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Abstract

We study pay-as-bid auctions with budget-constrained bidders with constant marginal valuation
(flat demand). We first show that for any bidder, a best-response strategy to a sizable class of strategies
necessarily involves the bidder placing flat bids, i.e., equal bids for all the objects. We then establish
the existence of equilibrium through a sufficiency condition–close to being necessary– that guarantees
the local concavity of the expected payoff function. We subsequently show that the equilibrium breaks
down when the number of bidders is sufficiently high. The non-existence result demonstrates that the
equilibrium existence in pay-as-bid auctions is sensitive to the number of bidders in the presence of
budgets.
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1. Introduction

Economists have long grappled with the problem of selling multiple homogeneous items. A
well-accepted solution to this problem is to accomplish this task through auctions. In this
context, the pay-as-bid auction– wherein the winner pays her bid for the items she wins– is a
commonly used format; for instance, treasury bonds auctions (Hortaçsu and McAdams, 2010)
and electricity market auctions (Genc, 2009) use the pay-as-bid auction format.

Previous literature, notably Pycia and Woodward (2023) and Ausubel et al. (2014) has stud-
ied pay-as-bid auctions. Absent any financial constraints, these papers find that the equi-
librium bid of a bidder reflects her willingness to pay. Nevertheless, in many real-world
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scenarios, the bids are also impacted by budget constraints. Indeed, the budget constraints
are a salient, “ubiquitous,” and practical consideration in a multi-unit auction environment
(Bulow et al., 2009, Salant, 1997). However, the literature is largely silent on the issue of
budgets in multi-unit auctions.

We study a pay-as-bid auction where the bidders may face budget constraints, limiting
their ability to pay. To that end, we work with hard budget constraints– no bidder can ever
breach her budget. Seminal papers– notably Che and Gale (1998) and Kotowski (2020) have
studied the impact of budget constraints on single-unit first-price auctions. Nevertheless, few
papers incorporate budget constraints in multi-unit pay-as-bid auctions.

We use the “share auction” framework due to Wilson (1979). The literature has fruitfully
used the share auction model to study pay-as-bid auctions, for instance, Back and Zender
(1993), Wang and Zender (2002), Ausubel et al. (2014), and Kastl (2011). With hard budget
constraints, the tractability of the share auction model comes with a cost– the pay-as-bid auc-
tion with budgets becomes a discontinuous game with non-compact, type-dependent action
space. Indeed, the budget of a bidder determines the upper bound on the total bid. Thus,
our results also contribute to the literature on discontinuous games– we show the existence
of an equilibrium in a class of games with non-compact and type-dependent action spaces.

The literature on pay-as-bid auctions has singled out an overarching intuition: in equilib-
rium, the bidders place a bidding function that is “as flat as possible” (Back and Zender,
1993). When the bidders have a constant marginal valuation for each additional share/object,
the equilibrium strategy for each bidder prescribes that the bidder bids an equal amount for
each share, i.e., the equilibrium is a flat-bid equilibrium (Ausubel et al., 2014, Kastl, 2011 and
Kastl, 2012). Flat-bid equilibria are advantageous; they reduce the multi-unit auction to a
single-unit auction.

Nevertheless, the presence of budgets may render the flat-bid intuition infructuous. Indeed,
the literature studying multi-unit auctions in the presence of budgets has often drawn a link
between multi-unit auctions and Blotto games (Palfrey, 1980 and Ghosh, 2021). We show that
the presence of types who may be budget-unconstrained can recover the flat-bid intuition.
We present this result using a best-response argument in Theorem 1. The flat-bid intuition in
Theorem 1 breaks the link between a Blotto game and a pay-as-bid auction.

The budget constraints break the equivalence between a single-unit first-price auction and a
pay-as-bid auction. A bidder’s action space is a subset of R in a single-unit first-price auction,
while the bidder’s action space is a subset of W1,1(0, 1) in a multi-unit auction. Consequently,
the budget appears as a constraint in a variational problem rather than a constraint in a single-
dimensional optimization problem. Consequently, a flat-bid equilibrium requires additional
conditions– necessity and sufficiency– apart from the conditions in Che and Gale (1998) and
Kotowski (2020). We establish sufficient and necessary conditions for a symmetric pure flat-
bid strategy equilibrium in Theorem 2 and Corollary 1.1

The additional conditions in Theorem 2 and Corollary 1 have an intuitive interpretation,
viz., the expected payoff function should be locally concave in the bid. In the absence of
budgets, the bids reflect the valuations. Therefore, an exogenous log-concave type distribu-
tion implies a log-concave bid distribution, leading to a concave expected payoff function. In

1W1,1(0, 1) is the space of all absolutely continuous functions with domain [0, 1].
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contrast, budgets create an endogenous distribution of opponent’s bids. Therefore, the con-
cavity of the payoff function need not hold. One of our contributions is to provide a sufficient
condition so that the payoff function is locally concave near the equilibrium strategy profile.
Our equilibrium existence result goes hand-in-hand with the local concavity of the payoff
function.

The additional advantage of our equilibrium characterization in Theorem 2 and Corollary 1
is that we uncover an undesirable impact of budgets. These conditions fail when the number
of bidders is large. Consequently, the flat-bid equilibrium fails to exist when the number of
bidders is large (Theorem 3). As far as we know, the non-existence phenomenon in Theorem 3
is new. Nevertheless, it results from the failure of local concavity. Heuristically, when the
number of bidders increases, the expected payoff function for a budget-constrained bidder
becomes convex in the bids. Consequently, the flat-bid equilibrium breaks down.

The paper is organized as follows. The next subsection outlines the relevant literature.
Section 2 presents the framework. Section 3 establishes Theorem 1. Section 4 presents the
existence results (Theorem 2 and Corollary 1). Section 5 presents the non-existence results
(Theorem 3), and Section 6 concludes. The formal proofs of the theorems are in the appendix.

1.1. Relevant Literature

The classical share auction model starts from Wilson (1979). Indeed, a part of Wilson (1979)’s
motivation to study a share auction model stems from the possible budget constraints of
bidders. The share auction model is tractable since it is amenable to a variational approach.

However, the literature on the implications of budget constraints on multi-unit auctions is
small. Papers that include budget constraints in multi-unit auctions either restrict to complete
information (Palfrey, 1980), two units (Ghosh, 2021), or a limited degree of informational
asymmetry (Cole et al., 2022). A complete treatment of the impact of budget constraints with
a high degree of informational asymmetry and multiple items is absent; we fill the gap.

The literature on pay-as-bid auctions is underdeveloped compared to the literature on
uniform-price auctions. One particular strand of the literature assumes no informational
asymmetry between the bidders (See Pycia and Woodward, 2023, Anderson et al., 2013, Wit-
twer, 2020 etc.). The only source of uncertainty is a stochastic aggregate supply. Nevertheless,
as some papers (Holmberg, 2009, Genc, 2009 and Anderson et al., 2013) show, the existence
of a pure strategy equilibrium is not guaranteed in this setting.

Another strand of literature (for instance Ausubel et al., 2014, Kastl, 2011, Hortaçsu and
McAdams, 2010 and Linnenbrink, 2023) ignores any financial constraints, assumes a private
information setting and characterizes the equilibrium. The bidders’ optimization problem is
a convex optimization problem. Therefore, the first-order conditions are also sufficient. In
the case of constant marginal valuations (also called flat or linear demand), the pay-as-bid
auctions mimic the single-unit first-price auction. Therefore, the existence of an equilibrium
follows the arguments in Vickrey (1961) or Riley and Samuelson (1981).

Another strand of literature studies the impact of budget constraints on the efficiency of
final allocations (Dobzinski et al., 2012, Hafalir et al., 2012). Nevertheless, these papers fo-
cus on dominant strategy mechanisms instead of Bayesian mechanisms. Consequently, their
equilibrium existence results are inapplicable to pay-as-bid auctions.
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Palfrey (1980) studies pay-as-bid auctions with budget constraints in the context of com-
plete information, wherein the pay-as-bid auctions are analogous to Blotto games. Ghosh
(2021) extends the analogy and studies parallel first-price auctions with private types. Ghosh
(2021)’s results can considered a purification of Blotto Games– the presence of private types
leads to a pure-strategy equilibrium in pay-as-bid auctions. Nevertheless, Ghosh (2021)’s
results preclude the presence of budget-unconstrained bidders.

The literature has focused more on single-unit auctions with budget constraints vis-a-vis
multi-unit auctions with budget constraints.Che and Gale (1998) is the seminal reference.
Kotowski (2020) studies a two-bidder first-price auction with affiliated valuations and inde-
pendent budgets. Pai and Vohra (2014) characterize the optimal auction for selling a single
object to budget-constrained bidders. Single-unit auctions are relatively straightforward to
analyze since the first-order conditions suffice for the equilibrium characterization. Indeed,
the second-order conditions are always uninformative.

Reny (2011) is the seminal reference for discontinuous Bayesian games and provides suffi-
cient conditions for a monotone pure-strategy equilibrium in discontinuous Bayesian games.
Reny (2011)’s conditions stem from a partial order on the type space. Reny (2020) provides a
survey of additional results about the existence of Bayes-Nash equilibria in behavioral strate-
gies in a large class of games. Carbonell-Nicolau and McLean (2018) define a condition called
“uniformly payoff secure" and shows the existence of Bayes-Nash equilibrium under a weak
condition.

