliver the cho-
sen onset of transition. For instance, Hansen and Prescott (2002) use GDP
data for England, and Tamura (2002) uses it for Western Europe + Canada +
the U.S. In contrast, we estimate the onset of transition without using GDP
data. We then use GDP data for cross-validation. Second, our method does
not require knowing the structural parameters or population. Cross-country
differences in structural parameters and the processes for TFPs and popula-
tion yield cross-country differences in the share of agricultural employment,
which is a sufficient statistic for the onset of transition and GDP growth.
Finally, because we do not rely on historical evidence on GDP or share of
agricultural employment, our model is useful for studying the transition of
developing economies. Thus, one could examine how much of the observed

lack of cross-country income convergence is due to late transitions.

Two remarks are in order here. First, in models such as Hansen and Prescott
(2002) and Tamura (2002) the onset of economic transition is, by definition,
when the Malthusian share of employment starts declining, no matter what

the details of the model are. Without using any specific model, one could



make an ad-hoc assumption that the rate of decline is constant and estimate
the onset of transition. Our approach has two advantages: (i) The ad-hoc
assumption, without more structure, would have no further implications for
GDP dynamics, and (ii) we provide a framework where the constant rate of

decline is a result, not an assumption.

Second, we have left out several forces from our model that have been in-
cluded in the transition literature. For instance, in the human capital models
of Becker, Murphy, and Tamura (1990) and Galor and Weil (2000), the econ-
omy transitions from stagnation and high fertility to growth and lower fertility.
In Goodfriend and McDermott (1995), exogenous population growth allows for
increasing returns to specialization, and the economy transitions from house-
hold production and stagnation to market production and growth. In Jones
(2001), the evolution of population and ideas delivers technological progress
that helps the economy transition. Forces such as human capital accumu-
lation, technological change, demographic transition, etc., undoubtedly offer
rich implications for economies during the transition to modern growth. How-
ever, our simple framework delivers the onset of transition and GDP dynamics
based on just agricultural employment. Our analysis begs the question: Do

the richer frameworks yield similar quantitative implications?

2 MODEL

Time is continuous and represented by ¢ > 0. There are two technologies,
denoted M (for Malthus) and S (for Solow), producing a single consumption
good. Technology M uses land (fixed and normalized to 1) and labor, and
exhibits diminishing returns to labor. Technology S uses only labor and ex-
hibits constant returns to scale. Outputs at date ¢ from the two technologies

are denoted Y, and Y,”:

yM = (ZMEM)T ae(0,1),
VS = Z7H?,



where ZM and Z° are exogenous labor-augmenting productivities, and HM
and H are employment in M and S, respectively. Total gross domestic prod-
uct is

Y=YV 4 YS

The working population is exogenous and denoted by F,.

In what follows, we adopt the following two notations. First, we use lowercase
letters to denote a variable per unit of population: z; = X;/P,. Second, we

use a dot notation to denote the growth rate of a variable:
X, = dIn(X,)/dt.

We assume that Z°, ZM and P, grow at constant but potentially different

rates Z5, ZM  and P, respectively.
77 =73 exp (tZS> , ZM = ZM exp (tZM> , and P, = Fyexp <tP> ,

where Z7, Z} and Py are initial conditions.

The working population is allocated between the two technologies,
HM + H? = P,

Labor is perfectly mobile across the two technologies. Thus, the optimal, i.e.,

output-maximizing, allocation of labor requires:
-« —o
zZy <(L—a)(Z) " (H) ", (1)

with equality whenever HM < P,. The left-hand side is the marginal product
of labor in technology S, and the right-hand side is the marginal product of
labor in technology M. Figure 1 represents the optimal allocation of labor. If
Z; is low enough (e.g., Z;|,,), the marginal product of labor in technology M
exceeds that in technology S even if the entire working population is allocated

to technology M. In this case Equation (1) holds with a strict inequality.
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Figure 1: The optimal allocation of labor

When Z7 is sufficiently high (e.g., ZEHigh), the two marginal products are
equalized and HY < P,.

