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Abstract

We study queueing problems where agents have heterogeneous, per-period wait-
ing costs that are private-information and may vary over queue positions. Our
goal is to implement a Rawlsian allocation rule that minimises the maximum
individual waiting cost across all agents. Under complete-information, we intro-
duce the Just Algorithm, a simple method that always selects a Rawlsian
queue. However, in settings with incomplete-information where agents possess
multidimensional private types, we demonstrate that no Dominant Strategy
Incentive-Compatible (DSIC) mechanism can implement the Rawlsian queueing
rule over an unrestricted domain of agent types. This result underscores the
challenges of designing fair mechanisms in multidimensional environments with
quasi-linear preferences. To address this impossibility, we explore the necessary
domain restrictions that allow for the existence of Deterministic DSIC mecha-
nisms. We do this by using the Weak-Monotonicity condition from Bikhchandani
et al (2006), which is both necessary and sufficient for the existence of deter-
ministic DSIC mechanisms in our setting. Further, we restrict the domain
to one-dimensional private-information, where agents’ per-period waiting costs
evolve according to publicly known, agent-specific functions based on their private
first-period waiting cost. Within this framework, we construct a DSIC mechanism
that implements the Just Algorithm, thereby ensuring the Rawlsian queue objec-
tive is achieved.Our findings contribute to the literature on mechanism design
in queueing problems by providing insights into the necessary and sufficient
conditions for achieving fairness under strategic behaviour with heterogeneous
waiting costs. This work highlights the complexities involved in mechanism
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design with multidimensional types and offers a viable solution within a signif-
icant and non-trivial restricted multidimensional domain with one-dimensional
private-information.
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JEL Classification: D63 , D72 , D81

1 Introduction

Queueing theory, a fundamental area within operations research, examines the intri-

cate dynamics of service systems where jobs are sequentially processed by servers. In

the mechanism design approach to queueing problems, jobs are modelled as strate-

gic agents possessing private-information about their characteristics, particularly their

waiting costs. Because agents incur disutility while waiting, they may misreport their

information to gain an advantage, which poses challenges for designing fair and effi-

cient allocation mechanisms.

Models of queueing have been scrutinised from various game-theoretic perspectives. In

particular, a growing literature (see Subsection 1.1) on queueing problems with one-

dimensional agents’ types offers insight into mechanisms that are optimal, fair or both.

For example, Mitra (2001) shows that First-Best is achievable with one-dimensional

private type and a variety of cost functions. De and Mitra (2017) provides a justifica-

tion of Rawlsian allocation in sequencing problems with each agent having a constant

private per-period opportunity cost. They introduce an algorithm that proposes an

order consistent with Rawlsian fairness.

In this study, we aim to extend these insights to more complex scenarios where agents

have heterogeneous opportunity costs or per-period waiting costs that vary over time.

Specifically, we consider a class of queueing problems involving a finite set of agents

characterised by agent-specific waiting cost vectors, representing their multidimen-

sional types. The waiting cost for each agent evolves over discrete periods or queue
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positions.

The total waiting cost incurred by an agent is the sum of their per-period waiting

costs until their job is processed. The agents utility is quasi-linear in total waiting

time and monetary transfers. Our primary objective is to introduce an algorithm that

ensures the allocation is Rawlsian, minimising the maximum individual waiting cost

among all agents.

Under complete-information, we develop the Just Algorithm, a simple yet effective

method that consistently identifies a Rawlsian queue.

However, under incomplete-information, the problem essentially becomes one of multi-

dimensional private-information. The strategy space of multidimensional type agents

is more sophisticated than the one-dimensional agents case, and hence achieving

the objective is a difficult task. We demonstrate the impossibility of any Dominant

Strategy Incentive-Compatible (DSIC) mechanism implementing our algorithm when

agents’ types are unrestricted. In fact, truth-telling is not even a Nash equilibrium,

hence, no ex-post Incentive-Compatible (EPIC) mechanism exists. This result under-

scores the difficulty of achieving fairness in multidimensional settings, even within

quasi-linear environments like ours.

To address this challenge, we restrict the domain to one-dimensional private-

information, where agents’ per-period waiting costs evolve according to publicly

known, agent-specific functions based on their initial private cost. This approach allows

agents’ opportunity costs to remain heterogeneous while simplifying the strategic com-

plexity of the problem. Within this restricted domain, we propose a DSIC mechanism

that successfully implements the Just Algorithm, thereby ensuring the realisation of

the Rawlsian queue.

The findings presented here lay the groundwork for a comprehensive exploration of

fair mechanisms in queueing problems with multidimensional private-information. Our

work contributes to the literature by highlighting the limitations of implementing
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fairness in complex settings and providing a viable solution within a restricted but

significant domain. The rest of the paper is organised as follows. In subsection 1.1,

we review the existing literature to place our work in context, highlighting how our

contributions extend the current understanding of queueing problems and mechanism

design. Section 2 explains the framework of queueing problems with heterogeneous

waiting costs along with some necessary definitions. In Section 3, we develop the

Just Algorithm. Subsection 3.1 contains our impossibility result for the unrestricted

domain. Section 5 introduces the necessary and sufficient domain restriction charac-

terised by the Weak-Monotonicity condition presented in Bikhchandani et al (2006).

We propose a transfer rule that implements a Rawlsian queueing rule in Dominant

Strategies. Appendix A contains Example 4 demonstrating the difference between

Rawlsian and efficient queue and Example 5 demonstrating the impossibility of DSIC

mechanism with two agents and unrestricted types. Section 6 concludes.

1.1 Related Literature

In this subsection, we survey the existing literature on mechanism design in queue-

ing problems, focusing on both strategic and fairness considerations. The mechanism

design literature for optimal resource allocation rules (mechanisms) is rich. Myerson

(1981) studies optimal mechanisms for single-item auctions and one-dimensional con-

tinuous type spaces of agents. In Hartline and Karlin (2007), the authors introduce

optimal mechanism design with one-dimensional continuous types under Dominant

Strategy Incentive Compatibility. The literature covers queueing problems involving

strategic as well as fairness considerations.

Works such as Chun (2006b), Moulin (2007), Mishra and Rangarajan (2007), Mani-

quet (2003), Chun (2006a), Chun (2011) study fairness aspects. These works address

concepts like equitable sequencing, consistency in allocation, and the design of rules

that satisfy various fairness criteria.
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From a strategic standpoint, researchers have investigated mechanisms that encourage

truthful reporting and efficient outcomes. Mitra (2001) examines efficient and budget-

balanced mechanisms in queueing models, demonstrating that first-best outcomes are

attainable under certain conditions when agents have private-information about their

waiting costs. Similarly, Dolan (1978) and Suijs (1996) contribute to understanding

incentive-compatible mechanisms in queueing systems, focusing on how to align indi-

vidual incentives with social efficiency. Mitra (2002) explores the implementation of

efficient allocation rules when agents have private waiting costs, emphasising the chal-

lenges of designing mechanisms that are both efficient and strategy-proof.

However, much of the existing literature tends to focus on agents with one-dimensional

types, where each agent’s private-information is represented by a single parameter

typically their constant per-period waiting cost. This simplification facilitates the

design of mechanisms but does not capture the complexity inherent in scenarios where

agents have multidimensional private-information. One departure from this is the work

by Mitra (2001), who address efficient and budget-balanced mechanism design in a

multidimensional queueing model. In their study, agents’ waiting costs depend on

their position in the queue, introducing a multidimensional aspect to their private-

information. However, even in Mitra (2001), unrestricted domain does not admit

First-Best mechanisms and two conditions : Independence Property, and Combinato-

rial Property characterise the domain admitting First-Best mechanisms.

Duives et al (2015) examines the problem in a setting where the optimal mecha-

nism minimises the total expected transfers to all jobs while being Bayesian-Nash

incentive-compatible.Recent progress in deriving optimal mechanisms for multidimen-

sional settings often assumes that the type space is discrete. For example, Armstrong

(2000) investigates multi-object auction models where valuations are additive and

drawn from a binary distribution (i.e., high or low), highlighting the challenges inher-

ent in multidimensional, discrete type spaces. Similarly, Malakhov and Vohra (2009),
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Pai and Vohra (2014), Cai et al (2012), and Hoeksma and Uetz (2013) make advances

in optimal mechanism design under the assumption of discrete types, acknowledg-

ing the increased complexity compared to one-dimensional cases. Mishra and Roy

(2013) consider deterministic Dominant Strategy implementation in multidimensional

dichotomous domains with private values and quasi-linear utility, providing insights

into mechanism design when agents have limited types.

The complexity of optimal mechanism design with multidimensional types is well-

established, and the challenges are compounded when agents’ private-information is

continuous, making strategic reporting a significant challenge. In such environments,

designing mechanisms incentive-compatible and satisfy additional desiderata becomes

significantly more difficult. It is not uncommon to find cut-off(s) based mechanisms in

settings with multidimensional types. Armstrong (2000) discusses how the seller can

use personalised pricing schemes (akin to cut-off(s)) to maximise revenue. The mech-

anisms involve setting different prices or cut-off points for different bidders based on

their multidimensional types. Armstrong and Rochet (1999) provides a comprehensive

guide to multidimensional screening models, where a principal designs mechanisms to

screen agents with private-information along multiple dimensions. The authors dis-

cuss how cut-off strategies can be employed when agents have heterogeneous types

and how these cut-off(s) can vary among agents. Thanassoulis (2004) paper exam-

ines bargaining and mechanism design when agents have private-information about

substitutable goods. The mechanisms involve setting individualised thresholds for

agreement, which can be interpreted as agent-specific cut-off(s). Manelli and Vincent

(2007) study revenue-maximising mechanisms in a multi-good monopoly setting. They

show that optimal mechanisms may require offering menus of options (contracts) where

different agents self-select based on their types, leading to differing cut-off(s). While

Mussa and Rosen (1978) is a classic paper on quality differentiation, it introduces the
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concept of screening consumers through non-linear pricing, which effectively sets dif-

ferent cut-off(s) for consumers based on their willingness to pay. Other valuable works

shedding light on personalised threshold mechanisms which are essentially cut-off(s)

based mechanisms include Wilson and Institute (1993), Jehiel et al (1999) etc. These

studies demonstrate that personalised mechanisms are a common feature in such set-

tings. In complex mechanism design problems involving multidimensional types, it is

common for agents to have different numbers of cut-off points due to heterogeneity in

their private-information and the design of optimal contracts. In Armstrong (1996),

the optimal pricing scheme involves offering a menu of bundles with different prices,

effectively creating different cut-off(s) for different consumers. The number of cut-off

points (i.e., the number of bundles or pricing tiers) can vary depending on the hetero-

geneity of consumer types. In Rochet and Choné (1998), optimal mechanism partitions

the type space into different regions (akin to cut-off points). Due to the multidimen-

sionality and heterogeneity of agents’ types, the number and structure of these regions

can differ among agents, implying that agents may face different numbers of cut-off(s).