2. Setting and Notation

A seller uses a pay-as-bid (discriminatory) auction to sell the shares of an infinitely divisible
object of unit mass. The seller’s opportunity cost is zero. For simplicity, we don’t consider
reserve prices.

There are N ex-ante symmetric bidders participating in the auction. Each bidder has a valu-
ation v ∈ [v, v] ⊆ R+ for the entire object. We consider bidders with constant marginal valua-
tion for shares; i.e., flat demands. In addition, each bidder has a total budget w ∈ [w, w] ⊆ R+.
Both individual valuations and budgets are private information. Thus, the type of any bid-
der is a random vector (V, W) distributed according to F with support [v, v] × [w, w], and
density function f . Note that while types are independent and identically distributed among
bidders, each bidder’s valuation and budget may be correlated. The common distribution
F of the random vector (V, W) induces a marginal distribution FV over valuations and a
marginal distribution FW over budgets. Denote the respective densities by fV and fW , which
are positive everywhere in their respective supports.

In a pay-as-bid auction, bidders simultaneously submit individual bidding functions (in-
verse demand functions). The seller aggregates these bidding functions and awards shares
to the highest bidders. In this paper, we restrict attention to absolutely continuous bidding
functions to be able to work with the private budget constraints.

Definition 1. A bidding function for bidder i = 1, 2, · · · , N is a weakly decreasing, absolutely
continuous function bi : [0, 1] → R+ that specifies, for each s ∈ [0, 1], the maximal amount bi(s) that
bidder i is willing to pay to obtain the share indexed s.
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Following the optimal control literature (Vinter, 2010), denote by B the space of all bidding
functions and endow it with the W1,1 norm. B is the action space of each bidder.2

As is usual in the literature, for a given profile of bidding functions b = (b1, . . . , bN), the
market clearing price P is defined to be the highest rejected bid, i.e.,

P = min
{

p : ∑N
i=1 b−1

i (p) ≤ 1
}

.

Bidder i’s individual demand function b−1
i (·) in the above expression is constructed by invert-

ing her bidding function and taking its vertical closure —see Ausubel et al. (2014) for details.
In the event of a tie, the seller uses a pro-rata tie-breaking rule at the margin.3

If bidder i with type realization (v, w) wins a measure of shares s ∈ [0, 1] using the bidding
function bi(·), her payment to the seller is

∫ s
0 bi(t) dt. Bidder i’s ex-post payoff Πi is then

Πi =
∫ s

0

(
v − bi(t)

)
dt

as long as
∫ s

0 bi(t) dt ≤ w. If bidder i’s total payment
∫ s

0 bi(t) dt > w, she suffers a large
negative payoff. Formally, we impose the hard budget constraints of Che and Gale (1998) in
their analysis of first-price auctions (of a single, indivisible object).

An observation before we proceed: the action space of the bidders is a subset of absolutely
continuous decreasing functions, that is B ⊆ W1,1(0, 1). Our restriction of action space is
stronger than, for instance, Ausubel et al. (2014) and Pycia and Woodward (2023).Ausubel
et al. (2014) and Pycia and Woodward (2023) allow for right-continuous bidding functions.
We express the individual optimization (best response) problem as a variational problem.
The approach necessitates that the derivatives uniquely determine a function. Allowing for
discontinuous bidding functions breaks the solution method.

2.1. Assumptions and Strategies

We maintain the next two assumptions throughout the paper.

Assumption 1. The type space [v, v]× [w, w] satisfies: v ≤ w ≤ v ≤ w.

Assumption 2. The joint distribution F over valuations and budgets satisfies the following conditions:

(i) The marginal densities fV , fW and the joint density of F are all differentiable in int([v, v] ×
[w, w]).

(ii) For any v ∈ (v, v), the function w 7→ w + 1
N−1

FV(v)+FW(w)−F(v,w)
Dw(FV(v)+FW(w)−F(v,w))

is strictly increasing.

2The W1,1 norm of an absolutely continuous function b : [0, 1] → R is defined as

∥b(·)∥W1,1 = ∥b(·)∥1 + ∥b′(·)∥1 =
∫ 1

0
|b(s)| ds +

∫ 1

0
|b′(s)| ds,

where b′(·) is the weak derivative of b(·). Note that b′(·) coincides with the standard derivative when b(·) is
a differentiable function (Brezis, 2010).

3This tie-breaking rule is common in literature —see Back and Zender (1993) and Ausubel et al. (2014), for
example.
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(iii) The limit α := lim
v→v+

w→w+

Dw(FV(v)+FW(w)−F(v,w))
Dv(FV(v)+FW(w)−F(v,w))

exists and is finite-valued.

Assumption 1 rules out issues of non-existence of equilibrium in auctions with budget
constraints that have been pointed out in the literature —e.g., Che and Gale (2006), Kotowski
(2020). Assumption 2–(ii) is from Che and Gale (1998) and ensures the existence of a unique
equilibrium in a single-unit, first price auction under private budgets and private valuations.
Assumption 2–(iii) is satisfied by many type distributions and is a regularity assumption.

Definition 2. A pure strategy for bidder i = 1, 2, · · · , N is a mapping βi : [v, v] × [w, w] → B.
The image of type (v, w) under strategy βi is the bidding function expressed as βi(· | v, w). A pure
strategy βi is budget-feasible for bidder i = 1, 2, · · · , N if it satisfies

∫ 1

0
βi(s | v, w) ds ≤ w, for all (v, w) ∈ [v, v]× [w, w].

The budget-feasibility condition restricts bidder i’s total bid
∫ 1

0 βi(s | v, w) ds to be less or
equal to her budget. Note that a generic type (v, w) of bidder i wins the entire object —and
pays her total bid— with a positive probability. Recall that bidder i gets an unbounded nega-
tive payoff if she is required to pay above her budget. Therefore, the budget-feasible strategy
generating a bidding function βi(s | v, w) ≡ v weakly dominates every budget-unfeasible
strategy. Consequently, the budget-feasibility condition is without any loss of generality.
Hereon, we focus on strategy profiles β = (β1, . . . , βN) under which every bidder’s strategy
is budget-feasible.

Fix a budget-feasible pure strategy βi for bidder i. Say her type realization (v, w) is budget-
constrained if

∫ 1
0 βi(s | v, w)ds = w and budget-unconstrained if

∫ 1
0 βi(s | v, w)ds < w.

Definition 3. A monotone strategy for bidder i = 1, 2, · · · , N is a budget-feasible pure strategy βi

that satisfies following properties:

(i) βi is a continuous mapping (with respect to the W1,1 topology on B).

(ii) For all s ∈ [0, 1], the mapping βi(s | ·, ·) is weakly increasing in (v, w), and strictly increasing
if both v and w rise.

Recall from Assumption 1 that v ≤ w and v ≤ w. Under any monotone strategy, a bidder
with valuation realization v places a bid of v for all shares —such a bidder has no incentive to
bid higher than v for any share and is never budget-constrained. In particular, βi(s | v, w) = v
for any bidder i following a monotone bidding strategy. Similarly, a bidder with budget
realization w never has an incentive to bid above w, for any share s ∈ [0, 1]. In particular,
βi(s | v, w) ≤ w. Thus, under monotone strategies, one has v ≤ βi(s | v, w) ≤ w for all s ∈ [0, 1]
and all i = 1, . . . , N.

Definition 4. A flat-bid strategy for bidder i = 1, 2, · · · , N is a monotone strategy βi that generates
bidding functions of the form

βi(s | v, w) = min {ϕi(v), w}, for each type (v, w)

where ϕi(v) is a strictly increasing, non-negative, absolutely continuous function on [v, v].
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In other words, under a flat-bid strategy, the bidding functions are always “flat”, i.e. con-
stant in shares. Since we focus on absolutely continuous bidding functions, a flat-bid strategy
is always non-decreasing as well as non-increasing. Note that, by construction, flat-bid strategies
are always budget-feasible.

2.2. The Expected Payoff Function and Equilibrium

For strategy profile β = (β1, . . . , βN), the market clearing price at type profile (v, w) is4

P(v, w) = min
{

p : ∑N
i=1 β−1

i (p | vi, wi) ≤ 1
}

.

Notice that, at the ex-ante stage, the market-clearing price function is a random variable that
depends on the strategy profile β — we omit β in the expression for the market clearing price
to ease the notation. Hereon, (v−i, w−i) and β−i will denote the types and strategy profile of
bidder i’s opponents.

Recall that the action space of the bidders is a subset of absolutely continuous bidding
functions. Therefore, when the market clears at type profile (v, w), any bidder i who wins
a positive mass of shares [0, si) must bid at least P(v, w) for any s ∈ [0, si). Thus, bidder i’s
ex-ante expected payoff under the budget-feasible strategy profile β can be expressed as

Πi(β) =
∫

v,w

(∫ 1

0

(
vi − βi(s | vi, wi)

)
1
{

βi(s | vi, wi) > P(v, w)
}

ds
)

d
N

∏
j=1

F(vj, wj).

Bidder i’ expected payoff when her type is (vi, wi) under the budget-feasible strategy profile
β can be expressed as

Πi(vi, wi | β) =
∫

v−i ,w−i

(∫ 1

0

(
vi − βi(s | vi, wi)

)
1
{

βi(s | vi, wi) > P(v, w)
}

ds
)

d ∏
j ̸=i

F(vj, wj).