If initial conditions are such that
l—a —a
Zy <(L—a)(23") " (Po)™", (2)

then all labor is allocated to technology M at date 0. If inequality (2), eval-
uated at ¢, continues to hold, then all labor continues to be allocated to tech-
nology M at t. Some labor will be allocated to technology S at some date t*
if Equation (1) is satisfied with equality at ¢*. For this to occur, it must be
the case that

75> (1 —a)ZM — aP. (3)

We assume conditions (2) and (3) are satisfied for the rest of the paper.



The date at which technology S starts operating satisfies
* r7 * r7 M 1-a «p\ "¢
Z8e"?" = (1—a) <Zéwet ZM) (Poet P)
That is, the onset of transition is given by

n (1= a) (25) " (28" (R) ]
= . . . . (4)
78— (1—a)ZM +aP

2.1 Analysis

It is convenient to analyze the economy in two parts: before and after ¢*.

Before the transition When ¢ < t*, the analysis is straightforward. The
entire working population is employed in technology M and output per capita

is that of technology M. Using our notations defined earlier,

Share of agricultural employment : hM =1, (5)
GDP : y=yM = (2")""(P)™, (6)
CDP growth : g=¢M =1 —a)ZM —aP. (7)

During the transition When both technologies operate, Equation (1) holds
with equality and employment in technology M is

1/ gM\ (-e)/a
HM = (1 —a)V/* = (L) .
' zZi\zy

It follows that the employment share of technology M and its growth rate are

. " 1 Zt]\/[ (1—a)/«
W= (11— o) S 8
- et () )
. 1—a .- 1. .
WM = QoM _ 275 P, 9)
[0 (e
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Figure 2: Growth rate of employment share in the Malthus technology

Note: This is an illustrative path of the growth rate of employment share in the Malthus
technology under the assumption that the exogenous variables grow at constant, but poten-
tially different, rates.

Two observations are worth making here. First, the share of labor in the
Malthus technology is the only endogenous variable in our model. The evolu-
tion of the share is the solution to a sequence of static problems. The dynamics
in the model are entirely due to the evolution of Z°%, Z™, and P. Second, con-
dition (3) implies 2™ < 0 after t*. Equation (9) delivers the result that the
employment share of technology M decreases at a constant rate after t* (see

Figure 2).



The economy’s GDP is

«

ye= 27 + Ethiw- (10)
The growth rate of y; is
! 1 —a+ahM 1 —a+ahM 1—a+ah}

See Appendix A for the derivation of Equations (10) and (11).

3 (QUANTITATIVE ANALYSIS

The onset of modern growth in our model is when technology S starts op-
erating at date t*. While Equation (4) pins down t*, the expression is not
quantitatively useful, since it depends on unobserved variables. In this section,
we show that the employment share in the Malthus technology is sufficient to
determine t*. Quantitatively, we map the employment share in the Malthus
technology in the model to the share of employment in agriculture in the data.
Similarly, the level and growth rate of GDP in Equations (10) and (11) depend
on unobserved TFPs and their growth rates. We also show that the rate of
decline of the share of employment in agriculture is a sufficient statistic for

the dynamics of GDP growth during the transition.

3.1 Determining the onset of modern growth

Under the assumption in Section 2 that ZM, Z° and P grow at constant
(but potentially different) rates, Equation (9) implies that hM is constant. So,
hM = exp((t — t*)hM) at any date t > t*, or

In (1)

t"=t— —
hM

. fort >t (12)

10



Equation (12) has several implications. First, the reasons that different coun-
tries have different shares or growth rates of agricultural employment do not
matter for estimating the onset of modern growth. Countries could differ in
their structural parameters, and the levels and growth rates of TFPs and pop-
ulation. In our model, these differences manifest themselves in different h
and hi‘/f (see Equations 8 and 9). Second, both level and growth rate of the
share of agricultural employment are needed to estimate the onset of transi-
tion. Countries with the same share of agricultural employment at a point in
time could have started their transitions at different times. Third, the onset of
economic transition can be determined without using GDP data, which means
we can test whether the onset of transition implied by the share of agricul-
tural employment coincides with a change in GDP growth. Finally, since the
model implies that the growth rate of the share of agricultural employment is
constant, a few recent (presumably more reliable) observations are sufficient
to determine the onset of transition. We do not need historical time series on

the share of agricultural employment.

