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Abstract
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to the equilibrium predicted under full information over time.. Our results highlight
the continued importance of Katz-Bonacich centrality in incomplete networks and iden-
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1 Introduction

1.1 Overview

Networks play a crucial role as sources of information. Individuals communicate with those
they are connected to, and employ this information towards forming opinions and making
decisions. For example, a firm’s decision to adopt a new technology is influenced by com-
petitor or collaborator firms decisions to do so, and adolescents’ consumption of tobacco or
alcohol is affected by their peers’ consumption choices. While information and influence can
flow to an agent only through those it is directly connected to, indirect connections also
implicitly feed into its chosen behavior. Those who influce the agent are themselves influ-
cence by others, and hence individual behavior in a network inevibly depends on its entire
architecture.

When faced with a decision problem, a rational agent emdedded in a network can internalize
this fact. That is, it may rationalize that the influce being exerted upon it is the result of not
only the shape of its local neighborhood, but of the enrie network architecture. For instance,
when confronted with the choice of believing a rumor in a socal network, knowing which
actors (or sources) swayed the opinions of an agents neighbors would better inform whether
or not the agent itself would be swayed by the opinions of its own neighbors. Therefore, as
long as a rational agent has access to information on how the network is connected beyond
its local neighborhood, it can use this information to better inform its decision.

One of the major challenges in employing the full network topology in exerting rational ac-
tion, rests with the reality of incomplete information. Participant of real word social and
economic networks rarely if ever have access to information regarding their entire architec-
tures. For example, firms know who their own suppliers are, but may not now who their
suppliers suppliers are. Similarly, social media users know who their platform friends are,
but do not typically know who their friends’ friends are. The prevelence of incomplete net-
work information in social netwoks has also been demonstrated empirically. For instance, by
conducting surveys on Indian villages, Breaza et al. (2018) show that when asked to name
who their firends’ firends are, individuals do a poor job in identifying them.

These stylized facts give rise to the following set of questions which are the primary focus
of this paper. If network participants.. Assuming that information regarding the structure
of the network is encoded in agents behavior, what do the learning dyamics looks like when
agents are allowed to observe their neighbors actions over time?

We consider an environment in which a set of myopic but rational agents play an infinetly
repeated local interaction game of incomplete information. Our research focuses on scenarios

2



with local complementarities between players, building upon the linear-quadratic network
game model proposed by Ballester et al. (2006).

Our findings yield several important insights: We first show that the Bayesian Nash Equilib-
rium (BNE) for arbitrary ex-ante distributions over graphs is exactly the same as the Nash
Equilibrium (NE) under a complete information game. This discovery holds significant im-
plications for predicting players’ actions under incomplete information, suggesting that over
time, play converges towards the Nash Equilibrium predicted by complete information. Ad-
ditionally, this result serves as a bridge between incomplete and complete network games.
Under rational Bayesian learning, after learning ends, a player will act as if they know the
true network. This result aligns with some game theory papers(Jordan (1995) and Kalai
and Lehrer (1995), as both our paper and theirs show the coincidence of BNE and NE.
Furthermore, this result also shows that Katz−Bonacich(KB) centrality is still important
in an incomplete network game. This shows that our paper bridges between an incomplete
network game and a complete game.

This research contributes to the growing body of literature on Bayesian learning in networks,
an area that has received comparatively less attention than DeGroot learning models. Ad-
ditionally, our work aligns with and complements the existing literature. By providing a
comprehensive analysis of decision-making and learning processes in a simple and intuitive
way, our work offers both theoretical insights and practical implications for understanding
complex social and economic systems. Our findings not only advance the theoretical under-
pinnings of network game theory but also provide valuable insights for policymakers, business
leaders, and researchers seeking to understand and influence behavior in interconnected sys-
tems.

1.2 Related Literature

Bayesian learning within decision-making contexts has been extensively explored in the lit-
erature. Much of the research focuses on analyzing the circumstances under which repeated
pairwise communication among a finite group of individuals leads to consensus. Geanakoplos
and Polemarchakis (1982), Parikh and Krasucki (1990), Aumann et al. (1995), and Gale and
Kariv (2003) have investigated how two players adjust their posterior beliefs regarding the
true state after observing each other’s actions, demonstrating the convergence of posterior
beliefs and equilibrium actions. However, these studies typically assume perfect monitoring
of actions, whereas our model accounts for the limited observation capabilities of agents.

Considering Bayesian learning within a network presents added complexity. When agents
can only observe the actions of their neighbors, perfect monitoring becomes impractical due
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to the limited information available. Agents must consider the network’s connectivity and
update their beliefs accordingly, rendering Bayesian learning within networks challenging.
Consequently, much of the literature on learning and the evolution of behavior and opinions
in social networks assumes agents with bounded rationality or non-Bayesian settings(Bala
and Goyal (1998), Golub and Jackson (2010), Acemoglu et al. (2010), Jadbabaie et al.
(2012)).

Mueller-Frank (2013) provides relevant analysis of Bayesian learning under incomplete in-
formation within a repeated game framework. Their study reveals local indifference between
connected agents, implying that after learning ends, any action an agent selects becomes op-
timal for all their neighbors. However, this paper assumes identical utility functions for all
players, thereby overlooking potential positive or negative externalities in decision-making.
In contrast, our Bayesian model incorporates such externalities using a linear-quadratic util-
ity function (Ballester et al. (2006)), yielding distinct results from local indifference due to
varying optimal responses among agents based on connectivity.

Our equilibrium concept in a stage game is closely related to the work of Chaudhuri et al.
(2024), who examine Bayesian Equilibrium when players can only observe their neighbors’
actions under a linear-quadratic utility function (Ballester et al. (2006)). Similar to their
study, we identify the Bayesian Equilibrium at each stage and investigate how it evolves over
repeated games, thereby extending the findings of Chaudhuri et al. (2024).

Our primary finding demonstrates that after the learning process ends, the Bayesian Nash
Equilibrium (BNE) aligns precisely with the Nash Equilibrium under complete information.
Jordan (1995) illustrates that Bayesian Nash Equilibria in incomplete repeated games asymp-
totically converge to the set of Nash Equilibria for complete repeated games, with further
extensions by Kalai and Lehrer (1993) and Kalai and Lehrer (1995) relaxing the assumption
of identical prior beliefs among players.

However, our study has different points from previous work in several respects. Firstly,
while prior studies assume perfect monitoring, we account for imperfect monitoring inherent
in network settings where players can only observe their neighbors. Secondly, prior studies
rely on the martingale convergence theorem, whereas we establish that after a specific time,
t∗, the BNE at any stage t ≥ t∗ precisely matches the NE without invoking the limit theorem.

Furthermore, by examining repeated games with incomplete information and imperfect mon-
itoring, Linial (1994), Renault and Tomala (2004) and Li and Tan (2020) have analyzed
network structures conducive to players acquiring knowledge of the true state. In contrast,
we identify another sufficient condition for perfect learning, focusing on Katz-Bonacich cen-
trality rather than network structure.
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The subsequent sections of this paper are organized as follows: Section 2 introduces network
theory tools and defines the game setup. In Section 3, we characterize the BNE and present
our main result that the BNE coincides with the NE after learning concludes. Section 4
discusses conditions for perfect learning and the rate of convergence. Finally, Section 5
provides concluding remarks. All proofs, as well as additional discussion on certain aspects
of our model, are relegated to the appendix.

2 Model

2.1 Preliminaries

Let N = {1, 2, . . . , n} denote the set of players. Letting i ∼ j denote a link between i and j,
a network (or graph) g is the collection of all pairwise links that exist between players. The
links are undirected such that i ∼ j ∈ g implies j ∼ i ∈ g. The network can be represented
by its adjacency matrix which is also denoted as g = [gij], where gij = 1 if a link exists
between players i and j, and gij = 0 otherwise. There are no self-loops so that gii = 0 for
all i ∈ N .

The neighborhood of player i under a network g is the set of players with whom i is linked
and is denoted by Ni(g) = {j : gij = 1}. The size of this set is i’s degree which counts the
player’s direct connections: di(g) ≡ |Ni(g)|.