A formal definition of the Bayes-Nash equilibrium follows.

Definition 5. A budget-feasible monotone pure strategy profile β ≡ {β j}N
j=1 is the Bayes-Nash

equilibrium of the pay-as-bid auction if for each bidder i, for F-almost every type (vi, wi), and for any
budget feasible strategy β̂i,

Πi(vi, wi | β) ≥ Πi(vi, wi | β̂i, β−i).

Henceforth, we shall use the term equilibrium to refer to the Bayes-Nash equilibrium.

It is more convenient to work with a market clearing price conditional on bidder i obtaining
the mass of shares s ∈ [0, 1]. We refer to this as the s–price faced by bidder i.

Definition 6. Fix a strategy profile β−i for i’s opponents. Given type profile (v−i, w−i), the s–price
for bidder i is the minimum bid required to win a measure of shares 0 ≤ s ≤ 1; i.e.,

Ps(v−i, w−i) := min
{

p : ∑j ̸=i β−1
j (p | vj, wj) ≤ 1 − s

}
.

4Recall that β−1
i (p | vi, wi) is bidder i’s individual demand function and is constructed by inverting her bidding

function and taking its vertical closure.
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The s–price for bidder i depends on β−i; we omit this dependency to ease the notation.
From bidder i’s perspective, (v−i, w−i) is unknown at the interim stage and therefore Ps is a
random variable. Denote its distribution by Gs(·) and its density by gs(·). If β−i is a profile
of monotone strategies, the support of Gs(·) is a sub-interval of [v, w] that includes v.

We can now use the s–price to express bidder i’s expected payoff. Given a generic type pro-
file realization (v−i, w−i) of her opponents, bidder i wins a measure of shares s using a bid-
ding function bi(·) if and only if her bid for the share indexed s satisfies bi(s) ≥ Ps(v−i, w−i).
Therefore, for a fixed strategy profile β−i, bidder i’s (interim) expected payoff when her type
is (v, w) and she uses a budget-feasible bidding function bi(·) is

Πi(bi | v, w) =
∫ (∫ 1

0
(v − bi(s)) 1

{
bi(s) > Ps(v−i, w−i)

}
ds
)

d ∏
j ̸=i

F(vj, wj)

=
∫ 1

0
(v − bi(s)) Gs(bi(s)) ds.

(1)

Lemma 1 gives an implication of monotonicity; it allows us to focus on a subset of B. In
the appendix, we use Lemma 1 to provide a detailed construction of Gs(·).

Lemma 1. Fix a bidder i and a strategy profile β−i of bidder i’s opponents. Let βi be a monotone
budget-feasible best response to β−i. Then the image of any (v, w) ∈ [v, v] × [w, w] under βi is a
bidding function of the form

βi(s | v, w) = min {ϕi(s | v), γi(s |w)},

where

(i) ϕi(· | v) is a weakly decreasing, non-negative, absolutely continuous function on [0, 1];

(ii) γi(· |w) is a weakly decreasing, non-negative, absolutely continuous function on [0, 1], that
satisfies

∫ 1
0 γi(s |w) ds = w.

Proof. First, suppose that bidder i of type (v, w) is budget-constrained, i.e.,
∫ 1

0 βi(s | v, w) ds =
w. Consider another type realization (v′, w), where v′ ≥ v. Since βi is a monotone strategy,
it must be that βi(s | v′, w) ≥ βi(s | v, w) for all s ∈ [0, 1], and therefore

∫ 1
0 βi(s | v′, w) ds ≥

w. On the other hand, the budget feasibility restriction requires that
∫ 1

0 βi(s | v′, w) ds ≤ w.
Consequently,

∫ 1
0 βi(s | v′, w) ds = w. Therefore, for all v′ ≥ v, βi(s | v′, w) = βi(s | v, w) for

each s ∈ [0, 1], and the bidding function for (v′, w) is solely determined by w.

Now, suppose that bidder i of type (v, w) is budget-unconstrained, i.e.,
∫ 1

0 βi(s | v, w) ds <

w. Recall that βi is a best response of bidder i to the strategy profile β−i. Since an increase in
budget does not impact bidder i’s valuation, it must be that for any s ∈ [0, 1], bidder i’s bid
for the share indexed s must not increase under the same valuation. Therefore, for any ε > 0,
βi(s | v, w + ε) = βi(s | v, w) for each s ∈ [0, 1]. Consequently, the bidding function for type
(v, w) must be determined solely by her valuation.
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3. The Best Response Property of Flat-Bid Strategies

In this section, we show that any (pure strategy) best response to a sub-class of monotone
strategy profiles must be a flat-bid strategy. Flat-bid strategies are advantageous: when each
bidder plays a flat-bid strategy, the pay-as-bid auction broadly mimics a single-unit first-price
auction.

Let 0 ≤ r < s ≤ 1. When bidder i’s allocation moves from r to s, the allocation of shares of
at least one of bidder i’s opponents strictly decreases. When each bidder j ̸= i follows a mono-
tone strategy β j, it follows that Pr(v−i, w−i) ≤ Ps(v−i, w−i) for any type profile realization
of bidder i’s opponents. Resultantly the distribution of the s–price first-order stochastically
dominates the distribution of the r–price.5

We require a stronger version of the above observation. To that extent, we focus on the
sub-class of monotone strategy profiles that satisfy the next requirement.

Definition 7. Fix a bidder i and a monotone strategy profile β−i of her opponents. The strategy profile
β−i is strongly regular if the family of s–price distributions induced by β−i, namely {Gs : s ∈ [0, 1]},
satisfies following conditions for all 0 ≤ r ≤ s ≤ 1:

(i) Gs(·) weakly dominates Gr(·) in reverse hazard rate order;

(ii) Gs(·) has a decreasing reverse hazard rate.

Strong regularity holds for a sizable class of monotone strategy profiles. For instance,
when N = 2, and valuations and budgets are independently and uniformly distributed over
the unit square, monotone strategies that prescribe affine (in shares) bidding function are
strongly regular. In the context of flat-bid strategies with N ≥ 2, condition (i) in Definition 7
holds trivially, while condition (ii) precludes situations in which the bid increases at a faster
rate than the valuation.

Our first result is Theorem 1. Suppose the monotone strategy profile β−i is strongly regular.
Theorem 1 states that if βi is a monotone best response to β−i, then βi must be a flat-bid
strategy. We use this result to justify the search for pure strategy equilibria in the class of
flat-bid strategy profiles.

Theorem 1. Fix any bidder i = 1, . . . , N and let β−i strongly regular. If βi is a monotone best
response strategy to β−i, then βi must be a flat-bid strategy.

Discussion and Proof Sketch of Theorem 1

The intrinsic nature of budget constraints renders many commonly known techniques inap-
plicable. A tempting– but false– conjecture is to view the pay-as-bid auction as an incomplete
information Blotto game; every budget-constrained bidder should bid aggressively for some
objects while bidding passively for others. Our point of departure is Theorem 1, which states
that a flat-bid strategy is a pure strategy best response to a sizable class of strategy profiles of
the opponents.

5Recall that the bidding functions are weakly decreasing on [0, 1].
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The literature has observed the best response property of flat bids. Pycia and Woodward
(2023) show the best response property of flat bids in a setting with a stochastic supply
and perfect informational symmetry between bidders. With independent private values and
constant marginal valuation, the Euler-Lagrange condition in Wilson (1979), Hortaçsu and
McAdams (2010) and Kastl (2012) boils down to flat bids being a necessary condition in the
equilibrium.

Our framework is different. Since bidders may be budget-constrained, their bids need
not reflect their marginal valuation. This disassociation between bids and valuations makes
the best-response property of flat bids unapparent. Indeed, we need strong regularity to
guarantee the best response property of flat bids. The best response property emerges from
a combination of two factors: (i) the monotonicity of the strategies and (ii) the presence of
budget-unconstrained bidders. These two factors drive Theorem 1 and sever the link of the
pay-as-bid auction with the Blotto game approach of Palfrey (1980) and Ghosh (2021).

We now present the proof sketch of Theorem 1. The formal proof is in Appendix A. We first
consider a budget-unconstrained bidder in Lemma 2, which shows that any best response of
a budget-unconstrained bidder must be a flat-bid strategy. The argument is as follows. For
shares r < s, the distribution Gs(·) dominates Gr(·) in reverse hazard rate order. Therefore a
budget-unconstrained bidder prefers to place a higher bid for the share indexed s compared
to the share indexed r. Since the bidding functions are weakly decreasing, the best that
bidder i can do is to place the same bid for the shares indexed s and r. In other words, the
best response strategy βi must generate a flat bidding function for any budget-unconstrained
type. Lemma 2 formalizes this argument through the Pontryagin maximum principle.

Lemma 3 ties all the threads together using the of monotonicity of βi. Formally, for each
w > v, there exists a type (v(w), w) such that for any ε > 0, the type ((v(w)− ε, w)) is budget-
unconstrained when playing the strategy βi. By continuity, the type (v(w), w)’s bidding
function satisfies βi(s | v(w), w) = w. Bidder i with a type (v, w) is budget-constrained if and
only if v ≥ v(w). By monotonicity of βi, βi(s | v, w) = w. Therefore, every budget-constrained
type also places a flat bid.