In our paper as well, although the private-information is restricted to the first-period

waiting cost, the evolution of costs remains heterogeneous across agents and hence,

the cut-off(s) of agent types to obtain queue positions is not the same. In fact, there

may be agents who can obtain only a subset of the queue positions. Given other agents

type, the functions determining the evolution of costs for an agent may exclude him

from getting some of the queue positions, no matter what his type turns out to be. In

the queueing and sequencing problems literature, this variation in cut-off(s) and the

variation in number of cut-off(s) for different agents is a novel feature. It follows from

the heterogeneity of agents’ waiting costs.

Our work contributes to this line of research by exploring fair mechanisms for queueing

problems where agents have heterogeneous and position dependent waiting costs which

is a setting where agents’ types are multidimensional and continuous. Unlike previous
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studies that prioritise efficiency or budget balance, we aim to implement a Rawlsian

allocation rule that minimises the maximum individual waiting cost among all agents.

This focus on Rawlsian fairness distinguishes our work from that of Mitra (2001), who

primarily seek to identify cost structures that enable first-best implementability in

terms of aggregate cost minimisation. We present an example to distinguish the two

kinds of queuing rules in Appendix A as Example 4.

Consequentially, implementing fairness notions like the Rawlsian criterion in multidi-

mensional settings is difficult and less explored. Bikhchandani et al (2006) show that

a necessary condition for the existence of deterministic DSIC mechanisms is that the

social choice rule satisfies weak monotonicity (W-Mon) on its domain. Furthermore,

on convex domains, Saks and Yu (2005) establish that W-Mon is also sufficient for

the existence of DSIC mechanisms implementing the rule. In the context of queueing

problems with unrestricted multidimensional types, which form a convex set as noted

in Mitra (2001), the Rawlsian allocation rule does not satisfy the W-Mon condition.

This lack of compliance leads to the impossibility of designing DSIC mechanisms that

implement the Rawlsian queueing rule in such settings.

To overcome this impossibility, we introduce a domain restriction to one-dimensional

private-information, allowing agents’ per-period waiting costs to evolve according to

publicly known, agent-specific functions based on their initial private cost. This restric-

tion maintains the heterogeneity and dynamic nature of agents’ waiting costs while

simplifying the mechanism design problem. By doing so, we are able to design a DSIC

mechanism that implements the Rawlsian queue, contributing to the broader under-

standing of mechanism design in complex, multidimensional environments.

Our study not only highlights the limitations of implementing fairness in multidimen-

sional settings but also provides a viable solution within a significant and non-trivial

restricted domain. This work opens avenues for further research into necessary and
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sufficient conditions for the existence of DSIC mechanisms in such contexts, poten-

tially aligning with the weak monotonicity conditions identified by Bikhchandani et al

(2006) and others.

2 The Framework

Consider a finite set of agents N = {1, 2, . . . , n} who need to get their jobs processed

using a single server. The server can serve only one agent at a time, and a job, once

started, can not be stopped unless finished. Each agent’s job takes one unit of time

to get processed. Hence, the server needs to design a queue which is an assignment of

agents to queue positions 1.

Each agent incurs disutility while waiting for their job to be processed. The cost

incurred by every agent in every period is variable, and is the private-information of

the agents. A representative agent-i has per-period waiting cost θi1 in the first period,

θi2 in the second period, and so on. θik ∈ R++
2 indicates the kth period unit waiting

cost of agent-i. The vector θi = (θi1, θi2, . . . , θin) ∈ Rn
++ is the waiting cost vector of

agent-i. If agent-i is served in the kth period (or position), his disutility is given by

the sum of waiting cost incurred in each period until job completion i.e.
∑k

j=1 θik.

The n×n positive matrix θ = [θik]1≤i,k≤n is called the waiting cost profile. Let Σ(N)

denote the set of all n! possible orderings (queues) over N . We denote by σ(θ) ∈ Σ(N)

a particular queue, and write σi(θ) = k to mean that agent-i has position k in the

queue σ(θ). A queueing rule is a function σ : Rn×n
++ → Σ(N) that specifies, for each

profile θ, a unique order σ(θ) = (σ1(θ), . . . , σn(θ)) ∈ Σ(N) 3. A transfer rule is a

function τ : Rn×n
++ → Rn that specifies for each profile θ ∈ Rn×n

++ a transfer vector

τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ Rn, where τi(θ) ∈ R is the monetary transfer made to the

1Through out the paper we only consider assignments which are feasible and maximal. Every agent is
assigned to a position. One and only one agent is assigned to each position. We will refer to these simply
as queues.

2R++ denotes the positive orthant of real line R.
3Since the queueing rule is a function and not a correspondence, tie-breaking may be required at some

profiles.
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agent. The term τi(θ) is negative if the agent pays and positive if he receives monetary

compensation. A mechanism µ = (σ, τ) constitutes a queueing rule σ and a trans-

fer rule τ . The bundle of any agent-i under the mechanism µ at reported profile θ is

written as µi(θ) = (σi(θ), τi(θ)). The agents have quasi-linear utility functions of the

form ui(µi(θ)) = −
∑σi(θ)

k=1 θik + τi(θ). For any mechanism µ = (σ, τ), if the reported

profile is (θ̂i, θ−i)
4 when the true waiting cost vector of agent-i is θi, then the utility

of agent-i is ui(µi(θ̂i, θ−i); θi) = −
∑σi(θ̂i,θ−i)

k=1 θik + τi(θ̂i, θ−i).

QD denotes the class of Queueing Problem with heterogeneous waiting costs, QD(N)

denotes an instance of such problem with a given set of agents (hence profile). If

∀j, k ∈ N, θik = θij then agent-i has a constant per-period waiting cost. If all agents

have constant per-period waiting cost, we have the class of queueing problems Q ⊂ QD

with constant per-period waiting cost.

The heterogeneous waiting cost setting implies that each agent-i ∈ N reports a vec-

tor θi = (θi1, θi2, . . . , θin) ∈ Rn
++. Hence, the agents are multidimensional and QD are

problems in multidimensional mechanism design. The profile θ ∈ Rn×n
++ can be visu-

alised as an n× n matrix where agents are labelled along the rows and periods along

the columns. Thus agent-i’s report is row-i in the matrix.

[θ] =



θ1

θ2
...

θn


=



θ11 θ12 . . . θ1(n−1) θ1n

θ21 θ22 . . . θ2(n−1) θ2n
...

...
. . .

...
...

θn1 θn2 . . . θn(n−1) θnn


(1)

The agents have a quasi-linear utility function. For any profile θ and any queueing rule

σ and transfer rule τ , if any agent-i is served in position σi(θ) and obtains a transfer

τi(θ), his utility is given by ui(µi(θ)) = −
∑σi(θ)

k=1 θik + τi(θ).

4Here, θ−i ∈ Rn×(n−1)
++ is the set of waiting cost vector announcements by the other (n − 1) agents in

N \ {i}.
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We focus our attention on the queueing rule σR ∈ Σ(N), which minimises the max-

imum waiting cost incurred by any agent out of all possible orders. We call such a

queueing rule Rawlsian in keeping with Rawls’ Maxi-Min5 Principle.

Definition 1 Rawlsian queueing rule σR: A queueing rule σR is called a

Rawlsian queueing rule if, for every profile θ ∈ Rn×n++, we have σR(θ) ∈

argminσ(θ) ∈ Σ(N)maxi∈N
∑σi(θ)

k=1 θik.

For an example of queueing problem with heterogeneous waiting costs, and identifica-

tion of Rawlsian queue, see Appendix A, Example 4.

We now turn our attention to defining mechanisms µ = (σ, τ), that implement the

queueing rule σ. As we are interested in truth-telling mechanisms, by the revelation

principle we restrict attention to direct mechanisms. Implementation of a rule σ in

Dominant Strategies via a mechanism (σ, τ) requires that the transfer rule τ be such

that for any agent, truthful reporting (weakly) dominates false reporting irrespective

of what others report, where as ex-post implementation requires that truthful report-

ing for any agent weakly dominates false reporting conditional upon all other agents

reporting their waiting cost vectors truthfully. The ex-post implementability requires

that the transfer rule τ be such that truth-telling is a Nash equilibrium for any agent

and every true type profile θ. A Mechanism µ = (σ, τ) is called a Dominant Strategy

Incentive-Compatible (DSIC) Mechanism if it implements the queueing rule σ in Dom-

inant Strategies and an ex-post Incentive-Compatible (EPIC) mechanism if it ex-post

implements the rule σ. Every DSIC mechanism is an EPIC mechanism hence if DSIC

mechanisms exist, they guarantee existence of EPIC mechanism but the converse may

not be true.