A walk of length s from a node i to a node js is a sequence of links in the network i ∼
j1, j1 ∼ j2, . . . , js−1 ∼ js. It is denoted by ij1j2 . . . js. Given two nodes i and js, there may
exist more than one such walk. Using the adjacency representation, the number of walks of
length s from node i to node js can be computed by the ijs element of the adjacency matrix
raised to the sth power, gs.

Finally, let g0 = I denote the identity matrix. Then, for a sufficiently small λ > 0, the
following influence matrix M(g, λ) = [mij(g)] is well-defined and non-negative:

M(g, λ) ≡ [I − λg]−1 =
∞∑
s=0

λsgs.

Each element mij(g) measures the total number of walks of all lengths from player i to
player j. Given M(g, λ), the Katz-Bonacich (KB) centrality of player i, KBi(g, λ), is the
ith-component of the vector KB(g, λ) = M(g, λ)1n, where 1n is the n-dimensional column
vector of ones. It measures the total number of discounted walks of all lengths originating
from i to all the other players where longer paths are discounted more.
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2.2 The Game

We study an infinitely repeated variant of the incomplete information network game of
Chaudhuri et al. (2024) in which agents information about the network is restricted to the
identity of their immediate neighbors only.

In the first stage, Nature, a non-strategic player, chooses a network out of a set containing
networks on the number of vertices equal to the number of agents. This set may contain all
possible networks on a given vertex set, or any subset of them. The chosen network is drawn
from an ex-ante distribution that is common knowledge among all agents. Following Nature’s
draw, players realize their direct connections (they can see the agents with whom they are
linked) but do not know the network’s architecture beyond that. Using the information on
their direct connections and Bayes’ rule, agents update their beliefs about the network chosen
by Nature and simultaneously exert action to maximize interim linear quadratic payoffs.

Following action exertion in the first stage, players observe the action levels chosen by their
neighbors. With actions being informative about the linking profile of agents, observing
neighbors actions allows agents to further update their beliefs about the true architecture of
the network. With these revised beliefs player again proceed to simultaneously exert action
in the second stage, with this process of belief updating and action exertion repeating ad
infinitum.

It is assumed that players are myopic but rational. That is, we seek to characterize the
learning process induced by the sequence of stage game equilibria. We proceed to formally
describe the game.

2.2.1 Time

Time is discrete and indexed by t ∈ {1, 2, ...}.

2.2.2 Ex-Ante Beliefs

Denote by G the set of networks that Nature selects from whose cardinality is denoted by
|G|. For example, if this set contains all possible unweighted and undirected networks with
n players, then its cardinality would be given by |G| = 2

n(n−1)
2 .

Let p ∈ ∆(G) denote a probability distribution over G, with ∆(G) denoting the set of all
probability distributions over G. Nature’s singular role in our game is to choose a specific
network g ∈ G in the beginning of the first stage. This choice is made according to some
p ∈ ∆(G), and these ex-ante beliefs are assumed to be common knowledge among players.
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2.2.3 Types

We assume that agents can only identify the players with who they are directly connected to.
Stated differently, they can only observe their own row of the adjacency matrix corresponding
to the network drawn by Nature. Moreover, as the game moves forward in time, by observing
their neighbors behavior, agents will gain additional information about the true architecture
of the network. Since players information change from period to period, we define types
(private information) in a dynamic fashion. In particular, the type of a player in a particular
period t is taken to be a set consisting of all those networks that rationalize all the information
available to it. This is defined via the following notion of an indistinguishable set of networks.

Definition 1. In the counterfactual scenario in which Nature has selected network g, we
denote by T t

i(g) the set of all networks that player i would not be able to distinguish from in
period t conditional on all its available information.

If g was selected by Nature, T t
i(g) consists of all those networks that player i would not

be able to disqualify as having been drawn given the player’s available information. In an
arbitrary period t > 1 the formal definition of T t

i(g) is provided in a later section as it is
defined dynamically and employs equilibrium actions. However, during the first stage t = 1

no prior actions have been exerted, and hence the only source of information available to
players is their realized neighborhood following Nature’s draw. Recalling that Ni(g) denotes
the neighborhood set of i under a graph g, then the set of networks that are indistinguishable
from g for player i is given by:

T 1
i(g) = {g′ ∈ G|Ni(g

′) = Ni(g)}

T t
i(g) may consist of a single network if the agent learns the true network drawn by Nature.

It may also consist of all possible networks in G if it cannot distinguish between any of them.
More importantly, it is also possible that T t

i(g) = T t
i(g′) even if g ̸= g′. We will demonstrate

this possibility in the example below.

In our game, these indistinguishable sets of networks define player types. In particular, the
type set of player i in period t is given by

T t
i = {T t

i(g)|g ∈ G}.

Note that T t
i is a collection of subsets of graphs since a type, T t

i(g), is itself set of graphs.
Thus, T t

i ⊆ P(G)/{∅}, where P(G) is the power set of G. Moreover, since P(G)/{∅} is a
finite collection, T t

i is also finite for any i ∈ N and any t. The period t type space of the
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game is
T t = "i∈NT

t
i .

To distinguish between a possible type of a player with its realized type, we use notation I ti

to denote the latter. For example, if Nature chooses g′ ∈ G, then I ti = T t
i(g′). Even though

I ti ∈ T t
i and player i knows its private information I ti , this does not imply that it knows

what g induces I ti . As mentioned above, this is because it could be the case that T t
i(g) = T t

i(g′)

with g ̸= g′. All players can construct the type sets of others and assign probabilities to
elements of them being realized, but realized types I ti for all i ∈ N are private information.

To illustrate the construction of type sets, suppose t = 1 in a 4-player game with G =

{ga, gb, gc, gd} as shown in Figure 1.

(a) ga (b) gb

(c) gc (d) gd

Figure 1: A four player game with G = {ga, gb, gc, gd}

Consider player 1. In Figure 1, we have that N1(ga) = N1(gb) = N1(gd) = N1(gd) =

{2}. Therefore, player 1’s realized neighborhood, and hence the information it is able to
extract from any of these networks is identical. This implies all g ∈ G = {ga, gb, gc, gd}
are indistinguishable to player 1 regardless of which one is realized by Nature, i.e., T 1

1(ga)
=

T 1
1(gb)

= T 1
1(gc)

= T 1
1(gd)

= {ga, gb, gc, gd}. This shows that T t
i(g) can be the same to T t

i(g′) even
if g ̸= g′.

Now consider player 2. We have N2(ga) = N2(gb) = {1, 3}, N2(gc) = {1, 4}, and N2(gd) =
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{1, 3, 4}. This implies that T 1
2(ga)

= T 1
2(gb)

= {ga, gb}, T 1
2(gc)

= {gc}, and T 1
2(gd)

= {gd}.
Consequently, player 2 will not be able to distinguish between ga and gb if either of them
are realized. On the other hand, if either gc or gd are realized then player 2 would know
the entire network since its neighborhood sets under both realizations are unique. Similar
constructions can be made for players’ 3 and 4 type sets.

It is important to note that all players can construct the type sets of all others. Consider
for example the type T 1

2(ga)
= {ga, gb}. Since all players know that Nature selects a network

from G = {ga, gb, gc, gd}, and that in the first stage the only information available to players
stems from their realized neighborhood, any player can conduct the counterfactual that if
ga is realized, then player 2 will be connected to players 1 and 3 and thus will not be able
to distinguish between graphs ga and gb.

With regard to realized types, suppose Nature chooses ga. In this case, the realized type of
player 1 is I11 = {ga, gb, gc, gd} = T 1

1(ga)
. Note, however, that T 1

1(ga)
= T 1

1(gb)
= T 1

1(gc)
= T 1

1(gd)
.

Thus, player 1 cannot know which graph induced its realized type. Similarly, when ga

is the true graph, I12 = T 1
2(ga)

= T 1
2(gb)

= {ga, gb}, I13 = T 1
3(ga)

= T 1
2(gd)

= {ga, gd}, and
I14 = T 1

4(ga)
= {ga} which implies that players 2 cannot distinguish between ga and gb, player

3 cannot distinguish between ga and gd, but player 4 knows the true network.