To operationalize Equation (12), consider the specification below for country
i
In(hi7) = Boi + Pt (13)

which implies 3, = M. The onset of transition is

* BOI’

= =0 14

; B (14)
~In (hM) — Bt _, In (h}1)

B pM 7

which is the same as Equation (12).
3.2 Dynamics of GDP during the transition

From Equation (10) it is easy to see that the long-run path of GDP is that of

Z?. The relative deviation of GDP from its long-run path, which we denote

11



by 1, is then

_7s
gthytZst zli‘ah,{”, for ¢ >t (15)
t

First, Equation (15) implies that ¢, grows at rate A™. As the share of agricul-

tural employment declines, ¢, approaches zero and the paths of GDP and Z°

converge. Second, using (15) at two instants ¢ and ¢t + w, we get
(1 + o) — (L4 9) +In(Z2) — In(Z7) = nyey, — Iny,.
We then approximate In(1 + §4.,) — In(1 + 9;) =~ Giye — 9¢.0 This yields
Jivw — 0+ In(Z2) —In(Z9) ~ Inye, — Iny,,
which implies
exp(wh™) g, — gy + wZ° ~ Iny,, — Iny,, sincey, = hM
Similarly, at ¢ + w,

eXP(WhM)Z)tw — Yigw + wZ® ~ In Yerow — M Ypo

= eXP(WhM) (eXP(WhM)?Qt - ?Jt) +wZ% =~ Inyo, — My,
Substituting, rearranging, and evaluating at w = 1, we get
Yo — Iy eXP(hM> (Inyr —Iny:) + z8 <1 - eXP(hM)> : (16)

The rate of decline in the share of agricultural employment is thus a sufficient

statistic to describe the dynamics of GDP growth after ¢*.

Note that (16) is a result, not just an accounting formula. While, as noted
earlier, one could estimate ¢* by assuming h™ is constant, the ad-hoc assump-
tion would not imply (16). In deriving (16) we have used the model’s optimal

allocation of labor in the two technologies, which depends on the model’s pa-

'We are approximating In(1 + @) — In(1 + 9¢) with g1, — 9, not In(1 + §;) with g;.

12



rameters.

To estimate the autoregressive coefficient of the growth rate of GDP after t*,

we specify the data-generating process for GDP for country 7 as
Iy = Y0, + Y1t + V20exp(ysat), fort >t (17)

Suppressing the country notation, this process has the property that

o dIny,

B=— =Ny exp(7st).

It is easy to see that

U1 — 71 = (U — 71) exp(73),

which implies

Vi1 = exp(y3)y; + constant.
Hence, the autoregressive coefficient on GDP growth is exp(v3).

Equations (16) and (17) thus represent a testable implication: The autore-
gressive coefficient for GDP growth after ¢* is the exponential of the growth
rate of the share of agricultural employment. Estimate of the latter is exp(5;)
from (13).

In sum, the share of agricultural employment is sufficient to pin down both

the onset of transition and modern GDP dynamics.?

In the next two subsections, we use recent data on the share of agricultural

employment and estimate the onset of transition for the United States and the

2In the quantitative exercises below, our model’s h* is measured by the share of agricul-
tural employment in the data. So, one interpretation is that agricultural goods are produced
using the Malthus technology and non-agricultural goods are produced using the Solow tech-
nology. With such an interpretation, a relative price is involved in the GDP calculation.
However, TFP in our model does not map to the traditional measure; it could include
the relative price of non-agricultural good and inputs other than labor. For instance, the
evolution of Z° could capture the dynamics of the other inputs and relative price.