5The Maxi-Min Principle seeks to maximise the minimum utility obtained by any agent. In the case of
disutility, it seeks to minimise the maximum disutility obtained by any agent.
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Definition 2 Dominant Strategies Implementation: A Mechanism µ = (σ, τ) is Dom-

inant Strategy Incentive-Compatible (DSIC) implementable if ∀i ∈ N , ∀θi, θ̂i ∈ Rn
++, and

∀θ−i ∈ Rn×(n−1)
++ :

ui(µi(θi, θ−i); θi) ≥ ui(µi(θ̂i, θ−i); θi)

Definition 3 ex-post Implementation: A Mechanism µ = (σ, τ) is ex-post implementable

if ∀i ∈ N , ∀θ ∈ Rn×n
++ , and ∀θ̂i ∈ Rn

++:

ui(µi(θ); θi) ≥ ui(µi(θ̂i, θ−i); θi)

3 Unrestricted Domain

In order to implement the Rawlsian queueing rule, we need an algorithm to identify

a Rawlsian queue at all profiles. In algorithm 1, we propose a method which always

selects a unique queue σJA(θ) given any profile θ. This is followed by example 1 to

demonstrate the working of the algorithm in a 4-agent case. It is easy to verify that

the algorithm would select the queue kij when applied to example 4. To illustrate how

Algorithm 1 Just Algorithm

Tie-breaking rule
1: The tie-breaking order is given by ≻TB := 1 ≻TB 2 ≻TB . . . ≻TB n. For all i, k ∈

N , and any m ∈ {1, . . . , n}, if {i, k} ⊆ argminj∈N1(θ)

∑n
l=1 θjl, then σJA

i (θ) = m
whenever k ≻TB i.
First step

2: Let N1(θ) = N be the set of agents and θ1 = θ be the reported profile for step-
1. Let i = argminj∈N1(θ)

∑n
l=1 θjl. Assign σJA

i (θ) = n. Let N2(θ) = N1(θ) \ {i}.
Update θ1 to θ2 by deleting the last column of θ1 and the row corresponding to
such agent-i.
kth step (2 ≤ k ≤ n− 1)

3: Nk(θ) = N \
⋃

i{i} : σJA
i (θ) ∈ {n+ 2− k, n}. Let i = argminj∈Nk(θ)

∑n−k+1
l=1 θjl.

Assign σi(θ) = n − k + 1. Update θk to θk+1 by deleting the last column of θk,
and the row corresponding to such agent-i.
nth step

4: Nn(θ) = N \
⋃

i{i} : σJA
i (θ) ∈ {2, n}. ||Nn(θ)|| = 1. For i ∈ Nn(θ), assign

σJA
i (θ) = 1.
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the Just Algorithm operates in practice, consider Example 1 with four agents.

Example 1 Working of Just Algorithm: Consider a four-agent case. N1(θ) = N =

{i, j, k, l}. Let the reported profile be θ. We use the tie-breaking rule i ≻TB j ≻TB k ≻TB l.

θ = θ1 =



θi

θj

θk

θl


=



3 2 3 4

1 2 3 4

1 2 3 1

1 2 3 4


→



3 5 8 12

1 3 6 10

1 3 6 7

1 3 6 10


= θ̄1 (2)

We have transformed the matrix θ into θ̄1 as follows: ∀p ∈ N,∀q ∈ {1, 2, 3, 4}, θ̄1pq =∑q
m=1 θpm. The cost incurred by agent-p ∈ N when served in period q ∈ {1, 2, 3, 4} can be

read off directly as θ̄1pq. The algorithm works as follows.

In the first step, we calculate the cumulative waiting costs for each agent if they were to be

served last. Agent-k has the lowest total cost of 7, so agent-k is assigned to the last position.

Thus, σJA
k (θ) = 4. N2(θ) = N1(θ) \ {k} = {i, j, l}. We update θ1 to θ2 by removing the

agent-k row and last column of θ1.

θ2 =


θi

θj

θl

 =


3 2 3

1 2 3

1 2 3

 →


3 5 8

1 3 6

1 3 6

 = θ̄2 (3)

In the second step, the algorithm calculates the cost incurred by each of the remaining agents

if they were to be served in the third period. The minimum cost which will be incurred by

any agent getting served in the last period is 6 if either agent-j or agent-l is served in period

3. The tie-breaking rule, i ≻ j ≻ k ≻ l, favours agent-j, so he continues to be in the problem

for an earlier period assignment, and agent-l losing the tie is awarded the third position,

σJA
l (θ) = 3. We update θ2 to θ3 by removing the agent-l row and last column of θ2.

θ3 =

θi
θj

 =

3 2

1 2

 →

3 5

1 3

 = θ̄3 (4)

In the third step, agent-j is assigned to period two since 1 + 2 < 3 + 2. Thus, σJA
j (θ) = 2.

There is one remaining agent, and the agent is served in the first period, σJA
i (θ) = 1.
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The maximum cost is incurred by agent-k in the queue σJA(θ) and is equal to 7. Of the

24 possible queues, it is easily verified that there are six queues which serve agent-3 in

period four, and the maximum cost in the other 18 queues will be either 12 or 10 depending

upon which of the other agents, i, j or l, is served last. All six queues serving agent-k in

period 4 are Rawlsian queues, and the Just Algorithm for perceptive agents selected a queue

which is Rawlsian. This example demonstrates that the Just Algorithm systematically assigns

positions to minimise the maximum individual waiting cost, resulting in a Rawlsian queue.

Example 1 demonstrates the step-by-step working of the Just Algorithm including a

tie-breaking situation for queue position 3 between agents j and l.

Proposition 1 The Just Algorithm always selects a Rawlsian queue.

Proof Consider the set of agents N , with any reported profile θ ∈ Rn×n
++ . Let σJA(θ) be

the queue selected by the Just Algorithm. Let p = argmaxi∈N
∑σJA

i (θ)
k=1 θik. Let agent-p,

incurring the maximum cost in σJA, be served in position-q, i.e. σJA
p (θ) = q.

For brevity of notation, we write ci(σ(θ)) to denote the cost incurred by agent-i in the

queue σ(θ). Suppose that σJA(θ) is not a Rawlsian queue. Let σ(θ) ̸= σJA(θ) be one of

the Rawlsian queues such that the maximum of individual cost borne by agents in σ(θ) is

less than cp(σ
JA(θ)). Suppose cr(σ(θ)) < cp(σ

JA(θ)), where r = argmaxi∈N ci(σ(θ)) =

argmaxi∈N
∑σi(θ)

k=1 θik.

We have the following cases:

Case 1 Given σ(θ) ̸= σJA(θ), let σp(θ) ≥ q. Then, by definition cr(σ(θ)) = maxi∈N ci(σ(θ)),

and hence cr(σ(θ)) ≥ cp(σ(θ)). But, cp(σ(θ)) =
∑σp(θ)

k=1 θpk ≥
∑q

k=1 θpk =
∑σJA

p (θ)

k=1 θpk.

This contradicts the claim that cr(σ(θ)) < cp(σ
JA(θ)), thus completing the proof.

Case 2 Let σp(θ) < q. Then at least one of the predecessors of agent-p in the queue σJA(θ)

is served in a position s ≥ q. Let agent-m(̸= p) be such an agent, i.e. σm(θ) = s ≥ q.

Then, cr(σ(θ)) = maxi∈N ci(σ(θ)) ≥ cm(σ(θ)) =
∑σm(θ)

k=1 θmk =
∑s

k=1 θmk ≥
∑q

k=1 θmk ≥∑q
k=1 θpk. The last inequality follows from the algorithm. This contradicts the claim that
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cr(σ(θ)) < cp(σ
JA(θ)). This completes the proof.

□

Remark 1 In Mitra (2001), the efficient sequencing rule is studied and First-Best mech-

anisms satisfying efficiency, Strategy-proofness, and Budget-Balance are investigated. It is

shown that a necessary restriction on the domain of agent types to achieve First-Best is the

Independence Property. The Independence Property demands the following: Given a queuing

problem with three or more agents in set N , the relative position of any two agents {j, l} ∈ N ,

does not depend upon the presence or absence of another agent-i ∈ N where i ̸= j, i ̸= l. In

the reduced problem obtained by deleting agent-i, j remains a predecessor (or follower) of l,

if he was the predecessor (respectively follower) of l when agent-i was present under the same

queueing rule. It is easy to verify that the externality of agents in our setting is much severe,

and it is possible that change in one agent’s report changes the relative position of any other

pair of agents. For queueing problems with heterogeneous costs and Rawlsian queueing rule,

the Independence Property is violated.

3.1 Impossibility Results

Are there DSIC mechanisms that implement the queueing rule σJA? With the unrestricted

type spaces, no such DSIC mechanism exists.

Theorem 1 Consider any problem QD(N), where N is the set of agents with reported

profile θ ∈ Rn×n
++ . There is no DSIC mechanism µ = (σJA, τ).

Proof We prove this by construction of a generic counter-example.

Consider the set of agents N = {1, . . . , n}. Arbitrarily choose any agent-i from N . Con-

struct an admissible waiting cost vector θi ∈ Rn
++ such that θi(k+1) − θik > 0 for some

k ∈ {1, . . . , n − 1}. Because of unrestricted domain, such construction is allowed. Let

ϵ =
θi(k+1)−θik

5 > 0. We can write θi = (θi1, . . . , θik, θik + 5ϵ, θi(k+2), . . . , θin). Construct

θm = (θi1, . . . , θi(k−1), θik + 4ϵ, θik + 2ϵ, θi(k+2), θin). Construct θ̂i = (θi1, . . . , θi(k−1), θik +
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3.5ϵ, θik + 3.5ϵ, θi(k+2), θin)). The vectors θm, θ̂i, and θi differ only in the kth and (k + 1)th

coordinate. Let the report θ−i−m ∈ Rn×(n−2)
++ of agents other than agent-i and agent-m

be such that 6, 5 and 7 hold. Consider the profiles profile θ = (θi, θm, θ−i−m) and another

profile θ̂ = (θ̂i, θm, θ−i−m).

i = arg min
j∈Nn−k(θ)

k+1∑
l=1

θjl =⇒ σJA
i (θ) = k + 1 (5)

m = arg min
j∈Nn−k+1(θ)

k∑
l=1

θjl =⇒ σJA
m (θ) = k (6)

m = arg min
j∈Nn−k(θ)\{i}

k+1∑
l=1

θjl (7)

Equation 5 means that, under Just Algorithm, when queue position (k+1) is to be assigned

to one of the agents in the set Nn−k(θ), agent-i has the least cost of getting served in period

(k+1) amongst the agents in Nn−k. Equation 6 means that at the stage when queue position

k is to be assigned to one of the agents in the set Nn−k+1(θ) = Nn−k(θ) \ {i}, agent-m has

the least cost of getting served in period k amongst the agents in Nn−k+1(θ). Equation 7

states that if agent-i had not been present in the set Nn−k(θ), agent-m would have been the

minimum cost agent to get served in period (k + 1).