4. General Existence Result

In this section, we provide the necessary and sufficient conditions for a flat-bid pure strategy
equilibrium in pay-as-bid auctions. Under a symmetric flat-bid equilibrium, the multi-unit
auction reduces to a single-unit first-price auction. Theorem 2 and Corollary 1 are the main
results in this section.

To state the existence result for flat-bid equilibrium, we first rewrite Che and Gale (1998)’s
equilibrium strategies in a single-unit auction in a differential form in Equation ϕ for exposi-
tional ease. To that end, define the function H : [v, v]× [w, w] → [0, 1] by

H(v, w) := FV(v) + FW(w) − F(v, w). (2)

In words, H(v, w) represents the probability of the event where either the random valuation
attains a value less than or equal to v, or the random budget attains a value less than or
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equal to w. Denote the partial derivatives of H with respect to its first and second argument
respectively as: 6

DvH(v, w) := fV(v) − ∂F(v, w)

∂v
and DwH(v, w) := fW(w) − ∂F(v, w)

∂w
.

The differential form of the integral equation in Che and Gale (1998) is:

dϕ(v)
dv

=
fV(v)
FV(v)

(N−1)(v−ϕ(v))

if v < v∗ (ϕ)

dϕ(v)
dv

=
DvH(v, ϕ(v))

H(v,ϕ(v))
(N−1)(v−ϕ(v)) − DwH(v, ϕ(v))

if v > v∗

ϕ(v) = v and ϕ(v∗) = w.

Observe that v∗ uniquely solves the following equation:

w = v∗ −
∫ v∗

v

FV(x)N−1

FV(v∗)N−1 dx.

Assumption 2–(ii) guarantees the existence and uniqueness of the solution to Equation ϕ; not
monotonicity. A necessary and sufficient condition for monotonicity is:

lim
v→v∗+

dϕ(v)
dv

=
DvH(v∗, w)

H(v∗,w)
(N−1)(v∗−w)

− DwH(v∗, w)
> 0. (3)

Condition 3 is due to Kotowski (2020) and avoids the jump-discontinuity condition in Ko-
towski (2020). Kotowski (2020)’s non-canonical equilibrium emerges from the failure of condi-
tion 3. The function ϕ(·) transitions continuously and monotonically from the interval [v, v∗)
to the interval (v∗, v] under condition 3.

Define the function λ : ϕ(V) → V as the inverse function of ϕ, i.e. λ(x) := ϕ−1(x).
Observe the that since ϕ(·) is C1 and strictly monotone on the set (v, v∗) ∪ (v∗, v), dϕ(v)

dv > 0
on (v, v∗) ∪ (v∗, v). Therefore

dλ(x)
dx

=
1

dϕ(v)
dv

∣∣∣∣∣
x=ϕ(v)

x ∈ (v, w) ∪ (w, ϕ(v))

Remark: From here-onward, we use H(v, ϕ(v)) instead of FV(v) when v < v∗ with the
understanding that DwH(v, ϕ(v)) = 0, and DvH(v, ϕ(v)) = fV(v) for any v < v∗. We abuse
the notation for notational homogeneity and ease of exposition.

Theorem 2. Let ϕ(·) solve the system of ODEs in Equation ϕ and suppose that:

6We adopt the convention that Dv H(v, w) and Dw H(v, w) refer to the right-hand derivatives.
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• the Condition 3 holds, and;

• for each v ∈ (v∗, v] and for each x ∈ (v∗, v), dϕ(x)
dx < v−ϕ(x)

2(v−x) .

Then the strategy profile β = {(βi(s | vi, wi))}N
i=1 ≡ {min{ϕ(vi), wi}}N

i=1 constitutes a symmetric
pure strategy equilibrium of the auction.

Corollary 1. Suppose that the strategy profile β = {(βi(s | vi, wi))}N
i=1 ≡ {min{ϕ(vi), wi}}N

i=1
constitutes a symmetric pure strategy equilibrium of the auction, where ϕ(·) is strictly monotone and
continuous, and solves the system of ODEs in Equation ϕ. Then:

• the Condition 3 holds;

• for each v ∈ (v∗, v] and for each x ∈ (v∗, v), dϕ(x)
dx ≤ v−ϕ(x)

2(v−x) .

Discussion and Proof Sketch of Theorem 2 and Corollary 1

The condition dϕ(x)
dx < v−ϕ(x)

2(v−x) results from the interaction of two key factors. The first is the
ability to place a non-flat bidding function in response to flat bidding functions. The second
is the constraint imposed by budgets. Indeed, this condition emerges as a second-order
sufficiency condition. Single-unit auctions do not have this condition. Neither do auctions in
the absence of budget constraints. This condition arises only when we combine the presence
of budgets with multiple objects.

The mathematical implication of the condition dϕ(x)
dx < v−ϕ(x)

2(v−x) is as follows. In the pres-
ence of budgets, the expected pay-off function need not be globally concave, hence, Che and
Gale (1998)’s conditions are insufficient; we need additional second-order conditions. The
second-order conditions in Theorem 2 and Corollary 1 reflect the local concavity of the payoff
function. Our proof approach necessitates that the local concavity of the payoff function is
in terms of ∥ · ∥∞ norm. Note that local concavity in ∥ · ∥∞ norm implies local concavity in
∥ · ∥W1,1 norm.

Before we present the proof sketch, we emphasize the inapplicability of some methods used
in the literature. Firstly, we cannot use the approach in Ausubel et al. (2014). Ausubel et al.
(2014)’s existence result rests upon the ex-post efficiency of a symmetric pay-as-bid auction.
With budget constraints, the ex-post allocation may be inefficient with a positive probability.

Since the bidders may be budget-constrained, the payoff security property in Reny (1999)
can fail. Reny (2011) is also inapplicable since Reny (2011)’s results bank upon a carefully
constructed partial order on the type space. Foreshadowing the result in Theorem 3, such a
partial order need not always exist with budget constraints. Even if Reny (2011)’s partial order
exists, it may be hard to pin down. Carbonell-Nicolau and McLean (2018) is inapplicable since
the sum of the payoff functions for a given type profile need not be upper-semi continuous in
the action profile.

Another approach is to use the equilibrium in a dominant strategy Vickrey auction to get
the equilibrium in a pay-as-bid auction using the revenue equivalence theorem. Neverthe-
less, one of Che and Gale (1998)’s insights is the breakdown of revenue equivalence between
various auction formats. Consequently, we cannot use Wilson (1979)’s linkage principle ap-
proach.
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We now present the proof sketch of Theorem 2. The formal proof is in Appendix B. The
bidder’s optimization problem in the equilibrium is

max
b(·)∈B

∫ 1

0

(
v − b(s)

)
H
(
λ(b(s)), b(s)

)N−1 ds.

We establish in Lemma 4 and Lemma 5 that β ≡ {min{ϕ(vi), wi}}N
i=1 is only possible flat-

bid equilibrium. Lemma 4 uses the Euler-Lagrange condition for a budget-unconstrained
type. Recall that B is the space of all bidding functions and is endowed with the ∥ · ∥W1,1 , i.e.,
the W1,1 norm. The Euler-Lagrange condition works because we endow B with ∥ · ∥W1,1 , i.e.,
the W1,1 norm. Lemma 5 mimics Lemma 3. Remark that the Euler-Lagrange condition only
provides the necessity, and not the sufficiency for β ≡ {min{ϕ(vi), wi}}N

i=1 to be an equilib-
rium. Therefore, we cannot use Lemma 4 and Lemma 5 to drive a sufficiency argument.

The nature of the problem does not lend itself to an easily verifiable sufficiency condition.
Indeed, a bidder’s optimization problem is a variational problem with constraints, and a sec-
ond variation sufficiency condition is out of hand. To get over this issue, we set up and solve
a finite-dimensional optimization problem in Lemma 6 to obtain the sufficiency condition.
The advantage of the finite-dimensional optimization approach is that it provides intuitive
necessity and sufficiency conditions.

We import the second-order conditions from Lemma 6 to the original auction in Lemma 7.
To do so, we exploit the fact that the function t 7→ (v − t) (H(λ(t), t)N−1 is concave in t
when t ∈ (w − ε̂, w + ε̂) for some ε̂ > 0. This concavity helps us to show that βi(s | vi, wi) =

min{ϕ(vi), wi} is a strong (∥ · ∥∞) local maximizer of the payoff function.7

Since the strategy profile β = {(βi(s | vi, wi))}N
i=1 where βi(s | vi, wi) = min{ϕ(vi), wi} for

each bidder i is the only possible symmetric strategy profile which satisfies Equation ϕ, it is
the unique symmetric equilibrium in the pay-as-bid auction.

The condition dϕ(x)
dx < v−ϕ(x)

2(v−x) arises from second-order sufficiency condition of KKT Theo-
rem. Therefore, Corollary 1 is immediate from the necessity conditions in Lemma 6. We omit
the proof of Corollary 1.

5. Non-Existence Results

Theorem 2 provides sufficient conditions for an equilibrium. The sufficient conditions are also
close to necessary (Corollary 1). Nevertheless, the conditions in Corollary 1 may fail when
the number of bidders is high. Therefore, the presence of budgets can lead to an undesirable
consequence, namely the non-existence of a symmetric pure strategy equilibrium.

We explore the implications of Corollary 1. We first show that the presence of more than
two bidders violates the necessity conditions for any type space with v = w. For instance,
if the type space is the unit square, and the budgets and valuations are independent and
uniformly distributed, the equilibrium in Theorem 2 does not exist when there are more than
two bidders.