13
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Figure 3: Onset of modern growth in the United States

Source: Herrendorf et al. (2014) and authors’ calculations.

United Kingdom. Both countries have long time series of annual observations
on GDP. We first validate our estimate using GDP data: GDP growth before
the onset of transition is less than that after the onset of transition. Second,
we estimate the autoregressive coefficient of the growth rate of GDP during the
transition and show that the coefficient matches the rate of decline in the recent
share of agricultural employment. Finally, we estimate the onset of transition
for several countries in Western Europe and show that the evolution of GDP

for each country is consistent with its share of agricultural employment.

3.3 The U.S.
We estimate fy and f; in (13) with post-World War II annual data on the share

of agricultural employment for the U.S. We find t* to be 1875 from Equation
(14). This is illustrated in Figure 3.

14
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Note: For GDP we do not use interpolated observations. Instead, we use only consecutive
annual observations, which start in 1800. In Panel A, the pre-1875 trend is based on the
best linear fit of the GDP time series from 1800 to 1875. The post-1875 trend is based on
the estimated coefficients for the specification in (17).

Source: Delventhal et al. (2021) and authors’ calculations.

Next, we estimate the coefficients in (17) using post-t* GDP data for the
U.S. We find exp(y3) = 0.977. The fit is illustrated in Panel A of Figure
4. We check whether our estimated coefficient is consistent with agricultural

employment dynamics—i.e., whether exp(y3) approximately equals exp(f;).

We find exp(8;) = exp(h™) = 0.969.

One way to validate our estimate of ¢t* is to check whether GDP growth is
higher after ¢*. (Recall that we did not use GDP data to estimate the onset
of transition.) It is clear in Panel B of Figure 4 that the GDP growth rate is
higher after 1875.

Thus, our estimate of 1875 as the year when the U.S. transitioned from Malthus
to Solow, based only on agricultural employment, is consistent with (a) the
change in GDP growth at 1875 and (b) autoregressive coefficient for GDP
growth after 1875.

15
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Source: Herrendorf et al. (2014), Delventhal et al. (2021), and authors’ calculations.

3.4 The U.K. and Western European Countries

As in the case of the U.S., we estimate the coefficients in (13) with post-World
War II annual data on the share of agricultural employment for the U.K. From
Equation (14), we find ¢* to be 1812 for the U.K. This is illustrated in Panel
A of Figure 5.

Panel B of the figure illustrates GDP dynamics. We estimate the coefficients
in (17) using GDP data post-t*. The autoregressive coefficient of GDP growth
exp(y3) = 0.997. The coefficient is almost equal to the (exponential of the)
growth rate of the share of agricultural employment: exp(hM ) = 0.979.

Table 1 reports our results for several countries in Western Europe. We do
not have data on the share of agricultural employment going back to 1949 for
all of these countries as we did for the U.S. and the U.K. We use the share
data from the World Bank, available from 1991 to 2022, to estimate the onset

of transition.

16
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Table 1: Onset of transition and GDP dynamics: Western Europe

t* exp(hM) exp(73)

Austria 1881 0.9768 0.9830
Belgium 1900 0.9619 0.9570
Denmark 1890 0.9704 0.9583

Finland 1905 0.9712  0.8499
France 1889 0.9718  0.9625
Germany 1908 0.9610  0.8805
Greece 1912 0.9791  0.9374
Italy 1880 0.9760  0.9690
Netherlands 1861 0.9761  0.9933
Norway 1918 0.9616  0.8665
Portugal 1925 0.9719  0.8449
Spain 1920 0.9669  0.9064
Sweden 1851 0.9762  0.9575

Switzerland 1865 0.9771  0.9052

Note: For GDP, we do not use interpolated observations. Instead, we use only consecutive
annual observations after t*. For the share of agricultural employment we use data from
1991 to 2022. The onset of transition is at ¢*, the rate of decline in the share of agricultural
employment is hM , and the autoregressive coefficient on GDP growth is exp(~s3).