Note θml = θ̂il, for any l ∈ {1, 2, . . . , k − 1, k + 2, . . . , n}. Given equation 7 is true, 8 holds

because σJA
i (θ̂) > k + 1 cannot be true and

∑k+1
l=1 θ̂il = ϵ +

∑k+1
l=1 θml >

∑k+1
l=1 θml. Also,

given that 6 holds and
∑k

l=1 θ̂il =
∑k

l=1 θml − 0.5ϵ, 9 holds.

m = arg min
j∈Nn−k(θ̂)

k+1∑
l=1

θjl =⇒ σJA
m (θ̂) = k + 1 (8)

i = arg min
j∈Nn−k+1(θ̂)

k∑
l=1

θjl =⇒ σJA
i (θ̂) = k (9)

Implementation in Dominant Strategies requires 10 ≥ 11, and 12 ≥ 13. Both conditions

together demand: θik + 3.5ϵ = θ̂i(k+1) ≥ τi(θ)− τi(θ̂) ≥ θi(k+1) = θik + 5ϵ.

ui(µi(θ); θi) = −
k+1∑
l=1

θil + τi(θ) (10)

ui(µi(θ̂); θi) = −
k∑

l=1

θil + τi(θ̂) (11)
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ui(µi(θ̂); θ̂i) = −
k∑

l=1

θ̂il + τi(θ̂) (12)

ui(µi(θ); θ̂i) = −
k+1∑
l=1

θ̂il + τi(θ) (13)

For any ϵ > 0, it is impossible to find any functions τi(θ), τi((̂θ)) satisfying the implementation

conditions. Hence, for the constructed profiles, allowed by unrestricted domain, no DSIC

mechanism can exist. This completes the proof.

□

In Appendix A, Example 5 shows a two-agent case where DSIC mechanisms are impossible.

Remark 2 In Theorem 1, let the reported profile θ−i be the true waiting cost vectors of

agents other than agent-i. Then the same proof implies that for such a profile, no EPIC

mechanism exists for the unrestricted domain of types.

4 Domain Restrictions : Necessary

While we have achieved a negative result for the existence of DSIC or even EPIC mech-

anisms implementing Rawlsian queueing, it is well known that Rawlsian queueing can be

implemented by DSIC mechanisms when the types of agents are restricted to have only con-

stant per period waiting costs (see, for example, De and Mitra (2017)). Exactly what domain

restrictions are necessary for the existence of DSIC mechanisms?

Social choice rules that allow the existence of deterministic mechanisms must satisfy a nec-

essary condition outlined in Bikhchandani et al (2006) as the Weak-Monotonicity (W-Mon)

condition. While Bikhchandani et al (2006) establish the necessity of W-Mon, Saks and Yu

(2005) establish the sufficiency of W-Mon over convex domains. Hence, for queueing prob-

lems with unrestricted multidimensional types (which are convex as noted in Mitra (2001)),

W-Mon is a necessary and sufficient condition for the existence of deterministic DSIC mecha-

nisms. The W-Mon requirement is the following: If changing one agent’s type (while keeping

the types of other agents fixed) changes the outcome under the social choice function, then

the resulting difference in utilities of the new and original outcomes evaluated at the new type
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of this agent must be no less than this difference evaluated at the original type of this agent.

We present below the definition of W-Mon borrowed from Bikhchandani et al (2006), in line

with our notation. Then, we apply this definition to the utility structure of agents within

the mechanism (σJA, τ) and obtain the necessary and sufficient condition for the domain of

type of agents for which the rule σJA satisfies W-Mon because we know it does not satisfy

W-Mon over unrestricted domain.

Definition 4 Weak-Monotonicity (W-Mon): A social choice function σ(·) is weakly

monotone (W-Mon) if, for every i ∈ N , θi, θ
′
i ∈ Θi, and every θ−i ∈

∏
j∈N\{i} Θj ,

Ui(σ(θ
′
i, θ−i); θ

′
i)− Ui(σ(θi, θ−i); θ

′
i) ≥ Ui(σ(θ

′
i, θ−i); θi)− Ui(σ(θi, θ−i); θi) (14)

Bikhchandani et al (2006) prove (Theorem 2 in their paper) that a social choice function on

a completely ordered, bounded domain is truthful if and only if it is weakly monotone. The

bounded restriction implies that θij is finite ∀i ∈ N , and ∀j ∈ {1, . . . , |N |}. The complete

ordering restriction is already satisfied for our framework. All agents prefer a queue position

earlier than later.6 We let the rule be σJA, and restrict θi, θ
′
i ∈ Θi ⊂ (0,∞)n, then condition

14 requires, for every i ∈ N , θi, θ
′
i ∈ Θi, and every θ−i ∈

∏
j∈N\{i} Θj ,

−
σJA
i (θ′

i,θ−i)∑
k=1

θ′ik − (−
σJA
i (θi,θ−i)∑

k=1

θ′ik) ≥ −
σJA
i (θ′

i,θ−i)∑
k=1

θik − (−
σJA
i (θi,θ−i)∑

k=1

θik) (15)

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

θ′ik ≥
σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

θik (16)

Without loss of generality, let σJA
i (θ′i, θ−i) < σJA

i (θi, θ−i), then condition 16 must hold

∀k ∈ {σJA
i (θ′i, θ−i)+1, σJA

i (θi, θ−i)}. It is necessary that this be true for k = σJA
i (θ′i, θ−i)+

1 = σJA
i (θi, θ−i). That is θ

′
ik ≥ θik. If it holds for all such k ∈ {2, . . . , n}, then it is straight-

forward to show that condition 16 must be satisfied. Notice that the W-Mon condition does

not include transfers, and especially in the case of quasi-linear utilities, all types of agents

evaluate every equal difference in transfer exactly the same.

6If for some period some agent has unit waiting cost zero, this does not hold, but such indifference must
hold for all types of agents to contradict complete ordering, which is not the case.
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The Bikhchandani et al (2006) result tells us the restriction of types for which σJA is imple-

mentable but does not tell us anything about the transfer. Since the result must hold for all

profiles θ−i, we can always construct profiles for which σJA
i (θi, θ−i) can take any value from

{2, . . . , n}, whenever σJA
i (θ′i, θ−i)+1 = σJA

i (θi, θ−i),we must have θ′ik ≥ θik, ∀k ∈ {2, . . . , n}.

These restrictions do not apply to agents’ reports for the first period. Hence, we let the agents

be multidimensional but restrain the private-information to first-period waiting cost only. In

subsection 4.1, we propose a sufficient restriction on their admissible types, which allows for

the existence of deterministic DSIC mechanisms.

4.1 One-Dimensional Private-Information : Necessary and

Sufficient Condition

Consider the set of agents N = {1, . . . , n}. The agents can report their one-dimensional type

θi ∈ Θi ⊆ R++ \ {∞} and cost-function fi(k, θi), where k is the period for which cost is

being reported. If fi(·, θi) is unrestricted; an agent can simply report fi(k, θi) = θik as in the

preceding discussion. We allow different agents to have different cost functions, but these are

assumed to be public-information and hence not a part of agents’ strategic reports.

Proposition 2 For a queueing problem QD, with set of agents N each with a type θi ∈

Θi ⊆ R++ \ {∞} and cost functions fi(k, θi) where k ∈ {1, . . . , n}, the queueing rule σJA(θ)

is implementable in Dominant Strategies if and only if, ∀i ∈ N, k ∈ {1, . . . , n}, θ−i ∈
∏

j ̸=i Θj

and ∀θi, θ′i ∈ Θi, the functions fi(k, θi) : {1, . . . , n} ×Θi → R++ \ {∞} satisfy:

σJA
i (θi, θ−i) > σJA

i (θ′i, θ−i) =⇒
σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θ
′
i) ≥

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θi) (17)

Proof From the restriction θi ∈ Θi ⊆ R++ \ {∞}, the domain of types is bounded and

complete, so the necessity and sufficiency of W-Mon follows from the (Theorem 2) result of

Bikhchandani et al (2006). The sufficiency of W-Mon also follows from the result of Saks and

Yu (2005) since our domain is convex, as already noted in Mitra (2001) for the unrestricted

domain. It only remains to prove that the queueing rule σJA, which is deterministic, satisfies
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W-Mon if condition 17 holds. Suppose the antecedent σJA
i (θi, θ−i) > σJA

i (θ′i, θ−i) is true,

then
∑σJA

i (θi,θ−i)
k=1 fi(k, θi) ≤

∑σJA
i (θi,θ−i)

k=1 fi(k, θ
′
i), in accordance with the algorithm. If

condition 17 holds, then we have:

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θ
′
i) ≥

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θi)

−
σJA
i (θ′

i,θ−i)∑
k=1

fi(k, θ
′
i) +

σJA
i (θi,θ−i)∑

k=1

fi(k, θ
′
i) ≥ −

σJA
i (θ′

i,θ−i)∑
k=1

fi(k, θi) +

σJA
i (θi,θ−i)∑

k=1

fi(k, θi)

Ui(σ
JA
i (θ′i, θ−i); θ

′
i)− Ui(σ

JA
i (θi, θ−i); θ

′
i) ≥ Ui(σ

JA
i (θ′i, θ−i); θi)− Ui(σ

JA
i (θi, θ−i); θi)

In the last step of calculation, we add the transfer terms τi(θ
′
i, θ−i) − τi(θi, θ−i) to both

sides. Irrespective of the true type of agent-i, this transfer difference is evaluated as the same

difference in utility by any agent type. If condition 17 holds, then the queueing rule σJA

satisfies W-Mon. This completes the proof.

□

The necessary restrictions on domain obtained by us are not easy to use in search of mecha-

nisms. More structure over the domain is needed to be able to identify mechanisms that are

DSIC and implement the rule σJA. Section 5 furthers the discussion in this regard.

5 Domain Restriction: One-Dimensional

Private-Information

When per-period waiting costs are constants i.e., for all agents i ∈ N , θik = θi ∈ R+ for

all k ∈ {1, 2, . . . , n}, then Rawlsian queueing rule (coincides with aggregate cost minimising

queueing rule) can be implemented by DSIC mechanisms ( see Mitra (2001), Chun (2006a),

Hashimoto and Saitoh (2012) etc.).