7∥ · ∥W1,1 norm is stronger than ∥ · ∥∞ norm.
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However, the fragility of the equilibrium is far from a knife-edge situation. Indeed, the
equilibrium fails to exist when there are a sufficiently large number of bidders unless the
marginal density of valuation is steeply decreasing. For instance, if the valuations follow
uniform distribution over the interval [v, v], the equilibrium fails to exist for any type space
and type distribution when the number of bidders is sufficiently large.

Theorem 3 states the non-existence result– the presence of budgets has an undesirable
theoretical implication. The existence of equilibrium becomes an empirical question that
depends upon the number of bidders. In light of Theorem 3, the question of equilibrium
existence assumes importance in the choice of auction format.

Theorem 3. The equilibrium in Theorem 2 is fragile:

(i) Finite non-existence result: suppose N > 2 and v = w. Then a symmetric flat-bid equilibrium
does not exist.

(ii) Asymptotic non-existence result: suppose that v < w, and sup
x≤w

fV(x) < 2 fV(w). Then there

exists some N0 such that a symmetric flat-bid equilibrium does not exist for any N ≥ N0.

Discussion and Proof Sketch of Theorem 3

The presence of budgets derails the usual arguments for equilibrium in standard pay-as-bid
auctions. Indeed, the second-order conditions arise because of the budgets. The conditions
in Theorem 2 guarantee that the expected payoff function of a budget-constrained bidder is
locally concave near the bidding function β(s | v, w) ≡ w. When the number of bidders
becomes large, the expected payoff function can become locally convex around the bidding
function β(s | v, w) ≡ w.8

We now present the proof sketch of Theorem 3. The formal proof is in Appendix C. If v =

w, a bidder with a generic valuation v is always budget-constrained with positive probability.
Consequently, the local concavity of the payoff function always fails when the number of
bidders exceeds 2. Indeed, by Corollary 1 the strategy profile β = {min{ϕ(vi), wi}}N

i=1 is an
equilibrium only if each type (v, ϕ(x)) satisfies dϕ(x)

dx ≤ v−ϕ(x)
2(v−x) . If v = w, then lim

v→v+
dϕ(v)

dv =

1 − 1
N < 1

2 . Thus, for a type (v, w) with high enough v and a low enough w, the function
t 7→ (v − t) (H(λ(t), t)N−1 is strictly convex in t when t ∈ (w − ε, w + ε) for each ε > 0.
Consequently, the bidding function β(s | v, w) ≡ w becomes a strict local minimizer of the
payoff function– the type (v, w) has a unilateral profitable deviation to a non-flat bidding
function.

Now consider the case v < w. Recall that v∗ uniquely solves the following equation:

w = v∗ −
∫ v∗

v

FV(x)N−1

FV(v∗)N−1 dx.

The right-hand derivative dϕ(v)
dv

∣∣∣
v∗

is well defined. When the number of bidders grows, v∗ be-

comes close to w. Consequently, v−w
2(v−v∗) approaches 1

2 . As N grows, the right-hand derivative
dϕ(v)

dv

∣∣∣
v∗

≤ 1
2 only if DwH(w, w) < 0, which is impossible.

8Recall that the notion of local concavity/convexity is in terms of ∥ · ∥∞.
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In both cases, the necessity condition in Corollary 1 that imposes the local concavity of the
payoff function fails when N increases.

6. Conclusion

We show necessary and sufficient conditions for equilibrium in a pay-as-bid auction with
budget-constrained bidders in the class of flat-bid strategies. We justify our focus on flat-bid
strategies through Theorem 1, which states that any best response to a strongly regular strategy
profile is a flat-bid strategy.

Theorem 2 and Corollary 1 contain the second-order sufficiency and necessity conditions
for a symmetric equilibrium. The second-order conditions are new and in addition to condi-
tions in the literature. We subsequently state Theorem 3; the flat-bid equilibrium can break
down when the number of bidders is sufficiently high.

Questions emerge. We assume independent types and constant marginal valuation. Are
there analogous second-order conditions for settings with decreasing marginal valuation
or affiliated types? Does the Non-Existence issue in Theorem 3 go away with decreasing
marginal valuation or affiliated types?

Another strand of literature we address is the Bayesian mechanism design literature. With
budget constraints, how should a mechanism designer design an optimal or efficient Bayesian
auction with a non-fragile equilibrium? Is such a design even possible?

Another open question relates to the choice of auction formats. We study pay-as-bid auc-
tions. Does an analogous second-order condition (Theorem 2) or Non-Existence result (The-
orem 3) carry over to Uniform Price auctions? If yes, then for given model primitives, is it
possible to rank uniform price and pay-as-bid auctions in terms of the maximal number of
bidders each auction format can handle?

We hope the literature addresses these and more such questions in the future.
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APPENDIX

A. Proofs of Results in Section 3

Proof of Theorem 1

Lemma 2. Let β−i be strongly regular and suppose that bidder i’s best response prescribes bidding
functions of the form βi(s | v, w) = min{ϕi(s | v), γi(s |w)}. If she is budget-unconstrained under
the type realization (v, w), then βi(s | v, w) is constant on s.

Proof. Define b0 = min{ϕi(0 | v), γi(0 |w)} as bidder i’s optimal bid for the share indexed 0.
Her best response βi(· | v, w) can be obtained as a solution to the following optimal control
problem:

max
∫ 1

0

(
v − b(s)

)
Gs(b(s)) ds subject to

d b(s)
d s

= z(s),

b(0) = b0.

(OPT)

In the problem OPT, we use z(s) ≤ 0 as the control variable and b(s) as the state variable.
Denote by µ the corresponding co-state variable. Since βi is a best response to β−i, the solution
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to OPT satisfies z∗(s) = dβi(s | v,w)
ds . The corresponding Hamiltonian is

H(b, z, µ) = (v − b) Gs(b) + µ z.

Now let ∂bH(b, z, µ) be the limiting sub-differential of H with respect to b.9 The adjoint
condition, which holds for almost every s ∈ [0, 1], is given by

− dµ

ds
= ∂bH(b, z, µ) = (v − b)gs(b) − Gs(b). (ADJ)

Claim 1. The co-state variable µ(·) satisfies µ(s) ≥ 0, for each s ∈ [0, 1].

Proof. Note that βi(s | v, w) = v for each s ∈ [0, 1]. Therefore, for any v > v and w > w,
βi(s | v, w) > v for each s ∈ [0, 1]. Since the type (v, w) is budget-unconstrained, the optimal
bidding function must follow b(s) > v for each s ∈ [0, 1].

We therefore treat OPT as a “free endpoint problem.” By the transversality conditions,
µ(1) = 0. Suppose that there is some s ∈ (0, 1) such that µ(s) < 0. Since µ(·) is absolutely
continuous, there exists some ε > 0 such that µ(·) < 0 on the interval (s, s + ε).

By the Pontryagin maximum principle, the optimal control variable z∗ must maximize the
Hamiltonian. Therefore, the optimal control variable satisfies z∗ < 0 on the interval (s, s + ε).
We do not impose any lower bound on z∗, and z∗ < b0−v

ε is possible on the interval (s, s + ε).
Therefore, there exists some qε ∈ (s, s + ε) such that b(·) = v in the interval [qε, 1]. This is a
contradiction to the monotonicity of βi.

We complete the proof of the Lemma by showing that even if µ(s) = 0 on some interval,
the optimal control satisfies z∗(s) = 0. Suppose that µ(s) = 0 on some interval [r, q] and
db(s)

ds = z∗(s) < 0 almost everywhere on [r, q]. Consequently, dµ
ds = 0 almost everywhere on

[r, q], and b(r) > b(q). It is without loss to assume that gr(b(r)), gq(b(r)), and gq (b(q)) are all
single-valued. By Equation ADJ,

b(r) +
Gr(b(r))
gr(b(r))

= b(q) +
Gq (b(q))
gq (b(q))

=⇒ Gr(b(r))
gr(b(r))

<
Gq (b(q))
gq (b(q))

≤
Gq (b(r))
gq (b(r))

≤ Gr(b(r))
gr(b(r))

.

The last inequalities follow the fact that β−i is strongly regular (see Definition 7, and give
us a contradiction. Therefore, the optimal control satisfies

z∗(s) =
db∗(s)

ds
=

dβi(s | v, w)

ds
= 0.

Lemma 3. Suppose that bidder i’s type realization (v, w) is budget-constrained under the best response
strategy βi. Then type (v, w) necessarily places a flat bid.

9See Vinter (2010), chapter 4 for details.
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Proof. From Lemma 1, βi(s | v, w) = min{ϕi(s | v), γi(s |w)}. Notice that if bidder i’s of type
(v, w) is budget unconstrained, then γ(0 |w) = γ(1 |w) = w.

Indeed, suppose that for a given budget w, γi(0 |w) > γi(1 |w). By continuity of βi in
types, there must exist a positive measure of ṽ such that γi(0 |w) > ϕi(0 | ṽ) ≥ γi(1 |w).
Choose any such ṽ arbitrarily. The type (ṽ, w)’s optimal bidding function satisfies

∫ 1

0
βi(s | ṽ, w)ds =

∫ 1

0
min{ϕi(s | ṽ), γi(s |w)} ds <

∫ 1

0
γi(s |w) ds = w.