In summary, with G = {ga, gb, gc, gd} as shown in Figure 1, all players can construct their
own as well as other players period 1 type sets as follows:

T 1
1 = {T 1

1(ga), T
1
1(gb)

, T 1
1(gc), T

1
1(gd)

} = {T 1
1(ga)} = {{ga, gb, gc, gd}}.

T 1
2 = {T 1

2(ga), T
1
2(gb)

, T 1
2(gc), T

1
2(gd)

} = {T 1
2(ga), T

1
2(gc), T

1
2(gd)

} = {{ga, gb}, {gc}, {gd}}.

T 1
3 = {T 1

3(ga), T
1
3(gb)

, T 1
3(gc), T

1
3(gd)

} = {T 1
3(ga), T

1
3(gb)

, T 1
3(gc)} = {{ga, gd}, {gb}, {gc}}.

T 1
4 = {T 1

4(ga), T
1
4(gb)

, T 1
4(gc), T

1
4(gd)

} = {T 1
4(ga), T

1
4(gb)

, T 1
4(gc)} = {{ga}, {gb}, {gc, gd}}.

2.2.4 Belief Updating

Given prior beliefs and a realized type I ti = T t
i(g), player i will assign a probability to player

j being of realized type T t
j(g′) according to Baye’s rule:

p(I tj = T t
j(g′)|I ti = T t

i(g)) =

∑
g′′∈T t

i(g)
∩T t

j(g′)
p(g′′)∑

g′′∈T t
i(g)

p(g′′)
.

The denominator gives the total probability mass that Nature selects graphs in T t
i(g), while

the numerator is the probability of all those graphs in the intersection T t
i(g) ∩ T t

j(g′). As
an example, consider Figure 1 and suppose that Nature selects a graph according to the
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distribution (p(ga), p(gb), p(gc), p(gd)) = ( 1
10
, 2
10
, 3
10
, 4
10
). Moreover, suppose ga is realized so

that I11 = T 1
1(ga)

= {ga, gb, gc, gd}. Then, to player 2 being of realized type I12 = T 1
2(ga)

=

{ga, gb} player 1 will assign:

p(I12 = T 1
2(ga)|I

1
1 = T 1

1(ga)) =
p(ga) + p(gb)

p(ga) + p(gb) + p(gc) + p(gd)
=

3

10
.

2.2.5 Expected Payoff and Equilibrium

We assume that players ignore the future effects of their decisions. That is, they myopically
exert the actions today based on current beliefs without regarding the effects of their actions
on other players or future information availability. This can be the result of players heavily
discounting the future.

At each stage t, all players have the same action set A ≡ R+ and simultaneously exert action
to maximize interim linear-quadratic payoffs. Assuming player i’s realized type is T t

i(g) , these
are given by:

E[ui|I ti = T t
i(g)] = ati(I

t
i = T t

i(g))−
1

2
(ati(I

t
i = T t

i(g)))
2

+ λati(Ii = T t
i(g))

n∑
j=1

(g
Iti=T t

i(g)

ij )
∑

T t
j(g)

∈T t
j

p(I tj = T t
j(g)|I ti = T t

i(g))a
t
j(I

t
j = T t

j(g))

where g
Iti=T t

i(g)

ij captures whether i is connected to j in the network g ∈ T t
i(g), and ati is the

action of i in stage t. Note that for any player i, all graphs in an arbitrary type T t
i(g) induce

the same neighborhood sets. That is, if g, g′ ∈ T t
i(g), then Ni(g) = Ni(g

′),∀i ∈ N and
∀t = 1, 2, . . . . We will show this formally in following subsection.

The utility function is an extension of the Ballester et al. (2006) utility function incorporating
player types. The first two terms in the utility function capture the direct benefit and cost
to player i from exerting its own action. The third term captures local complementarities
with those agents that the player is connected to, with λ measuring the strength of this
complementarity. Note, however, that unlike the complete information model of Ballester et
al. (2006) agents need to form beliefs about the actions of other players.

For each player i in stage t, a pure strategy σt
i maps each possible type to an action. That

is,

σt
i = (ati(I

t
i = T t

i(g)))T t
i(g)

∈T t
i
.
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This is a simultaneous move game of incomplete information so we use Bayes-Nash as the
equilibrium notion.

Definition 2. The pure strategy profile σ∗t = (σ∗t
i , σ

∗t
−i), where σ∗t

i = (a∗ti (I
t
i = T t

i(g)))T t
i(g)

∈T t
i

is a Bayesian-Nash equilibrium (BNE) of the tth stage game if:

a∗ti (I
t
i = T t

i(g)) ∈ argmax
ati(I

t
i=T t

i(g′))

E[ui|I ti = T t
i(g)],∀i ∈ N, ∀T t

i(g) ∈ T t
i .

With type sets being common knowledge, all player can compute BNE action profile of every
stage game.

2.2.6 Dynamic Type Updating

We assume that players who are connected can perfectly observe each others actions at the
end of each period. Since actions are type dependent, this implies that by observing adjacent
agents behavior, players can extract additional information about each others types and
hence the true architecture of the network.

Definition 3. Suppose g has been realized by Nature so that, I tj = T t
j(g). For player i, the

set of types that rationalize player j′s actions is given by

Bt(atj(I
t
j = T t

j(g))) = {T t
j(g′) ∈ T t

j |atj(I tj = T t
j(g′)) ∈ argmaxatj∈AE[uj|I tj = T t

j(g)]}.

Moreover, let Bt
f (a

t
j(I

t
j = T t

j(g))) denote the set where we merge all the elements of all subsets
of Bt(atj(I

t
j = T t

j(g))):
1

Bt
f (a

t
j(I

t
j = T t

j(g))) =
⋃

T t
j(g′)∈B

t(atj(I
t
j=T t

j(g)
))

T t
j(g′)

Note that what player i observes is the action, not the type, and there may be more that
one type that induces the action observed by the player. To state this formally, let g, g′ ∈
T t
i(g) and suppose that T t

j(g) ̸= T t
j(g′). If player i observes atj(I

t
j = T t

j(g)) and it holds that
atj(I

t
j = T t

j(g)) = atj(I
t
j = T t

j(g′)), then T t
j(g), T

t
j(g′) ∈ Bt(atj). In this case, player i cannot know

for certain the realized type of player j since both T t
j(g) and T t

j(g′) would induce the same
equilibrium action of player j.

Consider again our example in Figure 1 with (p(ga), p(gb), p(gc), p(gd)) = ( 1
10
, 2
10
, 3
10
, 4
10
) and

1For example, if Bt(atj(I
t
j = T t

j(ga)
)) = {T t

j(ga)
, T t

j{gc}} where T t
j(ga)

= {ga, gb} and T t
j(gc)

= {gc, gd}, then
Bt

f (a
t
j) = {ga, gb, gc, gd}.
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λ = 1/4. In this case it can be shown that

a12(I
1
2 = T 1

2(ga)) = a12(I
1
2 = T 1

2(gb)
) = 1.789

a12(I
1
2 = T 1

2(gc)) = 1.877

a12(I
1
2 = T 1

2(gd)
) = 2.387.

Now suppose that ga has been realized by Nature so that I12 = T 1
2(ga)

= {ga, gb} and I13 =

T 1
3(ga)

= {ga, gd}. Since players 2 and 3 are connected, player 3 observes that 2 exerts
a12 = 1.789. Therefore, for player 3, the set of types that rationalize player 2’s action is
B1(a12(I

1
2 = T 1

2(ga)
)) = {T 1

2(ga)
, T 1

2(gb)
} = {{ga, gb}} and hence B1

f (a
1
2(I

1
2 = T 1

2(ga)
)) = {ga, gb}.