5.1 Domain Restriction

We restrict the domain to one-dimensional private-information setting but not constant per-

period costs. We use the notation fi(k, θi) > 0 to denote the kth-period waiting cost of agent-i
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of one-dimensional private-type θi ∈ R+. F k
i (θi) =

∑k
l=1 fi(l, θi) denotes the total waiting

cost of agent-i when he waits for k ∈ {1, . . . , n} periods. We put the following restrictions:

(public-information) The functions fi(k, ·) are public-information for all periods k ∈ {1, . . . , n} and all

agents i ∈ N . In general, fi(k, θi) ̸= fj(k, θi) for two distinct agents i and j 7.

(private-information) The only private-information is the first period waiting cost for all agents, i.e.,

fi(1, θi) = θi for all agents-i ∈ N .

(per-period costs) The functions fi(k, ·) are continuous and non-decreasing in their second argument.

(last-period cost) The functions Fn
i (θi) =

∑n
l=1 fi(l, θi) : R+ → R+ have a full range. It is unbounded

on upper-side, there exists θi ∈ R+ : Fn
i (θi) = 0. By definition, it is continuous

and increasing in θi since fi(k, θi) are non-decreasing for all k ∈ {2, . . . , n} and

fi(1, θi) = θi is increasing in θi.

The last-period cost assumption of full range is for ease of exposition and to ensure that every

agent can get served in the last position for some report of θi at every fixed θ−i. Otherwise,

fix any θ−i and fj(k, θj) for all j ̸= i, and let fi(k, θi) = akθi + bk where ak, bk > 0 for all

k ∈ {2, . . . , n}. Then, Fn
i (θi) =

∑n
k=1(akθi + bk). The number

∑n
k=1 bk may be such that

σJA
i (θi, θ−i) ̸= n for any report θi ∈ R+.

5.2 Domain Restriction: Implications

The class of queueing problems with the restricted domain is QD =< N , {fi(k, ·)}i∈N >.

Given our domain restriction, the Just Algorithm works as follows: σJA
i (θi, θ−i) = n if

i = argminj∈N Fn
j (θj), where tie(s) are assumed to be resolved. Then, σJA

k (θi, θ−i) = n− 1

if k = argminj∈N\{i} F
n
j (θj), where tie(s) are assumed to be resolved. By looking at the

allocation of positions, we cannot decide the order between Fn−1
i (θi) and Fn−1

k (θk). Suppose

agent-i reports a very high type θ̄i such that for some fixed θ−i, σi(θ̄i, θ−i) = 1. Such θ̄i exists

because F k
i (θi) are increasing functions of θi for all periods k ∈ {1, . . . , n} and θ−i is fixed.

Similarly, since Fn
i (θi) has full range in R+, for some arbitrarily small θi, σ

JA
i (θi, θ−i) = n.

However, unlike queueing problem with constant per-period costs, such domain restriction

7Since fi(k, ·) ̸= fj(k, ·) in general, the functions also specify a type for each agent but this is public-
information.
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does not guarantee, for a fixed θ−i, that agent-i can obtain any queue position by reporting

some waiting cost. Example 2 illustrates a case where agent-3 can never get queue position-2.

Example 2 An Illustration of Limited Accessibility to Queue Positions Consider

three agents N = {1, 2, 3}. Let the tie-breaking rule be 1 ≻TB 2 ≻TB 3. Fix θ1 = 5 and

θ2 = 7. The cost functions are given by:

� Agent 1: f1(2, θ1) = θ1, f1(3, θ1) = 18θ1.

� Agent 2: f2(2, θ2) = 2θ2, f2(3, θ2) = 11θ2.

� Agent 3: f3(2, θ3) = 3θ3, f3(3, θ3) = 3θ3.

We examine how agent 3’s reported type θ3 affects their position in the queue.

θ =


5

7

θ3

 =


5 5 90

7 14 77

θ3 3θ3 3θ3

 →


5 10 100

7 21 98

θ3 4θ3 7θ3


If agent-3 reports his cost of waiting for three periods more than 98 - only then will he not

be served in the third position. If he not served third, then agent-2 will be served third.

Agent-3 cannot be served in the second position if reports waiting cost for two periods more

than 10. But as agent-3 changes his reports from zero to any arbitrarily large number, he

crosses the threshold waiting cost of 10 for position-2 before he can cross the threshold waiting

cost of 98 for position-3. An agent can be served in an earlier position only if he reports his

total waiting cost for all later positions more than the respective threshold waiting costs.

This example demonstrates that agent 3 cannot access position 2 regardless of their reported

type. The structure of the cost functions and the agents’ reported types result in agent 3

being assigned either to position 3 (when θ3 ≤ 14) or position 1 (when θ3 > 14), but never

to position 2. This concludes the example.

Example 2 illustrates that, under our domain restriction, agents may be constrained in the

queue positions they can obtain due to the interplay between their cost functions and those

of other agents. It highlights that even with one-dimensional private information, the hetero-

geneity of agents’ cost evolutions can prevent certain queue positions from being accessible.
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This underscores the importance of carefully designing mechanisms that account for these

limitations while striving to implement the Rawlsian queue.

Consider the profile (θ̄i, θ−i) with σJA
i (θ̄i, θ−i) = 1. For every agent k ̸= i, let σJA

k (θ̄i, θ−i) =

k̂. The cost cut-off(s) of agent-i for all positions k̂ ∈ {2, . . . , n} are defined as the costs of the

agent getting served in position-k̂ (=F k̂
k (θk)) when agent-i is served first. Since θi is fixed,

we suppress the dependence of cut-off on θ−i for ease of notation.

Definition 5 (Cost Cut-off of agent-i for position k̂ ) For a given θ−i and per-period cost

functions fj(k̂, θk) for all agents j ∈ N and all positions k̂ ∈ {2, . . . , n}, the cost cut-off of

agent-i for position-k̂ is (F k̂
k (θk)).

For every position k̂ ∈ {2, . . . , n}, we can calculate agent-i’s type cut-off as the highest type

that agent-i should have been so that he could obtain position k̂ in the sequence or the lowest

type that he should have been to obtain a position earlier than k̂. This type is found by

equating agent-i’s cost of waiting for k̂ periods to the cost cut-off for that position.

Definition 6 (Type Cut-off of agent-i for position k̂ ) For a given θ−i and per-period cost

functions fj(k̂, θk) for all agents j ∈ N and all positions k̂ ∈ {2, . . . , n}, the type cut-off of

agent-i for position-k̂ is θk̂i = (F k̂
i )

−1(F k̂
k (θk)).

Agent-i can obtain a position earlier than k̂ only if his reported type θi ≥ θk̂i
8. However, this

is not sufficient. Because of the way that the Just Algorithm works, an agent cannot get a

position k̂− 1 before passing the cost cut-off(s) for all positions k̂, . . . , n. If agent-i reporting

θi obtains a position k̂−1, then it must be the case that θi ≥ θpi for all p ∈ {k̂, . . . , n}. Given

θ−i, the set of type cut-off of agent-i for all positions is the set = {θni , . . . , θ
2
i }. But there is

no position-based ordering of the cut-off(s). For any report, θi ∈ [0, θk̂i ), agent-i cannot get a

position earlier that position k̂, which means that if θk̂i ≤ θni then as agent-i’s report increases

from zero to θni , his position continues to be position-n, and if his report increases any further,

he has already crossed the cost cut-off for period k̂. Therefore, he never obtains position k̂

8In case of a tie, the tie-breaking rule decides the position of the agent. But the type cut-off(s) can be
calculated without considering explicitly how ties are resolved.
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for any of his possible reports. This is why the assumption on last-period costs is crucial. It

dictates that every agent-i, for any θ−i should be able to obtain the last position. Agent-i may

obtain position k̂ for his report θi ∈ [0, θk̂i ] but the agent only obtains the last position for all

of his reports θi ∈ [0, θni ]. If θ
k̂
i ≤ θni , then [0, θk̂i ] ⊆ [0, θni ]. Every type cut-off of agent-i for

position k̂ satisfying θk̂i ≤ θni is irrelevant. Since F k
i (θi) =

∑k
l=1 fi(l, θi) = θi+

∑k
l=1 fi(l, θi)

is increasing in θi, every agent-i, for any θ−i can also obtain the first position in the sequence

selected by Just Algorithm. Consider the set of type cut-off(s) of agent-i for all positions

:= {θni , . . . , θ
2
i }. We order this set in decreasing order of sequence positions to obtain the

vector (θni , . . . , θ
2
i ). From this vector, we delete all irrelevant type cut-off(s) θk̂i ≤ θni to obtain

the reduced vector (θm0
i = θni , . . . , θ

s
i ) for some s ∈ {2, . . . , n − 1} where the elements are

ordered in decreasing order of sequence positions. Let θm1
i be the second element in the

reduced vector (θm0
i = θni , θ

m1
i , . . . , θsi ). From this reduced vector, we preserve θm0

i = θni and

delete all irrelevant type cut-off(s) θk̂i ≤ θm1
i to obtain the reduced vector (θni , . . . , θ

s
i ) for some

s ∈ {2, . . . , n− 1} where the elements are ordered in decreasing order of sequence positions.

We continue such reduction iteratively until we get a vector(θni = θm0
i , θm1

i , . . . , θ
mM(i)

i ) for

some M(i) ∈ {0, . . . , n − 2} where the elements are ordered in decreasing order of sequence

positions and θml
i < θ

ml+1

i for all l ∈ {0, . . . ,M(i) − 1}. This is the type cut-off vector for

agent-i.

Definition 7 (Type Cut-off vector of agent-i ) For all agents j ∈ N , a given θ−i, per-period

cost functions fj(k̂, θk) and all positions k̂ ∈ {2, . . . , n}, agent-i’s type cut-off vector is defined

as θcfsi := (θni = θm0
i , θm1

i , . . . , θ
mM(i)

i ) where every θml
i is a type cut-off of agent-i for some

position m̂l ∈ {2, . . . , n} satisfying m̂l > m̂l+1 and θml
i < θ

ml+1

i for all l ∈ {0, . . . ,M(i)−1}.