Therefore, the type (ṽ, w) is budget-unconstrained. By Lemma 2, for each such ṽ, the type
(ṽ, w) must place a flat bid for all the shares. By the continuity of the bidding functions, for
each such ṽ, there is some s̃ ∈ [0, 1) such that γi(s̃ |w) = ϕi(s̃ | ṽ) and γi(s |w) ≤ ϕi(s | ṽ) ∀ s >
s̃. Observe that s̃ is the last share at which the bidding function is decided by ϕi(· | ·). For each
s > s̃, the optimal bidding function βi(s | v, w) = γi(s |w), and consequently, dγi(s |w)

ds = 0.

Since the choice of ṽ is arbitrary in the convex set {ṽ : γi(0 |w) > ϕi(0 | ṽ) ≥ γi(1 |w)}, s̃
takes all the values in (0, 1). Therefore, dγi(s |w)

ds = 0 for each s ∈ (0, 1). Consequently,
γi(0 |w) = γi(1 |w) and γi(s |w) = w for each s ∈ [0, 1] and for each w.

For each w ∈ [w, w], define:

v(w) := sup
{

v :
∫ 1

0
βi(s | v, w)ds < w

}
.

Observe that
∫ 1

0 βi(s | v, w)ds = v ≤ w for each w ∈ [w, w]. Finally, for a given w,
∫ 1

0 βi(s | x, w)ds
is a continuous monotone function of x. Therefore, v(w) is well-defined.

By continuity and monotonicity of βi, the type (v(w), w) places a flat bid of w for all the
shares. For each type (v, w) that is budget-constrained, v ≥ v(w). By monotonicity of the
strategy βi:

βi(s | v, w) ≥ βi(s | v(w), w) = w for each s ∈ [0, 1].

Since
∫ 1

0 βi(s | v, w)ds = w, therefore, βi(s | v, w) = w for each s ∈ [0, 1]. The proof is
complete.

B. Proofs of Results in Section 4

Proof of Theorem 2

Proof.

Lemma 4. Suppose that βi is a monotone best response to β−i = {(β j(s | vj, wj))}j ̸=i where β j(s | vj, wj) =

min{ϕ(vj), wj}. If bidder i of type (v, w) is budget-unconstrained, then the bidding function βi(s | v, w) =

ϕ(v).

Proof. By supposition, βi(· | v, w) is a solution to bidder i’s variational problem:10

10We purposefully suppress the boundary conditions given by βi(0 | v, w) and βi(1 | v, w). Since Euler-Lagrange
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max
∫ 1

0

(
v − b(s)

)
H
(
λ(b(s)), b(s)

)N−1 ds (OPT: Equilibrium)

Since all the densities are differentiable, ϕ(·) is C2 on (v, v∗)∪ (v∗, v). This is so because ϕ(·)
solves Equation ϕ and is therefore C1. The right hand side in Equation ϕ is a C1 function of
ϕ(·) on the set (v, v∗)∪ (v∗, v), and therefore dϕ(v)

dv must itself be C1 on the set (v, v∗)∪ (v∗, v).
Analogous argument extends to λ(·). Therefore, for any v ̸= v∗, OPT: Equilibrium satisfies
all the required conditions for the classical Euler-Lagrange condition. For any v ̸= v∗, the
Euler-Lagrange equation becomes

(v − b(s))

(
DvH(λ(b(s)) b(s))

dλ(x)
dx

∣∣∣∣
x=b(s)

+ DwH(λ(b(s)) b(s))

)
=

H
(
λ(b(s)) , b(s)

)
N − 1

.

(EL)

From Equation ϕ, b(s) ≡ ϕ(v) is the unique solution to the Equation EL. Therefore, a
budget-unconstrained bidder i with a valuation v ̸= v∗ bids ϕ(v) for all the shares. By
continuity of βi, a budget-unconstrained bidder i with a valuation v∗ bids ϕ(v∗) = w for all
the shares. In all cases, the bidding function βi(s | v, w) = ϕ(v).

Lemma 5. Suppose the type (v, w) is budget-constrained under the equilibrium strategy βi. Then
βi(s | v, w) = w for each s ∈ [0, 1].

Proof. The proof mimics the arguments in Lemma 3 and has been omitted.

Lemma 6. Fix L ∈ N \ {1}, v > v∗, and consider the following optimization problem:

max
θ∈RL

L

∑
ℓ=1

(
v
L
− θℓ

L

)(
H(λ(θℓ), θℓ)N−1

)
s.t.

L

∑
ℓ=1

θℓ − Lϕ(x) ≤ 0. (Finite OPT)

1. If x ∈ (v∗, v), then θ∗ =
(
ϕ(x) · · · , ϕ(x)

)⊤ is a local solution to Finite OPT.

2. If x ≥ v, then θ∗ =
(
ϕ(v) · · · , ϕ(v)

)⊤ is a local solution to Finite OPT.

Proof. Define the Lagrangian of the problem:

L(v, ϕ(x), θ, η) :=
L

∑
ℓ=1

(
v
L
− θℓ

L

)(
H(λ(θℓ), θℓ)N−1

)
− η

(
L

∑
ℓ=1

θℓ − Lϕ(x)

)
.

If x ∈ (v∗, v), then ϕ(x) < ϕ(v) and consequently, the constraint
L
∑
ℓ=1

θℓ − Lϕ(x) ≤ 0 is ac-

tive; θ∗ =
(
ϕ(x) · · · , ϕ(x)

)⊤ satisfies the first-order necessary conditions with the Lagrangian
multiplier

η∗ :=
1
L

H(x, ϕ(x))N−1
[

v − x
x − ϕ(x)

]
> 0.

condition is a necessity condition, bidder i must optimally choose βi(0 | v, w) and βi(1 | v, w).
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Note that θ∗ is locally optimal when the second-order sufficient conditions hold. Denote
the L-dimensional identity matrix by IL×L.

∇2
θθL(v, ϕ(x), θ∗, η∗) =

1
L

H(x, ϕ(x))N−1

(x − ϕ(x))2

[
2(v − x)− (v − ϕ(x))

dϕ(x)
dx

]
IL×L (Hessian)

The second-order conditions are:

y⊤∇2
θθL(v, ϕ(x), {θℓi }L

ℓ=1, µ)y ≤ 0 : necessity (SOC)

y⊤∇2
θθL(v, ϕ(x), {θℓi }L

ℓ=1, µ)y < 0 : sufficiency

for each y ∈
{

t ∈ RL :
L

∑
ℓ=1

tℓ = 0

}
.

The second-order conditions (both necessity and sufficiency) hold when dϕ(x)
dx < v−ϕ(x)

2(v−x) . The
proof of the first part of Lemma 6 is complete.

For the second part of Lemma 6, note that by Equation ϕ, θ∗ =
(
ϕ(v) · · · , ϕ(v)

)⊤ is the only

possible candidate for the solution and the constraint
L
∑
ℓ=1

θℓ − Lϕ(x) ≤ 0 is inactive. Further,

∇2
θθL(v, ϕ(v), θ∗, η∗) = − 1

L
H(v, ϕ(v))N−1

(v − ϕ(v))2

[
(v − ϕ(v))

dϕ(v)
dv

]
IL×L (Hessian: Unconstrained)

The second-order sufficiency conditions hold since ∇2
θθL(v, ϕ(v), θ∗, η∗) is negative definite.

The proof of the second part of Lemma 6 is complete.

Since v is arbitrary in Lemma 6, a budget-unconstrained bidder always faces a convex
optimization problem. Therefore, the Euler-Lagrange Equation EL also provides a sufficient
condition for βi(s | v, w) = ϕ(v) to be the global maximizer of OPT: Equilibrium.

All that remains to be shown is that any budget-constrained bidder, i.e., a bidder of type
(v, w) such that ϕ(v) > w also prefers to place a flat bidding function. To that end, we
now show that βi(s | v, w) = min{ϕ(v), w} = w is a strong (∥ · ∥∞) local maximizer of OPT:
Equilibrium in Lemma 7.

Lemma 7. Endow the space of bidding functions B with the ∥ · ∥∞ norm. Then βi(s | v, w) =

min{ϕ(v), w} is a strong (∥ · ∥∞) local maximizer of OPT: Equilibrium.

Proof. Suppose not. Then for each ε > 0, there is a bidding function γε(·) ∈ B such that:

(i)
∫ 1

0
(v − γε(s))H(λ(γε(s)), γε(s))N−1ds > (v − ϕ(x))H(x, ϕ(x))N−1

(ii)
∫ 1

0
γε(s)ds < w

(iii) ∥γε(·)− βi(· | v, w)∥∞ ≡ ∥γε(·)− w∥∞ < ε.
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We endow RL with ∥ · ∥∞ norm. By Lemma 6, for each L there exists some δ(L) > 0 such
that

For each y ∈ RL;
∥∥∥y − (w, w, · · · , w)⊤

∥∥∥
∞
< δ(L)

=⇒
L

∑
ℓ=1

(
v
L
− yℓ

L

)(
H(λ(yℓ), yℓ)

)N−1
≤ (v − w) (H(λ(w), w))N−1

For a budget-constrained bidder of type (v, w), w < ϕ(v). Recall that λ(·) = ϕ−1(·).
By the conditions in Theorem 2, 2(v − λ(w)) − (v − w) dλ(w)

dw < 0, and consequently, z 7→
(v − z) (H(λ(z), z)N−1 is concave in the interval (w − ε̂, w + ε̂) for some ε̂ > 0. Notice that ε̂ is

independent of L. Therefore, for each L ∈ N,
L
∑
ℓ=1

(
v
L − yℓ

L

) (
H(λ(yℓ), yℓ)

)N−1 is concave in ε̂-

neighborhood of (w, w, · · · , w)⊤ ∈ RL.