Source: World Bank, Delventhal et al. (2021), and authors’ calculations.

The fit is remarkable: More than a century’s worth of GDP growth in West-
ern Europe is consistent with the rate of decline in the share of agricultural
employment over the past 30 years. Ex-ante one would not expect the recent
observations on agricultural employment to account for GDP dynamics over
the 20th century, during which the composition of GDP in Western Europe

has changed dramatically.

Our estimate of the onset of transition might be late by a few decades for
some countries. An example is France, a leading industrial nation in the 19th
century, for which the past 30 years of the share of agricultural employment
imply the onset of transition was 1889. The share in France, however, is an

anomaly. We have sporadic observations starting in 1856 (Herrendorf et al.,

17



2014). Around 1860, the U.S. and France had almost the same share: 52% and
51%, respectively. In 1954, the U.S. share had declined to 9%, while France’s
share was almost three times higher at 26%. One reason for the anomaly
in France could be the Méline tariffs (see Golob, 1944). We do not have a

mechanism in our model to study the effect of such distortions.

3.5 Developing economies

An advantage of our approach, based on recent agricultural employment, is
that we can estimate the onset of transition from Malthus to Solow for today’s
developing economies. These economies typically do not have time series of
GDP data long enough to determine the onset of transition. Table 2 reports
the onset of transition and the autoregressive coefficient of GDP growth post
transition. As in the previous subsection, the share of agricultural employment
is from the World Bank, 1991 to 2022. Using (14) and the coefficients in (13),
we estimate the onset of transition for each country. The estimates of the
coefficients in (17) yield exp(y3). The sample is the set of countries (i) for
which we have annual GDP observations after their onset of transition and
(ii) whose GDP was below 25% of U.S. GDP in 2016.

Again, our approach fits the data well: exp(v;) ~ exp(hM ) for most countries.
Note that the countries in Table 2 are in different stages of development. In
2000, China is 8 times as rich as Mozambique. The countries are also in differ-
ent stages of structural transformation. The share of agricultural employment
in Burkina Faso in 2000 is 85%, but in Sri Lanka it is 38%. Despite these
differences, GDP dynamics after the transition is pinned down by agricultural

employment dynamics.
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Table 2: Onset of transition and GDP dynamics: Developing economies

t* exp(hM)  exp(y3) t* exp(hM)  exp(y3)
Afghanistan 1969 0.9845  0.9913 Liberia 1954 0.9862  0.9949
Bangladesh 1971 0.9807  0.9839 Malawi 1952 0.9932  0.9301
Benin 1970 0.9774  0.9710 Mongolia 1963 0.9776  0.9929
Bolivia 1941 0.9840  0.9914 Mozambique 1971 0.9929  0.9288
Burkina Faso 1975 0.9933  0.9846 Myanmar 1963 0.9870  0.9887
Burundi 1969 0.9969 0.8756 Namibia 1959 0.9751  0.9926
Cambodia 1987 0.9718 0.7524 Nepal 1960 0.9921  0.9767
Cameroon 1976 0.9815  0.9908 Peru 1943 0.9823  0.8789
Chad 1967 0.9931  0.9851 Philippines 1955 0.9787  0.8289
China 1977 0.9683  0.9834 Rwanda 1992 0.9802  0.3045
Comoros 1971 0.9791  0.8064 Senegal 1974 0.9709  0.9802
Congo 1967 0.9897  0.9920 Sierra Leone 1976 0.9841  0.9889
Ethiopia 1959 0.9933  0.9933 Sri Lanka 1938 0.9837  0.9890
Gambia 1956 0.9888  0.8081 St. Lucia 1953 0.9649  0.9917
Ghana 1964 0.9830  0.9872 Syria 1951 0.9722  0.9908
India 1965 0.9846  0.9857 Tanzania 1978 0.9897  0.9801
Indonesia 1950 0.9834  0.8880 Togo 1976 0.9746  0.9849
Laos 1980 0.9887  0.9819 Yemen 1968 0.9734  0.8709
Lesotho 1963 0.9779  0.9909 Zambia 1958 0.9916  0.9926