Every agent can obtain the first and the last position for some report. The number of positions

that agent-i can obtain by varying his reports is equal to M(i) + 1. If agent-i’s report θi ∈

[0, θni ]
9, he is served last. If θi ∈ (θml

i , θ
ml+1

i ), then σJA
i (θi, θ−i) = m̂l+1 because agent-i

has more than the minimum cost in all positions after m̂l+1 and he has the minimum cost

9If his reported cost is tied with any cut-off, the tie-breaking rule ≻TB allocates the position to agent-i.
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for that position.

We define the transfer rule τJA below.

Definition 8 The transfer rule τJA(θi, θ−i) for any profile (θi, θ−i) ∈ Rn
+, every agent-i ∈ N

with cut-off(s) vector θcfsi := (θni = θm0
i , . . . , θ

mM(i)

i ), and arbitrary hi(θ−i) : Rn−1
+ → R is

defined as:

τJAi (θ) =


hi(θ−i) if σJA

i (θ) = n

hi(θ−i)−
∑l

r=1

∑m̂r−1

j=m̂r+1 fi(j, θ
mr−1

i ) if σJA
i (θ) = m̂l

(18)

The transfer of agent-i according the rule τJA is the following:

� If the agent is served last, he gets an arbitrary amount h(θ−i).

� If his position (say position-k = m̂r) is not the last position then for each position

k + 1, k + 2, . . . , m̂r−1 where θ
mr−1

i is the lowest type for which agent-i could get

position m̂r, he pays the cost
∑m̂r

j=k+1 fi(j, θ
mr−1

i ), for all positions m̂r−1+1, m̂r−1+

2, . . . , m̂r−2, the lowest type he should have been to be served in position m̂r−1 is

the cut-off θ
mr−2

i , so he pays the cost
∑m̂r−2

j=m̂r−1+1 fi(j, θ
mr−2

i ), and so on.

We state our main result as Theorem 2.

Theorem 2 For any QD =< N , {fi(k, ·)}i∈N > and any profile θ ∈ Rn
+, the mechanism

µJA = (σJA, τ) is DSIC if and only if the transfer rule is τJA.

Proof For any arbitrary agent-i, fix any θ−i ∈ Rn−1
+ . Consider any mechanism µ = (σJA, τ).

Let µi(θ) = (σJA
i (θ), τi(θ)) denote agent-i’s bundle under the mechanism µ when profile θ

is reported. Let ui(µi(θ
′
i, θ−i); θi) denote the utility of agent-i from the bundle µi(θ

′
i, θ−i)

when his true type is θi and he reports θ′i.

For any k ∈ {1, . . . , n}, let θki , θ̂
k
i ∈ R+ be any two reports of agent-i such that σJA

i (θki , θ−i)
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=σJA
i (θ̂ki , θ−i) = k 10.

ui(µi(θ
k
i , θ−i); θ

k
i ) = −F k

i (θ
k
i ) + τi(θ

k
i , θ−i) (19)

ui(µi(θ̂
k
i , θ−i); θ

k
i ) = −F k

i (θ
k
i ) + τi(θ̂

k
i , θ−i) (20)

ui(µi(θ̂
k
i , θ−i); θ̂

k
i ) = −F k

i (θ̂
k
i ) + τi(θ̂

k
i , θ−i) (21)

ui(µi(θ
k
i , θ−i); θ̂

k
i ) = −F k

i (θ̂
k
i ) + τi(θ

k
i , θ−i) (22)

τi(θ
k
i , θ−i) = τi(θ̂

k
i , θ−i) (23)

If the mechanism µ implements the queueing rule σJA in Dominant Strategies, then 19 ≥ 20

and 21 ≥ 22. The transfer of any agent must be independent of his own report if his position

in the queue does not change, i.e., condition 23 is necessary.

We now consider an agent’s reports when the reports lead to different queue positions. Since

θ−i is fixed, there is some agent-j satisfying : j = argminl∈N\{i} F
n
l (θl)

11. Let θni be the

highest report θi ∈ R+ such that i ∈ argminl∈N Fn
l (θl)

12. Notice that θni is the lowest report

for which agent-i can obtain a better position than the last position if the tie breaking rule

favours him. Therefore Fn
i (θni ) = Fn

j (θj) = minl∈N Fn
l (θl), and hence θni = Fn−1

i (Fn
j (θj) -

the cut-off for agent-i for position-n. Implementation in Dominant Strategies would demand

that the utility of agent-i be the same no matter how the tie is resolved i.e. the mechanism

be Essentially Single Valued. If this is not true, then agent-i can misreport to be in a tie

(or not in a tie) to get the advantage (or avoid disadvantage) of the tie-breaking rule. Hence

we can calculate his utility i at position-n, and the position he would get if tie is resolved

differently. The tie-breaking rule is the same, but with arbitrary choice of agent-i, arbitrary

θ−i all cases need consideration. Let m̂1 denote the position of agent-i if tie is resolved in his

favour. This demands that the utilities in equation 24 and in 25 be equal. Let θm1
i denote

the highest report fo which σJA(θi, θ−i) may be m̂1.

ui(µi(θ
n
i , θ−i); θ

n
i ) = −Fn

i (θni ) + τi(θ
n
i , θ−i) (24)

ui(µi(θ
n
i , θ−i); θ

n
i ) = −F m̂1

i (θni ) + τ̃i(θ
n
i , θ−i) (25)

10It can be verified that σJA(θk
i , θ−i) = σJA(θ̂k

i , θ−i)
11If there are more than one such agents, consider any such agent arbitrarily.
12The functions Fk

i (θi) are increasing functions of θi. Hence, we can find a unique θi corresponding to

any value of Fk
i (θi) for all periods, all agents, and all reports θi.
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Thus, another necessary condition for the transfer rule is condition 26.

τi(θ
n
i , θ−i)− τ̃i(θ

n
i , θ−i) = Fn

i (θni )− F m̂1
i (θni ) =

n∑
l=m̂1+1

fi(l, θ
n
i ) (26)

Suppose θ
ml−1

i is the lowest type of agent-i so that he may obtain position m̂l ∈ {1, . . . , n−1}

and the highest type so that he can obtain position m̂l−1 ∈ {2, . . . , n}. Clearly, m̂l < m̂l−1

and θ
ml−1

i is the type cut-off of agent-i for position m̂l−1. Since DSIC demands Essentially

Single-Valued-ness, we need the utilities in equations 27 and 28 to be equal.

ui(µi(θ
ml−1

i , θ−i); θ
ml−1

i ) = −F
m̂l−1

i (θ
ml−1

i ) + τi(θ
ml−1

i , θ−i) (27)

ui(µi(θ
ml−1

i , θ−i); θ
ml−1

i ) = −F m̂l
i (θ

ml−1

i ) + τ̃i(θ
ml−1

i , θ−i) (28)

Thus, another necessary condition for the transfer rule is condition 29 for all positions m̂l

and m̂l−1 obtainable by agent-i.

τi(θ
ml−1

i , θ−i)− τ̃i(θ
ml−1

i , θ−i) = F
m̂l−1

i (θ
ml−1

i )− F m̂l
i (θ

ml−1

i ) =

m̂l−1∑
l=m̂l+1

fi(l, θ
ml−1

i ) (29)

From conditions 23 and 29, if θi ∈ R+
13 is any report such that σJA(θi, θ−i) = m̂l, then for

all obtainable positions m̂l ∈ {1, . . . , n− 1}, equation 30 is necessary.

τi(θi, θ−i) = τ̃i(θ
ml−1

i , θ−i) = τi(θ
ml−1

i , θ−i)−
m̂l−1∑

l=m̂l+1

fi(l, θ
ml−1

i ) (30)

From equation 30, we have τ̃i(θ
ml−1

i , θ−i) = τi(θ
ml
i , θ−i). Suppose θ̄i is such that

σJA
i (θ̄i, θ−i) = m̂r for some r ∈ {0, . . . ,M(i)}. From 30, τi(θ̄i, θ−i) = τ̃i(θ

mr−1

i , θ−i) =

τi(θ
mr
i , θ−i). Let m̂r > m̂l, without loss of generality.

ui(µi(θi, θ−i); θi) = −F m̂l
i (θi) + τi(θi, θ−i) = −F m̂l

i (θi) + τi(θ
ml
i , θ−i) (31)

ui(µi(θ̄i, θ−i); θ̄i) = −F m̂r
i (θ̄i) + τi(θ̄i, θ−i) = −F m̂r

i (θ̄i) + τi(θ
mr
i , θ−i) (32)

ui(µi(θ̄i, θ−i); θi) = −F m̂r
i (θi) + τi(θ̄i, θ−i) = −F m̂r

i (θi) + τi(θ
mr
i , θ−i) (33)

ui(µi(θi, θ−i); θ̄i) = −F m̂l
i (θ̄i) + τi(θi, θ−i) = −F m̂l

i (θ̄i) + τi(θ
ml
i , θ−i) (34)

13We know from the way the Just Algorithm works that such θi ∈ [θ
ml−1
i , θ

ml
i ]
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The DSIC condition requires that 24 ≥ 33 and 25 ≥ 34 which together demand condition 35.

m̂r∑
l=m̂l+1

fi(l, θi) ≥ τi(θ
mr
i , θ−i)− τi(θ

mr
i , θ−i) ≥

m̂r∑
l=m̂l+1

fi(l, θ̄i) (35)

Proof Let {1, . . . , m̂l, . . . , m̂r, . . . , n} be obtainable positions for agent-i and

(θni , . . . , θ
mr
i , . . . , θml

i , . . . , θ
mM(i)

i ) be the type cut-off(s) vector. Let l = r + t for some

1 ≤ t ≤ M(i) − 1. Then θmr
i ≤ θ

mr+t

i ≤ θml
i for all t. The cost functions fi(k, θi) are

non-decreasing for all k ∈ {2, . . . , n}. Hence, the inequality 35 is always valid. Moreover, if

the necessary conditions 23, 29 and 30 hold then condition 35 always holds, and is thus not a

binding condition. This means that if the mechanism is DSIC for reports that change obtain-

able positions locally then the mechanism is also DSIC for reports that change the agent’s

position globally. Adding condition 26 to other necessary conditions, we get τ = τJA. This

completes the only-if part of the proof. It is easy to verify that the transfer rule τJA satisfies

conditions 23, 26 29 and 30. The verification is left to the reader. This completes the proof.