Claim 2 exploits the disassociation between L and ε̂.

Claim 2. There exists δ > 0 such that for each L > 1, the following implication holds:

For each y ∈ RL;
∥∥∥y − (w, w, · · · , w)⊤

∥∥∥
∞
< δ

=⇒
L

∑
ℓ=1

(
v
L
− yℓ

L

)(
H(λ(yℓ), yℓ)

)N−1
≤ (v − w) (H(λ(w), w))N−1

Proof. Suppose not. Then 0 is an accumulation point of the sequence {δ(L)}L≥1. It is with-
out loss to assume that {δ(L)}L≥1 is a monotonically decreasing sequence and therefore
lim
L→∞

δ(L) = 0. To see this, suppose that δ(L + 1) > δ(L). Since (w, w, · · · , w)⊤ ∈ RL+1

solves Finite OPT in δ(L + 1)-neighborhood, then (w, w, · · · , w)⊤ ∈ RL+1 also solves Finite
OPT in δ(L)-neighborhood of (w, w, · · · , w)⊤ ∈ RL+1. Therefore, we can always impose that
δ(L + 1) ≤ δ(L).

By supposition, there must exist some L and some y ∈ R2L
+ such that following conditions

hold:

(i) δ(2L) <
∥∥∥y − (w, w, · · · , w)⊤

∥∥∥
∞
< δ(L) < ε̂;

(ii)
2L

∑
κ=1

yκ

2L
< w;

(iii)
2L

∑
κ=1

(
v

2L
− yκ

2L

)
(H(λ(yκ), yκ))N−1 > (v − w) (H(λ(w), w))N−1 .

Define the vector z ∈ RL with its ℓth component zℓ := yℓ+yL+ℓ

2 for each ℓ = 1, 2, · · · , L. By
construction,

|zℓ−w| < δ(L) < ε̂ ∀ ℓ ∈ {1, 2, · · · , L} =⇒
∥∥∥z − (w, w, · · · , w)⊤

∥∥∥
∞
< δ(L) and

L

∑
ℓ=1

zℓ

L
< w.
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Therefore, z is a feasible point for Finite OPT. Since t 7→ (v − t) (H(λ(t), t)N−1 is concave in
(w − ε̂, w + ε̂), the following inequality holds:(

v
L
− zℓ

L

)(
H(λ(zℓ), zℓ)

)N−1
≥ 1

2

[(
v
L
− yℓ

L

)(
H(λ(yℓ), yℓ)

)N−1
+

(
v
L
− yL+ℓ

L

)(
H(λ(yL+ℓ), yL+ℓ)

)N−1
]

.

Using Lemma 6 and summing up across ℓ = 1, 2, · · · , L;

(v − w) (H(λ(w), w))N−1 ≥
L

∑
ℓ=1

(
v
L
− zℓ

L

)(
H(λ(zℓ), zℓ)

)N−1

≥
L

∑
ℓ=1

1
2

[(
v
L
− yℓ

L

)(
H(λ(yℓ), yℓ)

)N−1
+

(
v
L
− yL+ℓ

L

)(
H(λ(yL+ℓ), yL+ℓ)

)N−1
]

=
2L

∑
κ=1

(
v

2L
− yκ

2L

)
(H(λ(yκ), yκ))N−1 > (v − w) (H(λ(w), w))N−1 .

This is a contradiction.

Choose δ as in Claim 2. By supposition, there exists some γδ(·) ∈ B such that:

(i)
∫ 1

0
(v − γδ(s))H(λ(γδ(s)), γδ(s))N−1ds > (v − ϕ(x))H(x, ϕ(x))N−1

(ii)
∫ 1

0
γδ(s)ds < w

(iii) ∥γδ(·)− βi(· | v, w)∥∞ = ∥γδ(·)− w∥∞ < δ.

The function γδ is the point-wise limit of a sequence of step functions {γL}L>1, where γL

has L steps of equal size. Denote by γℓ
L the value of γL(s) for each s ∈

[
ℓ−1

L , ℓ
L

)
. Without loss

of generality,
∥γδ(·)− w∥∞ < δ =⇒ ∥γL(·)− w∥∞ < δ ∀ L > 2.

For each L, Since γL is a step function with a step size of 1
L , the following expression holds:

∫ 1

0
(v − γL(s))H(λ(γL(s)), γL(s))N−1ds =

L

∑
ℓ=1

1
L

(
v − γℓ

L

) (
H(λ(γℓ

L), γℓ
L)
)N−1

.

Since {γL}L≥2 −→
p.w.

γδ, by the Dominated Convergence theorem:

∫ 1

0
(v − γδ(s))H(λ(γδ(s)), γδ(s))N−1ds = lim

L→∞

∫ 1

0
(v − γL(s))H(λ(γL(s)), γL(s))N−1ds.

For each L, consider a vector in RL with its ℓth component as γℓ
L. This vector is in the

δ-neighborhood of (ϕ(x), ϕ(x), · · · , ϕ(x))⊤ by construction.11 By Lemma 6,

11Recall that RL is endowed with ∥ · ∥∞ norm.
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L

∑
ℓ=1

1
L

(
v − γℓ

L

) (
H(λ(γℓ

L), γℓ
L)
)N−1

≤ (v − ϕ(x)) (H(x, ϕ(x)))N−1

⇐⇒ lim
L→∞

L

∑
ℓ=1

1
L

(
v − γℓ

L

) (
H(λ(γℓ

L), γℓ
L)
)N−1

≤ (v − ϕ(x)) (H(x, ϕ(x)))N−1

⇐⇒ lim
L→∞

∫ 1

0
(v − γL(s))H(λ(γL(s)), γL(s))N−1ds ≤ (v − ϕ(x)) (H(x, ϕ(x)))N−1

⇐⇒
∫ 1

0
(v − γδ(s))H(λ(γδ(s)), γδ(s))N−1ds ≤ (v − ϕ(x)) (H(x, ϕ(x)))N−1 .

This is a contradiction.

By Lemma 7, βi(s | v, w) ≡ min{ϕ(v), w} = w is the strong local maximizer of the payoff
function for any budget-constrained type (v, w). Under the conditions in Theorem 2, Problem
Finite OPT has no other solution for each L > 1, and therefore, (w, w · · · , w)⊤ is a global
solution to Problem Finite OPT.

Thus, a budget-constrained type (v, w) can never profitably deviate to any other budget-
feasible bidding function in OPT: Equilibrium. Consequently, βi(s | v, w) = min{ϕ(v), w}
is a global maximizer of the expected payoff function for the type (v, w), i.e., βi(s | v, w) =

min{ϕ(v), w} is a global solution to OPT: Equilibrium.

Consequently, βi(s | v, w) ≡ min{ϕ(v), w} is the unique best response to the strategy profile
β−i = {(β j(s | vj, wj))}j ̸=i ≡ {min{ϕ(vj), wj}}j ̸=i. By symmetry, the proof is complete.

C. Proofs of Results in Section 5

Proof of Theorem 3

Proof. We begin by proving the first part of Theorem 3. By L’Hôpital’s rule and Assumption 2–
(iii), lim

v→v+
dϕ(v)

dv = 1− 1
N . Therefore, a bidder of type (v, w) violates the second-order necessary

conditions in Lemma 6, since at x = w = v = ϕ(v);

v − v
2(v − v)

=
1
2
> lim

v→v+

dϕ(v)
dv

= 1 − 1
N

.

We now show the second statement of Theorem 3. All that we need to show is that when N
is large enough, the necessity conditions in Corollary 1 are violated. Hereon, we write ϕ(·) as
ϕN(·) to reflect the dependence of ϕ(·) on N. Denote by λN(·) as the inverse of ϕN(·). Note
that DvH(λN(w), w) = fV(λN(w)). The conditions in Corollary 1 go through only when for
each N,
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fV(λN(w))
FV(λN(w))

(N−1)(λN(w)−w)
− DwH(λN(w), w)

≤ v − w
2(v − λN(w))

FV(λN(w))

(N − 1)(λN(w)− w)
− DwH(λN(w), w) > 0.

The following claim handles the limiting arguments.

Claim 3. Each accumulation point of
{

FV(λN(w))
(N−1)(λN(w)−w)

}
N≥2

belongs to

[
inf
x≤w

fV(x), sup
x≤w

fV(x)

]
.

Proof. By the Dominated Convergence theorem, the following limit holds:

lim
N→∞

(λN(w)− w) = lim
N→∞

∫ λN(w)

v

(
FV(x)

FV(λN(w))

)N−1

dx = 0. (4)

Therefore, it suffices to consider the sequence {N(λN(w)− w)}N≥2. Notice that

N(λN(w)− w) = N
λN(w)∫

v

(
FV(x)

FV(λN(w))

)N−1

dx =

λN(w)∫
v

1
fV(x)

(
1

FV(λN(w))

)N−1

d
(

FV(x)N
)

=⇒ N(λN(w)− w) =

λN(w)∫
v

1
fV(x)

(
1

FV(λN(w))

)N−1

d
(

FV(x)N
)
∈

FV(λN(w))

sup
x≤w

fV(x)
,

FV(λN(w))

inf
x≤w

fV(x)

 .