Consequently, after observing the action, player 3 knows that the set of networks that are
possible from player 2’s perspective are either ga or gb . In the second period t = 2, player 3
can update its belief about the true network by combining its original information I13 with the
information extracted from player 2’s action, i.e., I23 = I13∩B1

f (a
1
2) = {ga, gd}∩{ga, gb} = {ga}.

Since players will observe the actions of all their neighbors, and can can compute the full
BNE profile of its stage game, the preceding idea leads to the following type updating rule,
which also applies to how the type space of the game evolves over time.

Definition 4. Player i whose realized type in period t is I ti updates its type according to:

I ti = I t−1
i ∩

 ⋂
j∈Ni(g

It−1
i )

(Bt−1
f (at−1

j (I t−1
j = T t−1

j(g∗))))

 ,

where g∗is the realized graph.

Similarly, the updating rule for an arbitrary T t
i(g) is given by:

T t
i(g) =


{g′ ∈ G|Ni(g

′) = Ni(g)} t = 1

T t−1
i(g) ∩

(⋂
j∈Ni(g

Tt−1
i(g) )

(Bt−1
f (at−1

j (I t−1
j = T t−1

j(g))))

)
t = 2, 3, 4, . . .

where
Ni(g

T t−1
i(g) ) =

{
j ∈ N |g′ij = 1 and g′ ∈ T t−1

i(g)

}
With the formal definition of types in hand, we proceed to discuss some of their properties.

Remark 1. g ∈ T t
i(g), for any i ∈ N , any g ∈ G and any t = 1, 2, . . . .

This follows directly form the definition of T t
i(g). From player i′s perspective, T t

i(g) consists

12



of all those graphs that are indistinguishable from g in period t. Thus, the graph g itself
should lie in T t

i(g). This implies that T t
i(g) is nonempty for any i, t, and g.

Remark 2. For any g, g′ ∈ T t
i(g), Ni(g) = Ni(g

′), ∀i ∈ N,∀t = 1, 2, 3, . . .

Suppose g, g′ ∈ T t
i(g). Since by construction T t

i(g) is non-increasing in t, it then follows
that g, g′ ∈ T 1

i(g). Recalling that T 1
i(g) = {g′ ∈ G|Ni(g

′) = Ni(g)}, then the neighbors of

player i under g and g′ must be same. Thus, we can write g
Iti=T t

i(g)

ij = gij = g′ij so that
Ni(g

T t
i(g)) = Ni(g) = Ni(g

′) for any g, g′ ∈ T t
i(g). The type updating rule with t ≥ 2 can thus

be rewritten as

T t
i(g) = T t−1

i(g) ∩

 ⋂
j∈Ni(g)

(Bt−1
f (at−1

j (I t−1
j = T t−1

j(g))))


Recall that T t

i(g) is non-increasing in t. Furthermore, since G is finite, T t
i(g) is also finite.

Therefore, T t
i(g) is a nonempty, non-increasing and finite set for any i ∈ N , for any g ∈ G,

and for any t = 1, 2, 3, . . . .

Lastly, recall that I ti denotes the realized type of player i. As mentioned previously, even
though the player knows its realized type, it may not know what graph induced this type.
This is because there may be g, g′ ∈ G such that I ti = T t

i(g) = T t
i(g′). The following lemma

and remark show this formally.

Lemma 1. For any g, g′ ∈ G, either T t
i(g) = T t

i(g′) or T t
i(g) ∩T t

i(g′) = ∅, for any i ∈ N and any
t = 1, 2, 3, . . . .

Remark 3. For any i ∈ N , if g, g′ ∈ T t
i(g), then T t

i(g) = T t
i(g′) for any t = 1, 2, 3, . . . .

Suppose g ̸= g′. When g′ ∈ T t
i(g),then g′ ∈ T t

i(g) ∩ T t
i(g′),implying that T t

i(g) ∩ T t
i(g′) ̸= ∅. Thus,

by lemma 1, T t
i(g) = T t

i(g′). As an example, suppose that I ti = {ga, gb, gc}. If ga was selected by
Nature, then this realized type was generated by I ti = T t

i(ga)
. However, since ga, gb, gc ∈ T t

i(ga)
,

then T t
i(ga)

= T t
i(gb)

= T t
i(gc)

. Thus, player i cannot know which network induced its private
information I ti . Nonetheless, and as is stated in the following remark, the network selected
by Nature must always belongs to players realized types.

Remark 4. Let g∗ be the realized graph. Then, g∗ ∈ I ti ,∀t = 1, 2, 3, . . . and ∀i ∈ N .

2.2.7 Example of the Learning Process

We now illustrate the learning process using our example from Figure 1 where we set
(p(ga), p(gb), p(gc), p(gd)) = ( 1

10
, 2
10
, 3
10
, 4
10
), λ = 1

4
, and where it is assumed that ga has been

selected by Nature.

13



The BNE action profile of player 2 is given by:

a12(I
1
2 = T 1

2(ga)) = a12(I
1
2 = T 1

2(gb)
) = 1.789

a12(I
1
2 = T 1

2(gc)) = 1.877

a12(I
1
2 = T 1

2(gd)
) = 2.387

Since ga has been realized, player 1 will observe its sole neighbor’s, player 2’s, action to be
a12(I

1
2 = T 1

2(ga)
) = 1.789. Thus, the set of player 2 types that rationalize player 1’s observation

are B1(a12(I
1
2 = T 1

2(ga)
)) = {T 1

2(ga)
, T 1

2(gb)
}, with a corresponding set of networks B1

f (a
1
2(I

1
2 =

T 1
2(ga)

)) = {ga, gb}. Using this information in period t = 2, player 1 updates its beliefs
regarding the true network realized by Nature according to

I21 = I11 ∩B1
f (a

1
2(I

1
2 = T 1

2(ga))) = {ga, gb, gc, gd} ∩ {ga, gb} = {ga, gb}.

Even though player 1 can only observe the action of player 2, it can still compute the BNE
action profile of all players. This allows it to consistently construct what the type sets of
all players in period t = 2 will be. To see this, first note that with its updated realized
type I21 = {ga, gb}, player 1 knows that the network selected by Nature is either ga or gb.
Note further that in both of these networks, player 2 is connected to player 1 and player 3.
Therefore, player 1 knows that player 2 will observe 1’s and 3’s actions. The BNE action
profile of player 3 is given by:

a13(I
1
3 = T 1

3(ga)) = a13(I
1
3 = T 1

3(gd)
) = 2.041

a13(I
1
3 = T 1

3(gb)
) = 1.447

a13(I
1
3 = T 1

3(gc)) = 1.498

Recall that from player 1’s perspective, either ga or gb are the true networks. In the scenario
in which ga is the true network, player 1 knows that player 2 will observe player 3’s action
to be a13(I

1
3 = T 1

3(ga)
) = 2.041. In this case, player 1 knows that the corresponding type of

player 2, T2(ga) will be updated in stage t = 2 as follows:

T 2
2(ga) = T 1

2(ga) ∩B1
f (a

1
3(I

1
3 = T 1

3(ga))) ∩B1
f (a

1
1(I

1
1 = T 1

1(ga)))

= {ga, gb} ∩ {ga, gd} ∩ {ga, gb, gc, gd} = {ga}.