□

Remark 3 In the transfer rule τJA, notice that if for every agent-i ∈ N and ∀θ−i ∈ R++,

we let hi(θ−i) = 0, then the sum of transfers is negative. Therefore the identified class of

mechanism includes feasible mechanisms.

We end this section with a demonstration of the proposed mechanism. We take the same

values as in Example 2 and demonstrate that agent-2 cannot gainfully misreport.

Example 3 Consider three agents N = {1, 2, 3}. Let the tie-breaking rule be : 1 ≻TB 2 ≻TB

3. Let θ1 = 5, θ2 = 7 and θ3 = 15. The cost matrix is given below.

θ =


θ1

θ2

θ3

 =


θ1 θ1 18θ1

θ2 2θ2 11θ2

θ3 3θ3 3θ3

 →


θ1 2θ1 20θ1

θ2 3θ2 14θ2

θ3 4θ3 7θ3

 =


5 10 100

θ2 3θ2 14θ2

15 60 105


If agent-2 reports truthfully, then he is served in position 3, and obtains a transfer of h2(θ−2).

His total utility is u2(σ
JA
2 (θ), τJA2 (θ)) = h2(θ−2)− 98.
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If agent-2 reports his type θ′2 ∈ (0, 10014 ], then σJA
2 (θ′2, θ−2) = 3, and τJA2 (θ′2, θ−2) = h2(θ−2).

Therefore, u2(σ
JA
2 (θ′2, θ−2), τ

JA
2 (θ′2, θ−2); θ2) = −98 + h2(θ−2) = u2(σ

JA
2 (θ), τJA2 (θ)).

If he reports his type θ̂2 ∈ ( 10014 , 20], then σJA
2 (θ̂2, θ−2) = 2 and τJA2 (θ̂2, θ−2) = h2(θ−2) −

11( 10014 ). Therefore, u2(σ
JA
2 (θ̂2, θ−2), τ

JA
2 (θ̂2, θ−2); θ2) = −21+h2(θ−2)−11( 10014 ) ≈ −99.57+

h2(θ−2) < u2(σ
JA
2 (θ), τJA2 (θ)).

Similarly, for any report θ̄2 ∈ (20,∞), σJA
2 (θ̄2, θ−2) = 1 and τJA2 (θ̄2, θ−2) = h2(θ−2) −

11( 10014 )− 2(20). Therefore, u2(σ
JA
2 (θ̄2, θ−2), τ

JA
2 (θ̄2, θ−2); θ2) = −7 + h2(θ−2)− 11( 10014 )−

2(20) ≈ −125.57 + h2(θ−2) < u2(σ
JA
2 (θ), τJA2 (θ)). Hence, with the transfer rule τJA, agent-

2 can never gainfully manipulate. The same may be verified for other agents and considering

other true types of agent-2. This completes the example.

Example ??

6 Conclusion

In this paper, we examined the challenge of implementing a Rawlsian queueing rule in

queueing problems where agents have heterogeneous per-period waiting costs. We introduced

the Just Algorithm, a straightforward method that consistently selects a Rawlsian queue

under complete information by minimising the maximum individual waiting cost among

all agents. Our primary objective was to design mechanisms that implement the Rawlsian

queue selected by the Just Algorithm in Dominant Strategies, thereby ensuring Rawlsian

fairness even when agents act strategically.

We found that within the unrestricted domain of agents’ types, where agents possess

multidimensional private information, no Dominant Strategy Incentive-Compatible (DSIC)

mechanism exists that can implement the Rawlsian queue selected by the Just Algorithm.

Furthermore, the Rawlsian queue selected by the Just Algorithm is not even ex-post imple-

mentable in our setting. This negative result underscores the inherent challenges of designing

fair mechanisms in multidimensional environments, even under quasilinear preferences.

To address this impossibility, we introduced a domain restriction to one-dimensional

private-information. Specifically, while agents differ in how their per-period waiting costs

evolve over periods, this aspect is public-information. Their private-information is confined

29



to their first-period waiting cost. This restriction is non-trivial because it does not allow us

to identify a Rawlsian queue solely by ordering agents’ private-information, contrasting with

the achievements in seeking First-Best mechanisms as discussed in Mitra (2001). If agent’s

differ only in the private type and the publicly known aspect is identical for all agents, then

the aggregate cost minimising queue is also a Rawlsian queue and results from Mitra (2001)

would apply. But we did not impose any such restriction.

Within the restricted domain, we identified a class of DSIC mechanisms that implement the

Rawlsian queueing rule in Dominant Strategies. An interesting observation is that while the

cut-off(s) approach is well studied in the Mechanism Design literature, the same approach

applied to our frameworks yields different number of cut-off(s) for different agents. Further,

one agent may be pivotal to determining cut-off(s) for multiple queue positions for another

agent, and not all queue positions might be accessible for an agent given other’s types. The

origin of this novel feature lies in the functions determining how agents’ costs evolve with

queue positions. The DSIC mechanism we present is robust in the sense that none of this

lies beyond the scope of our mechanism.

These findings contributes to the broader investigation of implementing fair social choice or

public decision rules in quasi-linear environments. It highlights the complexities involved in

mechanism design when dealing with multidimensional private-information and the pursuit

of fairness. While our domain restriction is sufficient for the existence of DSIC mechanisms

implementing the Rawlsian queue, it may not be necessary. This observation opens avenues

for future research to explore the necessary conditions for the existence of such mecha-

nisms. Notably, these conditions align with the Weak-Monotonicity condition identified in

Bikhchandani et al (2006), but characterising such mechanisms remains an open question of

interest.

By addressing these challenges, our work lays the groundwork for further exploration into

fair mechanism design in queueing problems with heterogeneous waiting costs. We hope

that this research stimulates additional studies aimed at understanding and overcoming the

obstacles inherent in implementing fairness in complex economic settings.
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A Example: Rawlsian Queue

Example 4 Consider a three-agent case, N = {i, j, k}. Let the reported waiting cost vectors

be θi = (2, 11, 1), θj = (3, 4, 1), and , θk = (5, 9, 1). The profile is given by:

θ =


θi

θj

θk

 =


2 11 1

3 4 1

5 9 1

 (36)

Table 4 summarises the problem. There are a total of six possible queues. Queue ijk means

Queue(s)→ ijk ikj jik jki kij kji∑σi
h=1 θih 2 2 13 14 13 14∑σj

h=1 θjh 7 8 3 3 8 7∑σk
h=1 θkh 15 14 15 14 5 5

maxl∈N
∑σl

h=1 θlh 15 14 15 14 13 14∑
l∈N

∑σl
h=1 θlh 24 24 31 31 26 26

Table 1 Individual costs, Aggregate Costs, and
Maximum Individual costs in all possible queues for the
given θ.

that agent-i is served first, followed by agent-j in the second position, and agent-k in the

third position. Whenever agent-i is served in the first position(in queues ijk and ikj), the

cost incurred is equal to the first column entry in row-i of profile θ, i.e 2, whenever agent-i

is served in the second position(in queues jik and kij), the cost incurred is equal to the sum

of the first column and second column entry in row-i of profile θ, i.e 2+11=13, and whenever

agent-i is served in the third position(in queues jki and kji), the cost incurred is equal to the

sum of the entries in the first three columns in row-i of profile θ, i.e 2+11+1=14. The cost for

other agents and queues is calculated similarly. Table 4 lists all possible queues in columns

and the costs incurred by each of the agents in that queue. For each of the six queues, we

calculate maxl∈N
∑σl

h=1 θlh, which is the maximum individual cost incurred by any agent

in that queue in corresponding rows. For instance, in the queue kji, agent-i incurs a cost of

14, which is the maximum individual cost in that queue. There is only one Rawlsian queue:
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kij ∈ argminσ∈Σ(N) maxl∈N
∑σl

h=1 θlh. Note that there are two efficient 14 queues: ijk and

kij ∈ argminσ∈Σ(N)

∑
l∈N

∑σl

h=1 θlh, but they are not Rawlsian.

Example 4 demonstrates the distinction between efficient and Rawlsian queues.

To demonstrate the impossibility of designing a Dominant Strategy Incentive-Compatible

(DSIC) mechanism under unrestricted types, consider the following two-agent example.

Example 5 Consider a two agent case, N = {1, 2} with reported waiting cost vectors

θ1 = (8, 3) and θ2 = (7, 3). The Just Algorithm for perceptive agents assigns σJA
1 (θ) =

1. The utility of agent-1 is u1(σ
JA(θ), τ(θ)) = −(8) + τ((8, 3), (7, 3)). Suppose agent-1

were to misreport the waiting cost vector as θ̃1 = (5, 4). σJA
1 (θ̃1, θ2) = 2. Therefore,

u1(σ
JA(θ̃1, θ2), τ(θ̃1, θ2)) = −(8 + 3) + τ(θ̃1, θ2). Implementation in Dominant Strategies

demands: u1(σ
JA(θ), τ(θ)) ≥ u1(σ

JA(θ̃1, θ2), τ(θ̃1, θ2)) ≡ 3 ≥ τ(θ̃1, θ2)− τ((8, 3), (7, 3)).

If the true waiting cost vector of agent-1 is (5, 4) and the misreport is (8, 3), then Imple-

mentation in Dominant Strategies demands: u1(σ
JA(θ̃1, θ2), τ(θ̃1, θ2)) ≥ u1(σ

JA(θ), τ(θ)) ≡

τ(θ̃1, θ2) − τ((8, 3), (7, 3)) ≥ 4. One and only one of the two Implementation can hold, and

therefore, it is impossible to find any transfer rules τ(θ), τ(θ̃1, θ2)) satisfying both conditions

simultaneously.

Example 5 confirms that, even in a simple two-agent scenario, no transfer rule can satisfy

the conditions required for DSIC implementation when agents have unrestricted types. It

highlights the challenges of achieving fairness in multi-dimensional settings and motivates

the need for domain restrictions.