Using Equation 4 and rearranging the expression:

lim
N

inf
F(λN(w))

(N − 1)(λN(w)− w)
∈
[

inf
x≤w

fV(x) , sup
x≤w

fV(x)

]

lim
N

sup
F(λN(w))

(N − 1)(λN(w)− w)
∈
[

inf
x≤w

fV(x) , sup
x≤w

fV(x)

]
.

For contradiction, suppose that there is a strictly increasing subsequence of natural num-
bers {Nk}k≥1 such that for each Nk an equilibrium exists in the auction with Nk bidders. By
supposition, the following condition holds for each Nk:

fV(λNk(w))
FV(λNk (w))

(Nk−1)(λNk (w)−w)
− DwH(λNk(w), w)

≤ v − w
2(v − λNk(w))

.

Pass on to a convergent subsequence if necessary and define

ξ := lim
k→∞

{
FV(λNk(w))

(Nk − 1)(λNk(w)− w)

}
.
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At the limit, fV(w)
ξ−Dw H(w,w)

≤ 1
2 . Consequently, DwH(w, w) ≤ ξ − 2 fV(w).12 By Claim 3,

ξ ≤ sup
x≤w

fV(x). Therefore, ξ − 2 fV(w) < 0 and DwH(w, w) < 0.

By Frechet-Hoeffding bounds (Durante and Sempi, 2015), F(w, w+ ε) ≤ min{FV(w), FW(w+

ε)}. For ε > 0 small enough, F(w, w + ε) ≤ FW(w + ε). Therefore, lim
ε→0

DwF(w, w + ε) ≤
lim
ε→0

fW(w + ε) and consequently DwH(w, w) ≥ 0. This is a contradiction. The proof is com-

plete.

D. Distribution of the s–price and the Expected Payoff Function

D.1. Inverse bid functions

We first derive the notion of inverse bid functions. We work with strategies characterized in
Lemma 1. For each bidder i and quantity s ∈ [0, 1], we can think of ϕi(s | ·) as a mapping
from [v, v] into R+. Likewise, we can think of γi(s | ·) as a function from [w, w] into R+.
Observe that the monotonicity of βi implies that both ϕi(s | ·) and γi(s | ·) are continuous and
monotone increasing in their respective domains, and hence invertible. Denote their inverse
functions by λi(s | ·) and ρi(s | ·); i.e., v = λi(s | z) is bidder i’s valuation that generates a bid
of z for the share s under βi, and similarly w = ρi(s | z) is the budget that generates a bid of z
for share s under βi.

Observe that λi(s | ·) and ρi(s | ·) are inverse functions of ϕi(s | ·) and γi(s | ·) respectively.
Therefore λi(s | ·) and ρi(s | ·) are themselves continuous and strictly monotone, and thus
differentiable almost everywhere in their domains. We denote the derivative of λi(s | z) with
respect to z as dλi(s | z)

dz , and the derivative of ρi(s | z) with respect to z as dρi(s | z)
dz wherever the

derivatives exist. We adopt the convention that dλi(s | z)
dz and dρi(s | z)

dz refer to the right-hand
derivatives at any point of non-differentiability.

Recall from Assumption 1–(i) that v ≤ w. In any monotone strategy for bidder i, we impose
the restriction βi(s | v, w) = ϕi(s | v) = v, for each s ∈ [0, 1]. This restriction states that a bidder
with valuation v places a bid of v for all shares —such a bidder has no incentive to bid higher
than v for any share and is never budget-constrained. Therefore, the restriction ϕi(s | v) = v
is without any loss of generality. We also restrict γi(s |w) ≥ v for all s and w, but notice that
γi(s |w) < w is possible for some s.

On the other hand, a bidder i with a budget w never has an incentive to bid above w for
any share s ∈ [0, 1]. Therefore, we impose without loss of generality that ϕi(s | v) ≤ w for
each share s ∈ [0, 1] and for each valuation v ∈ [v, v]. Similarly, we impose without loss of
generality that γi(s |w) ≤ w for each share s ∈ [0, 1] and for each budget w ∈ [w, w].

Therefore, bidder i’s monotone strategy βi satisfies βi(s | v, w) ∈ [v, w], for all s ∈ [0, 1], for
all types (v, w) ∈ [v, v] × [w, w]. For any share s ∈ [0, 1], we can now extend the functions
λi(s | ·) and ρi(s | ·) to a common domain [v, w]. If for some z ∈ [v, w], ϕi(s | v) < z, then set

λi(s | z) = v and dλj(q | z)
dz = 0. Analogously, if for some z ∈ [v, w] one has γi(s |w) < z, then

set ρi(s | z) = w and dρi(s | z)
dz = 0.

12Observe that if ξ − Dw H(w, w) < 0, the flat-bid equilibrium breaks down for large enough Nk anyway. There-
fore, we ignore this case.
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D.2. Stop-out Price and Expected Payoff Function

The literature uses the distribution of the s–price to define the expected payoff function and
establish a necessary condition for the equilibrium in pay-as-bid auctions (See Wilson (1979),
Hortaçsu and McAdams (2010), and Kastl (2012)). Nevertheless, as far as we know, the
literature misses an explicit formulation of the distribution of the s–price from the model
primitives. We provide the distribution of the s–price to avoid the risk of non-existence in the
context of budget constrained bidders.

For strategy profile β = (β1, . . . , βN), the market clearing price at type profile (v, w) is

P(v, w) = min
{

p : ∑N
i=1 β−1

i (p | vi, wi) ≤ 1
}

.

Notice that, at the ex ante stage, the market clearing price function is a random variable that
depends on the strategy profile β. We omit β to ease the notation.

Recall that we restrict ourselves to continuous bidding functions. Therefore, when the
market clears, any bidder i who wins a positive mass of shares [0, si) must bid at least P(v, w)

for any 0 ≤ s < si. Thus, bidder i’s expected payoff under the budget-feasible strategy profile
β can be expressed as

Πi(v, w | β) =
∫

([v,v]×[w,w])N−1

(∫ 1

0
(v − βi(s | v, w)) 1

{
βi(s | v, w) > p∗(v, w)

}
ds
)

d ∏
j ̸=i

T(vj, wj).

(5)

The expression 5 is not amenable to a variational approach. Therefore, we now derive a
more tractable expression for Πi(v, w | β). To this end, we compute a conditional distribution
of the stop-out price, where the conditioning is on the event that bidder i wins the shares
[0, s). This is precisely the notion of s–price.

Define:
∆s :=

{
q−i ∈ [0, 1]N−1 : ∑

j ̸=i
qj = 1 − s

}
.

For mathematical concreteness, we treat ∆s as a subset of RN−2 with the usual topology
and impose a uniform probability measure u : B(∆s) → [0, 1] over ∆s.13 By an abuse of
notation, whenever we write

∫
q−i∈∆s

l(q−i) dq−i for some real-valued function l, we integrate
with respect to the uniform probability measure u. Notice that if N = 2, then trivially
∆s = {1 − s} and ∆s has a Dirac probability measure concentrated at 1 − s.

When bidder i’s monotone strategy βi is such that βi(s | vi, wi) = Ps(v−i, w−i), the resultant
stop-out price is P(v, w) = Ps(v−i, w−i). Further, bidder i wins the shares [0, s] (possibly with
the tie). Observe that if bidder i bids strictly above the s–price, bidder i wins a quantity [0, q),
where q > s. Analogously, if bidder i bids strictly below the s–price, bidder i wins a quantity
[0, r), where r < s.14 The s–price is unequal to the stop-out price in both cases. The s–price is
identical to the stop-out price if and only if player i wins the shares [0, s], and neither more

13B(∆s) is the Borel σ-field on ∆s.
14If r = 0, bidder i wins nothing.
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nor less. Therefore, s–price is the stop-out price conditional upon bidder i winning the shares
[0, s).

We now compute the distribution of s–price. Fix some z ∈ [v, w]. Recall that H(v, w) =

FV(v)+ FW(w)− F(v, w). Each opponent j’s strategy induces a distribution H
(
λj(qj | z), ρj(qj | z)

)
on [v, w]. Observe that each type realization (v−i, w−i) generates an allocation q−i ∈ ∆s. Fix
q−i ∈ ∆s and a bidder j ̸= i who gets an allocation [0, qj] under q−i. The probability that
bidder k bids at most z for the share indexed qj is H

(
λj(qj | z), ρj(qj | z)

)
. Since the types are

independent, the probability that the s–price is at most z is:

Gs(z) :=
∫
∆s

∏
j ̸=i

H
(
λj(qj | z), ρj(qj | z)

)
dq−i

For each bidder j ̸= i:

• H
(
λj(qj | z), ρj(qj | z)

)
is increasing in z;

• H
(
λj(qj | v), ρj(qj | v)

)
= 0, and;

• H
(
λj(qj |w), ρj(qj |w)

)
= 1.

By construction,
∫
∆s

1 dq−1 = 1 for each s ∈ [0, 1]. Therefore, Gs(·) is a valid distribution

function and its support is a convex subset of [v, w]. By construction, v belongs to the support
of Gs(·).
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