On the other hand, in the scenario in which gb is the true network, player 1 knows that player
2 will observe a13(I

1
3 = T 1

3(gb)
) = 1.447, and not a13(I

1
3 = T 1

3(ga)
) = 2.041. The set of networks
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that would rationalize player 3’s action in this case would therefore be B1
f (a

1
3(I

1
3 = T 1

3(gb)
)) =

{gb}. Thus, player 1 can infer that player 2’s type T2(gb), will be updated as follows:

T 2
2(gb)

= T 1
2(gb)

∩B1
f (a

1
3(I

1
3 = T 1

3(gb)
)) ∩B1

f (a
1
1(I

1
1 = T 1

1(gb)
))

= {ga, gb} ∩ {gb} ∩ {ga, gb, gc, gd} = {gb}

In this fashion, player 1 can determine how all of its neighbor’s period t = 1 types will
be updated next period. This process, however, can be performed even if players are not
connected. To see this, consider player 4’s BNE action profile:

a14(I
1
4 = T 1

4(ga)) = 1.51

a14(I
1
4 = T 1

4(gb)
) = 1

a14(I
1
4 = T 1

4(gc)) = a14(I
1
4 = T 1

4(gd)
) = 1.994

Recall that I21 = T 2
1(ga)

= {ga, gb}. In the scenario in which ga is the true network, player 3
will be connected to 2 and 4. Therefore, player 1 knows that player 3 will observe a14 = 1.51

and a12 = 1.789. Player 1 can thus infer that player 3 will update its information according
to:

T 2
3(ga) = T 1

3(ga) ∩B1
f (a

1
2(I

1
2 = T 1

2(ga))) ∩B1
f (a

1
4(I

1
4 = T 1

4(ga)))

= {ga, gd} ∩ {ga, gb} ∩ {ga} = {ga}

A similar calculation holds for T 2
3(gb)

in the scenario in which gb is the true network. Thus,
even if players are not connected, each player can infer any other player’s type updating rule
by fixing networks in their own realized type. This is because they know what each player
will observe in the reference frames of these fixed networks, and consequently how types will
be updated. In sum, the type sets of each player at the second stage are common knowledge
and are given by: 2

T 2
1 = {T 2

1(ga), T
2
1(gb)

, T 2
1(gc), T

2
1(gd)

} = {T 2
1(ga), T

2
1(gc), T

2
1(gd)

} = {{ga, gb}, {gc}, {gd}}}.

T 2
2 = {T 2

2(ga), T
2
2(gb)

, T 2
2(gc), T

2
2(gd)

} = {{ga}, {gb}, {gc}, {gd}}.

T 2
3 = {T 2

3(ga), T
2
3(gb)

, T 2
3(gc), T

2
3(gd)

} = {{ga}, {gb}, {gc}, {gd}}.

T 2
4 = {T 2

4(ga), T
2
4(gb)

, T 2
4(gc), T

2
4(gd)

} = {{ga}, {gb}, {gc}, {gd}}.

Furthermore, since we are assuming that ga has been selected by Nature, the realized types
2Note that T 2

1(ga)
= T 2

1(gb)
.
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of each player are I21 = T 2
1(ga)

= {ga, gb}, I22 = T 2
2(ga)

= {ga}, I23 = T 2
3(ga)

= {ga}, and
I24 = T 2

4(ga)
= {ga}. This implies that at the beginning of the second stage, all players except

for player 1 know the true network.

At this point, it is important to note that even if a player knows the true network, this does
not imply that will necessarily exert the complete information action. This is because, it
still internalizes the uncertainty of others. To see this, recall that ga is the true network so
that player 3’s realized type at stage 2 is I23 = T 2

3(ga)
= {ga}. Player 3 knows that since ga

is the true network, player 1 will observe player 2’s action so that its type will be updated
according to:

T 2
1(ga) = T 1

1(ga) ∩B1
f (a

1
2(I

1
2 = T 1

2(ga))) = {ga, gb, gc, gd} ∩ {ga, gb} = {ga, gb}.

Hence, even if it knows the true network, player 3 knows that player 1 is still uncertain about
player 3’s types. This is because under ga, T 2

3(ga)
= {ga}, while and under gb, T 2

3(gb)
= {gb}.

Thus, both ga and gb are still possible from player 1’s perspective and player 3 knows this.
The fact that individuals internalize the uncertainty of others will be reflected in equilibrium
actions.

Lastly, with the type space in period 2 being common knowledge, all players can compute
the corresponding BNE. The BNE action profile of player 2 in the second stage is given by:

a22(I
2
2 = T 2

2(ga)) = 1.813

a22(I
2
2 = T 2

2(gb)
) = 1.716

a22(I
2
2 = T 2

2(gc)) = 1.818

a22(I
2
2 = T 2

2(gc)) = 2.486

Player 1 being connected to player 2 observes that a22(I
2
2 = T 2

2(ga)
) = 1.813. With the

information stemming from its neighbor’s period t = 2 actions, player 1 can can further
update its type as follows:

I31 = T 3
1(ga) = T 2

1(ga) ∩B2
f (a

2
2(I

2
2 = T 2

2(ga)))

= {ga, gb} ∩ {ga} = {ga}.

Thus, at beginning of the third stage, all players know the true network.
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3 Equilibrium and Convergence

Recall that we are interested in the learning dynamics induced by the myopic sequence of
stage game equilibria.

3.1 Stage Game Equilibrium

Given expected utility, the best response of player i in stage twhose realized type is I ti = T t
i(g)

is given by:

ati(I
t
i = T t

i(g)) = 1 + λ
n∑

j=1

g
Iti=T t

i(g)

ij

∑
T t
j(g)

∈T t
j

p(I tj = T t
j(g)|I ti = T t

i(g))a
t
j(I

t
j = T t

j(g)),

where g
Iti=T t

i(g)

ij = {gij|g ∈ T t
i(g)}.3 Let ηti be the cardinality of player i′s type set at time

t, and ηt =
∑

i∈N ηti . Then, the system characterizing best responses for all players can be
written in vector notation as follows:

at = 1ηt + λBtat,

where 1ηt is the ηt-dimensional column vector of 1’s, at = [at
i]i∈N , at

i = (ati(I
t
i = T t

i(g)))T t
i(g)

∈T t
i
,

and Bt is a block matrix that assumes the following form:

Bt =


0 G1∼2 . . . G1∼n

G2∼1 0 . . . G2∼n

. . . . . . . . . . . .

Gn∼1 Gn∼2 . . . 0


with

[Gi∼j]T t
i(g)

,T t
j(g)

= g
Iti=T t

i(g)

ij p(I tj = T t
j(g)|I ti = T t

i(g)),∀T t
i(g) ∈ T t

i , T
t
j(g) ∈ T t

j

As illustrated by Chaudhuri et al. (2024), the matrix Bt may be interpreted as a weighted
in directed network connecting player types. For instance, consider agent i and the block
[Gi∼j]T t

i(g)
,T t

j(g)
whose elements are of the form g

Iti=T t
i(g)

ij p(I tj = T t
j(g)|I ti = T t

i(g)). The first term

g
Iti=T t

i(g)

ij identifies whether player i, whose type in period t is T t
i(g), is connected to player j.

When multiplied by the second term p(I tj = T t
j(g)|I ti = T t

i(g)), g
Iti=T t

i(g)

ij p(I tj = T t
j(g)|I ti = T t

i(g))

states that if player i is connected to player j, it will assign a probability to player j being
3As we mentioned above, any graph contained in a specific type induces the same neighborhood for the

player..
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of type T t
j(g) equal to p(I tj = T t

j(g)|I ti = T t
i(g)). In this sense, the g

Iti=T t
i(g)

ij p(I tj = T t
j(g)|I ti =

T t
i(g)) can be understood as a weighted and directed link from T t

i(g)toT
t
j(g) representing the

probability that agent i with type T t
i(g) assigns to j being a type T t

j(g).

Proposition 1. For any stage t, there exist a unique pure strategy BNE for λ ∈ [0, 1
n−1

).
Moreover, for any s ∈ N+, let j1, j2, . . . , js denote an arbitrary collection of s indices. Then,
for any prior distribution, any realized network g ∈ G and any t = 1, 2, 3, . . . , the equilibrium
actions of agents are given by:

at
∗

i (I
t
i = T t

i(g)) =
∞∑
s=0

λsβ
(s)

i,T t
i(g)

,∀i ∈ N, ∀T t
i(g) ∈ T t

i ,

where

β
(s)

i,T t
i(g)

=
n∑

j1,··· ,js=1

∑
T t
j1(g)

∈T t
j1

· · ·
∑

T t
js(g)

∈T t
js

g
It=T t

i(g)

ij1
g
Itj1

=T t
j1(g)

j1j2
· · · g

Its−1=T t
js−1(g)

js−1js

p(I ts = T t
js(g)|I

t
s−1 = T t

js−1(g)
) · · · p(I tj1 = T t

j1(g)
|I ti = T t

i(g)),

and g
It=T t

i(g)

ij1
represents the connectivity pattern induced by the type T t

i(g).