Note: For GDP, we do not use interpolated observations. Instead, we use only consecutive
annual observations after t*. For the share of agricultural employment we use data from
1991 to 2022. The sample is the set of developing economies (i) for which we have annual
GDP observations after their onset of transition and (ii) whose GDP was below 25% of U.S.
GDP in 2016. The onset of transition is at t*, the rate of decline in the share of agricultural
employment is hM , and the autoregressive coefficient on GDP growth is exp(~s3).

Source: World Bank, Delventhal et al. (2021), and authors’ calculations.
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4 (CONCLUSION

In our model, a single good can be produced using two technologies: Malthus
(diminishing returns) and Solow (constant returns). TFPs and population
are exogenous. The economy’s GDP exhibits three stages: (i) stagnation,
(ii) transition with higher growth, and (iii) constant growth in the long run.
We map the Malthus technology to agriculture and show that agricultural
employment is sufficient to determine both the onset of economic transition
and the dynamics of GDP during the transition. Specifically, we show that
GDP growth during the transition follows a first-order autoregressive process
and that the autoregressive coefficient is pinned down by the rate of decline

in the share of agricultural employment.

Quantitatively, we use recent data on agricultural employment to estimate the
onset of transition for the U.S., U.K., and several Western European countries.
Our estimate does not rely on GDP data but is consistent with lower growth
before the onset of transition and higher growth after. The autoregressive
coefficient of GDP growth during the transition is practically the same as that
implied by the rate of decline in the share of agricultural employment. There is
no a priori reason that agricultural employment over a recent few years would
pin down GDP dynamics over two centuries that were characterized by large

structural changes.

Our method is especially useful in the context of developing economies, which
do not have historical data. Again, we find that the share of agricultural
employment is sufficient to determine the onset of transition and GDP growth

during the transition.

Our model is a model of economic transition, not demographic transition, as
the processes for TFPs and population are exogenous. Endogenizing one or
more of these processes could potentially deliver more testable implications.
However, the fact remains that our simple quantitative framework, using only

agricultural employment, is remarkably consistent with the onset of transition
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and dynamics of GDP. Thus, richer frameworks have to bear the burden of

delivering our quantitative results.

A lesson from our model is for the well-known lack of cross-country convergence
in GDP. One reason for the lack of convergence could be that some countries
transitioned from Malthus to Solow later and some transitioned earlier. If we
had reliable historical GDP data for all countries then we could check whether
today’s poor countries have more recent transition dates compared with rich
countries. Our approach, however, does not require historical GDP data; a
few recent observations on the share of agricultural employment will suffice.
Using a level and the rate of decline of the share, we can determine the onset
of transition and, hence, examine how much of the lack of income convergence

is due to late versus early transitions.
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A DERIVATION OF EQUATIONS (10) AND (11)

Using the solution for HM for ¢ > t*, the output of technology M when both

technologies operate is

O R

implying that output per capita and its growth rate are

1

gM o= 75 4 M. (A.2)
For technology S, output per capita is
vy =Z7 (1= ") =27 — (1= a)y”, (A.3)

and its rate of growth is

yS:dantSZ_f_( _a)dlnyyﬁz 1 55 hM e
K dt  y? dt y2 1—-hM 1—hM7

The economy’s GDP is y; = y2 + yM. Using (A.1) and (A.3), this is

«

yt:Zf+ thi\/l-

-«
The GDP growth rate is

,:dlnyfﬁ_i_dlny,fwﬁ:(l_ﬂ) <Z's 1 o ! ) T

— R A— +_
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It follows that
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