References

Armstrong M (1996) Multiproduct nonlinear pricing. Econometrica 64(1):51–75. URL

http://www.jstor.org/stable/2171924

14A Queue is called efficient if it minimises the aggregate waiting cost.

32

http://www.jstor.org/stable/2171924


Armstrong M (2000) Optimal multi-object auctions. The Review of Economic Studies

67(3):455–481. URL http://www.jstor.org/stable/2566962

Armstrong M, Rochet JC (1999) Multi-dimensional screening:: A user’s guide. Euro-

pean Economic Review 43(4):959–979. https://doi.org/https://doi.org/10.1016/

S0014-2921(98)00108-1, URL https://www.sciencedirect.com/science/article/pii/

S0014292198001081

Bikhchandani S, Chatterji S, Lavi R, et al (2006) Weak monotonicity

characterizes deterministic dominant-strategy implementation. Econometrica

74(4):1109–1132. https://doi.org/https://doi.org/10.1111/j.1468-0262.2006.00695.

x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2006.00695.x,

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0262.2006.00695.x

Cai Y, Daskalakis C, Weinberg SM (2012) Optimal multi-dimensional mechanism

design: Reducing revenue to welfare maximization. In: Proceedings of the 2012 IEEE

53rd Annual Symposium on Foundations of Computer Science. IEEE Computer

Society, USA, FOCS ’12, p 130–139, https://doi.org/10.1109/FOCS.2012.88, URL

https://doi.org/10.1109/FOCS.2012.88

Chun Y (2006a) No-envy in queueing problems. Economic Theory 29:151–162. URL

https://doi.org/10.1007/s00199-005-0011-4

Chun Y (2006b) A pessimistic approach to the queueing problem. Mathe-

matical Social Sciences 51(2):171–181. https://doi.org/https://doi.org/10.1016/

j.mathsocsci.2005.08.002, URL https://www.sciencedirect.com/science/article/pii/

S0165489605001058

Chun Y (2011) Consistency and monotonicity in sequencing problems. Inter-

national Journal of Game Theory 40:29–41. URL https://doi.org/10.1007/

33

http://www.jstor.org/stable/2566962
https://doi.org/https://doi.org/10.1016/S0014-2921(98)00108-1
https://doi.org/https://doi.org/10.1016/S0014-2921(98)00108-1
https://www.sciencedirect.com/science/article/pii/S0014292198001081
https://www.sciencedirect.com/science/article/pii/S0014292198001081
https://doi.org/https://doi.org/10.1111/j.1468-0262.2006.00695.x
https://doi.org/https://doi.org/10.1111/j.1468-0262.2006.00695.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2006.00695.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0262.2006.00695.x
https://doi.org/10.1109/FOCS.2012.88
https://doi.org/10.1109/FOCS.2012.88
https://doi.org/10.1007/s00199-005-0011-4
https://doi.org/https://doi.org/10.1016/j.mathsocsci.2005.08.002
https://doi.org/https://doi.org/10.1016/j.mathsocsci.2005.08.002
https://www.sciencedirect.com/science/article/pii/S0165489605001058
https://www.sciencedirect.com/science/article/pii/S0165489605001058
https://doi.org/10.1007/s00182-010-0225-y
https://doi.org/10.1007/s00182-010-0225-y


s00182-010-0225-y

De P, Mitra M (2017) Incentives and justice for sequencing problems. Economic Theory

64:239–264. https://doi.org/10.1007/S00199-016-0983-2

Dolan RJ (1978) Incentive mechanisms for priority queuing problems. The Bell Journal

of Economics 9(2):421–436. URL http://www.jstor.org/stable/3003591

Duives J, Heydenreich B, Mishra D, et al (2015) On optimal mechanism design for

a sequencing problem. Journal of scheduling 18:45–59. https://doi.org/https://doi.

org/10.1007/s10951-014-0378-9

Hartline JD, Karlin AR (2007) Profit maximization in mechanism design. In:

Nisan N, Roughgarden T, Tardos E, et al (eds) Algorithmic Game The-

ory. Cambridge University Press, p 331–362, https://doi.org/https://doi.

org/10.1017/CBO9780511800481.015, URL https://www.cambridge.org/core/

books/abs/algorithmic-game-theory/profit-maximization-in-mechanism-design/

9709287AC41D50201F08B7B62E4E783F#

Hashimoto K, Saitoh H (2012) Strategy-proof and anonymous rule in queueing prob-

lems: A relationship between equity and efficiency. Social Choice and Welfare

38:473–480. https://doi.org/10.1007/S00355-011-0540-7

Hoeksma R, Uetz M (2013) Two dimensional optimal mechanism design for a

sequencing problem. In: Goemans M, Correa J (eds) Integer Programming and Com-

binatorial Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 242–253,

URL https://link.springer.com/chapter/10.1007/978-3-642-36694-9 21

Jehiel P, Moldovanu B, Stacchetti E (1999) Multidimensional mechanism design for

auctions with externalities. Journal of Economic Theory 85(2):258–293. https://doi.

org/https://doi.org/10.1006/jeth.1998.2501, URL https://www.sciencedirect.com/

34

https://doi.org/10.1007/s00182-010-0225-y
https://doi.org/10.1007/s00182-010-0225-y
https://doi.org/10.1007/S00199-016-0983-2
http://www.jstor.org/stable/3003591
https://doi.org/https://doi.org/10.1007/s10951-014-0378-9
https://doi.org/https://doi.org/10.1007/s10951-014-0378-9
https://doi.org/https://doi.org/10.1017/CBO9780511800481.015
https://doi.org/https://doi.org/10.1017/CBO9780511800481.015
https://www.cambridge.org/core/books/abs/algorithmic-game-theory/profit-maximization-in-mechanism-design/9709287AC41D50201F08B7B62E4E783F#
https://www.cambridge.org/core/books/abs/algorithmic-game-theory/profit-maximization-in-mechanism-design/9709287AC41D50201F08B7B62E4E783F#
https://www.cambridge.org/core/books/abs/algorithmic-game-theory/profit-maximization-in-mechanism-design/9709287AC41D50201F08B7B62E4E783F#
https://doi.org/10.1007/S00355-011-0540-7
https://link.springer.com/chapter/10.1007/978-3-642-36694-9_21
https://doi.org/https://doi.org/10.1006/jeth.1998.2501
https://doi.org/https://doi.org/10.1006/jeth.1998.2501
https://www.sciencedirect.com/science/article/pii/S0022053198925017
https://www.sciencedirect.com/science/article/pii/S0022053198925017


science/article/pii/S0022053198925017

Malakhov A, Vohra RV (2009) An optimal auction for capacity constrained bid-

ders: a network perspective. Economic Theory 39:113–128. URL https://api.

semanticscholar.org/CorpusID:154980847

Manelli AM, Vincent DR (2007) Multidimensional mechanism design: Revenue maxi-

mization and the multiple-good monopoly. Journal of Economic Theory 137(1):153–

185. https://doi.org/https://doi.org/10.1016/j.jet.2006.12.007, URL https://www.

sciencedirect.com/science/article/pii/S0022053107000348

Maniquet F (2003) A characterization of the shapley value in queueing problems. Jour-

nal of Economic Theory 109(1):90–103. https://doi.org/https://doi.org/10.1016/

S0022-0531(02)00036-4, URL https://www.sciencedirect.com/science/article/pii/

S0022053102000364

Mishra D, Rangarajan B (2007) Cost sharing in a job scheduling problem. Social

Choice and Welfare 29(3):369–382. URL http://www.jstor.org/stable/41107826

Mishra D, Roy S (2013) Implementation in multidimensional dichotomous

domains. Theoretical Economics 8(2):431–466. https://doi.org/https://doi.org/

10.3982/TE1239, URL https://onlinelibrary.wiley.com/doi/abs/10.3982/TE1239,

https://onlinelibrary.wiley.com/doi/pdf/10.3982/TE1239

Mitra M (2001) Mechanism design in queueing problems. Economic Theory 17:277–

305. https://doi.org/10.1007/PL00004107

Mitra M (2002) Achieving the first best in sequencing problems. Review of Economic

Design 7:75–91. URL https://doi.org/10.1007/s100580200071

35

https://www.sciencedirect.com/science/article/pii/S0022053198925017
https://www.sciencedirect.com/science/article/pii/S0022053198925017
https://api.semanticscholar.org/CorpusID:154980847
https://api.semanticscholar.org/CorpusID:154980847
https://doi.org/https://doi.org/10.1016/j.jet.2006.12.007
https://www.sciencedirect.com/science/article/pii/S0022053107000348
https://www.sciencedirect.com/science/article/pii/S0022053107000348
https://doi.org/https://doi.org/10.1016/S0022-0531(02)00036-4
https://doi.org/https://doi.org/10.1016/S0022-0531(02)00036-4
https://www.sciencedirect.com/science/article/pii/S0022053102000364
https://www.sciencedirect.com/science/article/pii/S0022053102000364
http://www.jstor.org/stable/41107826
https://doi.org/https://doi.org/10.3982/TE1239
https://doi.org/https://doi.org/10.3982/TE1239
https://onlinelibrary.wiley.com/doi/abs/10.3982/TE1239
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.3982/TE1239
https://doi.org/10.1007/PL00004107
https://doi.org/10.1007/s100580200071


Moulin H (2007) On scheduling fees to prevent merging, splitting, and transferring of

jobs. Mathematics of Operations Research 32(2):266–283. https://doi.org/10.1287/

moor.1060.0239, URL https://doi.org/10.1287/moor.1060.0239

Mussa M, Rosen S (1978) Monopoly and product quality. Journal of Economic The-

ory 18(2):301–317. https://doi.org/https://doi.org/10.1016/0022-0531(78)90085-6,

URL https://www.sciencedirect.com/science/article/pii/0022053178900856

Myerson RB (1981) Optimal auction design. Mathematics of Operations Research

6(1):58–73. URL http://www.jstor.org/stable/3689266

Pai MM, Vohra R (2014) Optimal auctions with financially constrained buy-

ers. Journal of Economic Theory 150:383–425. https://doi.org/https://doi.org/

10.1016/j.jet.2013.09.015, URL https://www.sciencedirect.com/science/article/pii/

S0022053113001701
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