Proposition 1 is similar to the BNE characterization of Chaudhuri et al. (2024). They
show that in a static game of incomplete information, when agents are endowed with linear
quadratic preferences and with types being defined by rows of the adjacency matrix, they will
exert an equilibrium action equal to the expected complementarity they are able to extract
from the network steaming from walks of different lengths. That is, agents will form beliefs
about the expected number of discounted walks of all lengths they have in the network, and
will exert an action equaling their sum. While type sets are different in our model, being
defined by sets of indistinguishable networks each period, our proposition shows that agents
will perform an identical calculation in exerting their equilibrium effort each period. The
difference lies in the type-object over which agents belief are defined and hence with the
probabilities assigned to these walks.

Remark 5. Let aci(g) denote agent i′s complete information action. Then:

aci(g) =
∞∑
s=0

λs

[
n∑

j1,··· ,js=1

gij1gj1j2 . . . gjs−1js

]
≡

∞∑
s=0

λsd
(s)
i = KBi(g, λ).

That is, in complete information version of the game where all agents observe the architecture
of the entire network, equilibrium actions of agents reduce to the actual number of discounted
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walks agents have in the network, i.e., their KB centrality.

3.2 Convergence of Equilibrium Actions

In this section, we examine the convergence properties induced by the myopic sequence of
stage game Bayes-Nash equilibria. This convergence bridges the gap between incomplete
and complete information behavior, offering insights into how beliefs and actions stabilize
over time. We start by formally defining the end of the learning process.

Definition 5. We say that learning ends if there exists a t∗ such that for any t ≥ t∗,
T t
j(g) = T t∗

j(g), for all j ∈ N and g ∈ G.

In other words, learning ends if there is no player that can update any type beyond stage
t∗. This includes players realized types I ti = T t

i(g∗), where g∗ ∈ G, is the graph selected by
Nature. The following proposition guarantees that learning will end at a finite stage of the
game.

Proposition 2. There exists a finite t∗ such that learning ends.

Recall that each stage game BNE can be computed by all players, implying that all players
can consistently update the type space of the game every period. As a consequence of this,
learning ending is common knowledge for all players and all players know when no other
player can update its beliefs further. Next, we state an important property of BNE actions
once learning has ended.

Lemma 2. Suppose that learning ends at t∗. For any t ≥ t∗, and for any g′, g′′ ∈ T t
i(g),

atj(I
t
j = T t

j(g′)) = atj(I
t
j = T t

j(g′′)), ∀ i ∈ N , ∀ j ∈ Ni(g), and ∀ g ∈ G .

Suppose learning ends at t∗ and t ≥ t∗. If g′, g′′ ∈ T t
i(g), then networks g′ and g′′ are

indistinguishable to g for player i after learning has ended. For those networks networks,
there exist associated types of player j, T t

j(g′) and T t
j(g′′) such that p(I tj = T t

j(g′)|I ti = T t
i(g)) > 0

and p(I tj = T t
j(g′′)|I ti = T t

i(g)) > 0.4 That is, from player i′s perspective whose type includes
networks g′ and g′′, both T t

j(g′) and T t
j(g′′) are possible types for player j. The lemma states

that if the actions associated with types T t
j(g′) and T t

j(g′′) were different, then player i could
still learn. Indeed, if atj(I tj = T t

j(g′)) ̸= atj(I
t
j = T t

j(g′′)) and atj(I
t
j = T t

j(g′)) is observed, player
i would be able to infer that g′′ can not induce player j′s realized type. This would imply
that g′′ /∈ T t+1

i(g) , leading to further learning.

It is important to note that the lemma does not imply that all actions for all types of a par-
ticular player are identical after learning ends. Instead, it is a restriction on the equilibrium

4This is because g′ ∈ T t
j(g′) ∩ T t

i(g) and g′′ ∈ T t
j(g′′) ∩ T t

i(g).
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actions of player j contingent on types that are induced by networks in a specific type of its
neighbor i after learning has ended. That is, a neighbor j’s types that remain possible from
player i’s perspective must lead to the same action. If they didn’t, player i would continue
learning, contradicting the assumption that learning has ended.

We illustrate Lemma 2 and its consequences via the example shown in Figure 2, where it is
assumed that p(g) = 1

5
for all g ∈ G = {ga, gb, gc, gd, ge} and λ = 1

4
.

(a) ga (b) gb (c) gc

(d) gd (e) ge

Figure 2: A four player game with G = {ga, gb, gc, gd, ge}

Period t = 1 type sets for each player are given by

T 1
1 = {T 1

1(ga), T
1
1(gb)

, T 1
1(gc), T

1
1(gd)

, T 1
1(ge)} = {{ga, gb}, {gc}, {gd}, {ge}}

T 1
2 = {T 1

2(ga), T
1
2(gb)

, T 1
2(gc), T

1
2(gd)

, T 1
2(ge)} = {{ga, gc}, {gb}, {gd}, {ge}}

T 1
3 = {T 1

3(ga), T
1
3(gb)

, T 1
3(gc), T

1
3(gd)

, T 1
3(ge)} = {{ga, gd}, {gb}, {gc}, {ge}}

T 1
4 = {T 1

4(ga), T
1
4(gb)

, T 1
4(gc), T

1
4(gd)

, T 1
4(ge)} = {{ga, ge}, {gb}, {gc}, {gd}}
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with corresponding stage t = 1 BNE profile

a11(I
1
1 = T 1

1(ga)) = a11(I
1
1 = T 1

1(gb)
) = a11(I

1
1 = T 1

1(gc)) = a11(I
1
1 = T 1

1(ge)) = 2, a11(I
1
1 = T 1

1(gd)
) = 1

a12(I
1
2 = T 1

2(ga)) = a12(I
1
2 = T 1

2(gb)
) = a12(I

1
2 = T 1

2(gc)) = a12(I
1
2 = T 1

2(gd)
) = 2, a12(I

1
2 = T 1

2(ge)) = 1

a13(I
1
3 = T 1

3(ga)) = a13(I
1
3 = T 1

3(gc)) = a13(I
1
3 = T 1

3(gd)
) = a13(I

1
3 = T 1

3(ge)) = 2, a13(I
1
3 = T 1

3(gb)
) = 1

a14(I
1
4 = T 1

4(ga)) = a14(I
1
4 = T 1

4(gb)
) = a14(I

1
4 = T 1

4(gd)
) = a14(I

1
4 = T 1

4(ge)) = 2, a14(I
1
4 = T 1

4(gc)) = 1.

Observe that in this example, learning ends in the first period. To see this, consider player 1
and suppose that network ga is realized. In this case, we have I11 = {ga, gb}, I12 = {ga, gc}, I13 =

{ga, gd} and I14 = {ga, ge}. Player 1 will observe the actions of players 2 and 4 to be a12(I
1
2 =

T 1
2(ga)

) = 2 and a14(I
1
4 = T 1

4(ga)
) = 2. Given the BNE action profile, it follows that B1(a12(I

1
2 =

T 1
2(ga)

)) = {T 1
2(ga)

, T 1
2(gb)

, T 1
2(gc)

, T 1
2(gd)

}, Bt(a14(I
1
4 = T 1

4(ga)
)) = {T 1

2(ga)
, T 1

2(gb)
, T 1

2(gd)
, T 1

2(ge)
}, and

hence Bt
f (a

1
2(I

1
2 = T 1

2(ga)
)) = {ga, gb, gc, gd}, Bt

f (a
1
4(I

1
4 = T 1

4(ga)
)) = {ga, gb, gd, ge}. Thus,

T 2
1(ga) = T 1

1(ga) ∩
(
Bt

f (a
1
2(I

1
2 = T 1

2(ga))) ∩Bt
f (a

1
4(I

1
4 = T 1

4(ga)))
)

= {ga, gb} ∩ ({ga, gb, gc, gd} ∩ {ga, gb, gd, ge}) = {ga,gb}

= T 1
1(ga)

implying that type T 1
1(ga)

can not be updated further. A similar argument holds for all
other players, and all of their types. To see Lemma 2, observe that ga, gb ∈ T 1

1(ga)
and the

corresponding types of player 2, T 1
2(ga)

= {ga, gc} and T 1
2(gb)

= {gb} lead to the same action.
The same holds for player 1’s second neighbor, player 4. Thus, after observing the actions
of its neighbors, player 1 realizes that all of its neighbors types induced by the networks in
T 1
1(ga)

lead to the same action.

The consequence of this observation is that player 1 can use this information to reconstruct
its best response. Noting that p(I12 = T 1

2(ga)
|I11 = T 1

1(ga)
) = p(I12 = T 1

2(gb)
|I11 = T 1

1(ga)
) = p(I14 =

T 1
4(ga)

|I11 = T 1
1(ga)

) = p(I14 = T 1
2(gb)

|I11 = T 1
1(ga)

) = 1/2 player 1’s best response if given by:

a11(I
1
1 = T 1

1(ga)
) = 1 + λ

4∑
j=1

g
I11=T 1

1(ga)

1j

∑
T 1
j(g)

∈T 1
j

p(I1j = T 1
j(g)|I

1
1 = T 1

1(ga)
)a1j (I

1
j = T 1

j(g))

= 1 + λ(
1

2
a12(I

1
2 = T 1

2(ga)
) +

1

2
a12(I

1
2 = T 1

2(gb)
)) + (

1

2
a14(I

1
4 = T 1

4(ga)
) +

1

2
a14(I

1
4 = T 1

4(gb)
)).
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Since a12(I
1
2 = T 1

2(ga)
) = a12(I

1
2 = T 1

2(gb)
) and a14(I

1
4 = T 1

4(ga)
) = a14(I

1
4 = T 1

4(gb)
), we then have:

at1(I
1
1 = T 1

1(ga)) = 1 + λ(a12(I
1
2 = T 1

2(ga)) + a14(I
1
4 = T 1

4(ga))) = 1 + λ

4∑
j=1

g
I11=T 1

1(ga)

1j a1j(I
1
j = T 1

j(ga)).

This best response, however, can be rewritten further on the basis that learning has ended.
Under the type T 1

2(ga)
, player 1 knows that player 2 will observe player 1’s and 3’s actions.

Since learning has ended, all the types corresponding to the graphs in T 1
2(ga)

= {ga, gc} lead
to the same action, a11(I11 = T 1

1(ga)
) = a11(I

1
1 = T 1

1(gc)
) = 2 and a13(I

1
3 = T 1

3(ga)
) = a13(I

1
3 =

T 1
3(gc)

) = 2. Moreover since learning ending is common knowledge, player 1 knows that
player 2’s best-response function can also be rewritten in a similar fashion as its own:

a12(I
1
2 = T 1

2(ga)) = 1 + λ
4∑

k=1

g
I12=T 1

2(ga)

2k

∑
T 1
k(g)

∈T 1
k

p(I1k = T 1
k(g)|I12 = T 1

2(ga))a
1
k(I

1
k = T 1

k(g))

= 1 + λ(at1(I
1
1 = T 1

1(ga)) + a13(I
1
3 = T 1

3(ga)))

= 1 + λ
4∑

k=1

g
I12=T 1

2(ga)

2k a1k(I
1
k = T 1

k(ga)).

Player 1 can perform a similar calculation by considering the type of its other neighbor T 1
4(ga)

,
leading to

a11(I
1
1 = T 1

1(ga)) = 1 + λ
4∑

j=1

g
I11=T 1

1(ga)

1j

(
1 + λ

4∑
k=1

g
I1j=T 1

2(ga)

jk a1k(I
1
k = T 1

k(ga)).

)
.

Invoking the fact that learning has ended, this reduction of best responses can be performed
about any other player, with repeated substitution yielding:

a11(I
1
1 = T 1

1(ga)) = 1 + λ
4∑

j=1

g
I11=T 1

1(ga)

1j + λ2

4∑
j=1

g
I11=T 1

1(ga)

1j

4∑
k=1

g
I1j=T 1

j(ga)

jk + . . . .

Consequently, player 1 can deduce that after learning has ended, its action is identical to its
KB centrality in ga. This process can be generalized to any player and any type, leading to
the following theorem.

Theorem 1. Suppose that Nature has selected g∗. Then, once learning ends, ati(I ti = T t
i(g∗)) =

aci(g
∗),∀i ∈ N , where aci(g

∗) is the equilibrium action of player i under the complete infor-
mation network game played over g∗.

As discussed earlier, after learning ends, the possible types of player j from player i’s per-
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spective result in identical actions, preventing further learning. Thus, even if player i does
not know player j’s exact type, the identical actions across possible types from i’s view re-
solve the uncertainty. Consequently, the incomplete network game behaves as if it were a
complete information game.

Note that Theorem 1 does not require all agents to know the true network perfectly. That
is, players realized types need not be singleton sets after learning ends. What it does show,
however, is that a player’s realized type must consist of all those networks that (i) admit the
player’s observed neighborhood, and (ii) give the same KB centrality. The question of when
do agents learn the network perfectly is addressed in the following section.

4 Concluding Remarks

In this paper, we have explored the dynamics of learning and decision-making in networked
environments with incomplete information. By studying the linear-quadratic network game
model with local complementarities, we have addressed key questions regarding equilibrium
dynamics, the conditions under which agents can learn the true network structure, and the
identification of key players in the learning process.

Our findings indicate that even under incomplete information, the Bayesian Nash Equilib-
rium (BNE) coincides with the Nash Equilibrium (NE) of a complete information game.
This result bridges the gap between incomplete and complete network games, suggesting
that rational agents, through repeated interactions, eventually act as if they possess com-
plete knowledge of the network. The persistence of Katz-Bonacich centrality in these settings
underscores its importance, even when agents lack full information, further solidifying the
connection between our model and the broader game theory literature. Also, this result can
help to predict individuals’ behaviors under incomplete information.

Our research contributes to the understanding of learning in networks, offering both the-
oretical advancements and practical implications. By providing a rigorous analysis of the
interplay between network structure, information, and behavior, we offer insights that are
valuable for academics, policymakers, and practitioners alike. Future research could expand
upon our work by exploring scenarios in which individuals consider the future consequences of
their decisions. If agents place greater emphasis on future payoffs, the equilibrium outcomes
may differ, as suggested by classical repeated game theory (Friedman (1971)).
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Appendix A: Proofs

Proof of Lemma 1

We prove the result by induction. Start by recalling the definition of T t
i(g)

T t
i(g) =

{g′ ∈ G|Ni(g
′) = Ni(g)} t = 1

T t−1
i(g) ∩

(⋂
j∈Ni(g)

(Bt−1
f (at−1

j (I t−1
j = T t−1

j(g))))
)

t = 2, 3, 4, . . .

First, consider T 1
i(g) and T 1

i(g′). Note that, at stage 1, types are determined by neighborhoods.
That is, if g, g′ ∈ T 1

i(g), then, Ni(g) = Ni(g
′). Suppose that T 1

i(g) ̸= T 1
i(g′) and there exists

g′′ such that g′′ ∈ T 1
i(g) ∩ T 1

i(g′). Then, it has to be the case that Ni(g
′′) = Ni(ga) for any

ga ∈ T 1
i(g) since g′′ ∈ T 1

i(g). Similarly, Ni(g
′′) = Ni(gb) for any gb ∈ T 1

i(g′). This implies that,
Ni(g

′′) = Ni(ga) = Ni(gb),∀ga ∈ T 1
i(g),∀gb ∈ T 1

i(g′). Thus, if ga ∈ T 1
i(g), then ga ∈ T 1

i(g′) since
ga induces the same neighborhood as any other graph in T 1

i(g′). Similarly, if gb ∈ T 1
i(g′), then

gb ∈ T 1
i(g), which implies T 1

i(g) = T 1
i(g′). And this is a contradiction.

Now, assume that either T t
i(g) = T t

i(g′) or T t
i(g) ∩ T t

i(g′) = ∅,∀i ∈ N . If T t
i(g) ∩ T t

i(g′) = ∅, then
the intersection of T t+1

i(g) and T t+1
i(g′) is also empty since T t

i(g) is non-increasing in t, ∀g ∈ G.

Now suppose that T t
i(g) = T t

i(g′) and that there exists a g′′ such that g′′ ∈ T t+1
i(g) ∩ T t+1

i(g′) and
T t+1
i(g) ̸= T t+1

i(g′). Note that the neighborhood of i under type T t
i(g) must be the same as its

neighborhood under T t
i(g′) since T t

i(g) = T t
i(g′).

Let i and j be connected and suppose that the graph g has be realized by Nature. Note
that for any ga ∈ T t+1

i(g) , it has to be the case that atj(I
t
j = T t

j(ga)
) = atj(I

t
j = T t

j(g)). If not,
such a ga cannot be in T t+1

i(g) . Similarly, for any gb ∈ T t+1
i(g′), atj(T

t
j(gb)

) = atj(T
t
j(g′)). Since

g′′ ∈ T t+1
i(g) ∩ T t+1

i(g′), a
t
j(I

t
j = T t

j(g)) = atj(I
t
j = T t

j(g′′)) = atj(I
t
j = T t

i(g′)). Thus, for any ga ∈ T t+1
i(g) ,

ga ∈ T t+1
i(g′) since ga ∈ T t

i(g) = T t
i(g′) and it induces the same action as type T t+1

i(g′). Similarly, if
gb ∈ T t+1

i(g′), then gb ∈ T t+1
i(g) , which implies T t+1

i(g) = T t+1
i(g′) and it is a contradiction.

■

Proof of Proposition 1

To show existence, define a map P : Rηt → Rηt , such that

P (at) = 1ηt + λBtat

with Bt as defined in section 3.1. Let (Rηt , ∥ · ∥∞) be the vector space with ∥ · ∥∞ being the
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sup-norm on Rηt . Hence, we can write:

∥P (x)− P (y)∥∞ = |λ|∥Bt(x− y)∥∞ ≤ λ(n− 1)∥x− y∥∞ = r∥x− y∥∞

where r = λ(n− 1) and the first inequality results from the fact that ∥Bta∥∞ ≤ (n− 1)∥a∥∞
since the rows of Bt sum to n − 1. Thus, we get that P is a contraction on Rηt as long as
r ∈ [0, 1). This holds as long as λ < 1

n−1
. Thus, if 0 ≤ λ < 1

n−1
, P is a contraction on Rηt

and (Rηt , ∥ · ∥∞) is a complete vector space. Therefore, by the Banach fixed point theorem,
there exists a unique at∗ ∈ Rηt such that

P (at∗) = at∗ ⇒ at∗ = 1ηt + λBtat∗ .

Consequently, there exists a unique pure strategy BNE for the game whenever λ ∈ [0, 1
n−1

)

for any t = 1, 2, 3, . . . .To establish the walk based characterization, recall the best responses
for all players, which are written by in a vector form:

at = 1ηt + λBtat.

Then, the equilibrium actions at t for λ ∈ [0, 1
n−1

) can be written in the form

at∗ = (Iηt×ηt − λBt)−1 · 1ηt

= 1ηt + λBt · 1ηt + λ2(Bt)2 · 1ηt + . . .

for an agent i ∈ N with a type T t
i(g) at t, the equilibrium action is given by

at
∗

i (I
t
i = T t

i(g)) = 1 + λ[Bt · 1]i,T t
i(g)

+ λ2[(Bt)2 · 1]i,T t
i(g)

+ . . .

Expanding each term [(Bt)s · 1]i,T t
i(g)

for all s ∈ N+ gives the equilibrium characterization.

■

Proof of Proposition 2

Recall that for any i ∈ N , any g ∈ G, and any t we have g ∈ T t
i(g) so that T t

i(g) is non-empty.

Next, from the definition of type updating we have T t+1
i(g) = T t

i(g)∩
(⋂

j∈Ni(g)
Bt

f (a
t
j(I

t
j = T t

j(g)))
)

implying that T t
i(g) is non-increasing in t. Moreover, note that since G is finite, T t

i(g) is also
finite. To prove the result, suppose that such a t∗ does not exist and consider the infinite
sequence defined by player i’s dynamic type updates: {T 1

i(g), T
2
i(g), . . . , }. Since there is no t∗

such that for all t ≥ t∗, T t
i(g) = T t∗

i(g), and T t
i(g) is non-increasing in t, then there is a strictly

decreasing subsequence {T t1
i(g), T

t2
i(g), . . . } satisfying T t1

i(g) ⊃ T t2
i(g) ⊃ . . . . However, since the
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cardinality of G is finite, T tk
i(g) must also be finite and we know that T tk

i(g) is nonempty for
any k ∈ N. Hence, such a subsequence {T tk

i(g)}∞k=1 satisfying the decreasing property cannot
exist, so there must exist a t∗ such that for any t ≥ t∗, T t

i(g) = T t∗

i(g), ∀i ∈ N, ∀g ∈ G. The
same argument applies for players realized types I ti .

■

Proof of Lemma 2

Let g′, g′′ ∈ T t
i(g) for some t ≥ t∗ with g′ ̸= g′′. Note that the neighborhood of i is the same

under both g′ and g′′ since g′, g′′ ∈ T t
i(g). Assume that T t

j(g′) ̸= T t
j(g′′), gij = 1, and atj(I

t
j =

T t
j(g′)) ̸= atj(I

t
j = T t

j(g′′)). Recall that that player i can only observe its neighbor’s j action,
without knowing its true type at t. Without loss of generality, suppose that player i observes
atj(I

t
j = T t

j(g′′)). This implies that T t
j(g′) /∈ Bt(atj(I

t
j = T t

j(g′′))), and hence g′ /∈ Bt
f (a

t
j(I

t
j =

T t
j(g′′))) as g′ ∈ T t

j(g′). By the definition of T t+1
i(g) = T t

i(g) ∩
(⋂

j∈Ni(g)
(Bf (a

t
j(I

t
j = T t

j(g))))
)
, it

follows that g′ /∈ T t+1
i(g) . Moreover, since g′ ∈ T t

i(g), then learning can happen, and hence we
arrive at a contradiction. On the other hand, if T t

j(g′) = T t
j(g′′), then atj(I

t
j = T t

j(g′)) = atj(I
t
j =

T t
j(g′′)).

■

Proof of Theorem 1

Suppose learning ends at t∗ and t ≥ t∗. By lemma 2 we can rewrite

ati(I
t
i = T t

i(g)) = 1 + λ
n∑

j=1

g
Iti=T t

i(g)

ij atj(I
t
j = T t

j(g))

= 1 + λ
n∑

j=1

g
Iti=T t

i(g)

ij (1 + λ
n∑

k=1

g
Itj=T t

j(g)

jk atk(I
t
k = T t

k(g)))

= 1 + λ

n∑
j=1

g
Iti=T t

i(g)

ij + λ

n∑
j=1

g
Iti=T t

i(g)

ij λ
n∑

k=1

g
Itj=T t

j(g)

jk atk(I
t
k = T t

k(g))

= 1 + λ

n∑
j=1

g
Iti=T t

i(g)

ij + λ2

n∑
j=1

g
Iti=T t

i(g)

ij

n∑
k=1

g
Itj=T t

j(g)

jk + . . . .

This equation implies that ati(I
t
i = T t

i(g)) is the KB-centrality of player i under the graph g

after learning ends.

Let g∗ be the realized graph. Then, I ti = T t
i(g∗). Assume g ∈ T t

i(g∗), implying T t
i(g) = T t

i(g∗).
Thus, ati(I ti = T t

i(g)) = ati(I
t
i = T t

i(g∗)). So, the KB-centrality of player i is the same under
any graph g ∈ T t

i(g∗). Because player i knows one of the graphs in the realized type is the
true graph g∗, ati(I ti = T t

i(g∗)) = aci(g
∗).
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