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Abstract

Treasuries all over the world raise sovereign debt through an auction which is typically
conducted by the central bank. In times of financial crisis, when volatility is high, the auction
can fail to discover the right price. To capture the existence and extent of this failure, this
paper looks at the bid level data in the market for Indian treasury bills during the (in)famous
‘taper tantrum’ episode of 2013. It augments the standard linear independent private values
model for structural estimation of multi-unit auctions with (a) risk averse preferences, and (b)
common uncertainty in valuations. It finds that bid shading increases substantially during the
taper tantrum period leading to a big loss to the exchequer. A large part of the increase in
bid shade is explained by (i) the rise in uncertainty and so the associated risk premia sought
by each bidder, and (ii) the strategic impact of such risk premia being sought in a competitive
auction environment. These channels would be missed by the standard model. An alternate
to the auction, viz. fixed price tenders, is discussed as a plausible mechanism to sell sovereign
bonds during crisis episodes.
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1 Introduction

Motivation: Markets do their job well when prices aggregate all possible information associated

with trade. A widely used instrument for price discovery in large markets is auctions. The designer

(or auctioneer) could be interested in finding out the right price from the perspective of direct

revenue or efficiency of the downstreammarket. A necessary condition for price discovery through

auctions is limited bid shading, defined as the difference between the buyer’s value and bid for the

object being sold. In a crisis situation, characterized informally as increased uncertainty in the price

of underlying security, standard auctions may fail to fulfill the said role. How can we establish the

existence and extent of this failure? Should the auctioneer then try something different?

In the summer of 2013, the Federal Reserve Board of the United States of America (henceforth

the Fed) signaled an intent to loosenmonetary policy by tempering the so-called quantitative easing

and raising the base interest rate. This, it is largely believed, sent financial markets in emerging

economies into a tizzy.1 Exchange rates appreciated against the dollar and the domestic bond

yields rose rapidly. It is important to note the Fed eventually did not follow through with this

intent, hence the episode is often refereed to as the “taper tantrum”.

Understanding what actually happened at the micro level that led to this significant macro

shock is widely regarded as an important question.2 This paper takes a step in that direction

by documenting the tumultuous episode through bidding behavior in the primary auctions for

government bonds in India. In the process, it extends the tool kit of the empirical multi-unit auc-

tions literature to incorporate uncertainty and addresses the general question of auction design for

sovereign debt during times of crisis.

The question: Once the announcement of the Fed was internalized by monetary policy in

India, yields on short-term and long-term paper started rising, that is the price bidders were willing

to pay started to fall. Figure 1 plots the market clearing prices in the primary auction for the

three month treasury bond around the taper tantrum period. These auctions are conducted by the

central bank— the Reserve Bank of India.3 Forty two weekly held auctions are depicted fromApril

2013 to January 2014. The sequence of auctions between the vertical markers will be referred to

as "during", ones to the left as "before" and the ones to the right as "after".4

Why did the prices fall so much? Was it purely due to a shift in fundamentals, that is, the

valuation of the sovereign bond by the market? Why did the price rise up again so quickly? Did

1See Basu, Eichengreen, and Gupta [2015] for an overview of the impact of the Fed’s announcement on financial
markets in India.

2Commenting on the taper tantrum episode, the chairman of the Fed at the time later wrote (Bernanke [2016]),
"This line of research is interesting and important. Given the sometimes severe consequences of financial instability, we
have to take these issues very seriously. Unfortunately, we don’t understand these phenomena as well as we would like.”

3This is a zero coupon bond. The central bank promises to pay the holder of one bond Rs 100 at the end of three
months. The auction asks them to bid how much they would be willing to pay and how many pieces of paper they
would buy.

4The time frames are chosen in consultation with the auctions team at the Reserve Bank of India.
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Figure 1: Auction clearing prices for the 3-month T-Bill, April 2013-Jan 2014

the quality of India’s debt temporarily change by a substantial amount? What role did uncertainty

play and how can it be quantified?

The answer: There are three plausible reasons for the fall in the market clearing price— (i)

decrease in the valuation of the bond, (ii) increase in uncertainty leading to precautionary bidding,

and (iii) a purely strategic response by market participants in reacting to the decrease in valuation

and/or increase in risk premia of the other bidders. We shall refer to them as the valuation effect,

uncertainty effect and strategic effect respectively. Documenting the existence and extent of these

effects requires a structural model, which we write down and estimate in this paper.

Our main empirical finding is that the uncertainty effect and its interaction with the strategic

effect is a primary driver of increased bid shading and the consequent fall in the market price of the

bond. That is, increase in uncertainty makes a bidder excessively precautious, so she seeks higher

risk premium. And, since other bidders do the same, in reaching the fixed point of the market

clearing price, the price falls even further.

Stylized facts: To argue for the plausibility of this result, consider two pieces of evidence

that mark the rise of uncertainty in the financial market and the bidders’ response to it: Almost

immediately after the primary auction, these bonds can be traded on the secondary market. In fact

many bidders come to the primary auction solely as an intermediary to resell their wins. In this

paper we use the secondary market data to quantify uncertainty. The volatility in the secondary

market spiked. Figure 2a reports the intra day difference in transaction prices; these were unusually

high during the episode.

This rise in volatility of the secondary market feeds back and forth into the primary auction,

as documented by wide dispersion in bids. Figure 2b plots the aggregate sum of demands at every

price point; the slope during the taper tantrum period is excessively steep relative to the norm.

Therefore, the bidders were either being speculative and/or their valuations for the bond were

highly varied.

3



0
1

2
3

In
tr

a−
da

y 
S

pr
ea

d 
in

 Y
ie

ld

01apr2013 01jul2013 01oct2013 01jan2014

(a) intra-day price differential in secondary market (b) aggregate demand in primary auction

Figure 2: Secondary market exhibited greater variance in the price of trades and aggregate demand in the
primary auction became steep.

The data on secondary markets and the primary auction throws up several other stylized facts

that support our basic hypothesis and help inform the model we construct to tease out the empir-

ical regularities (numbers provided in Section 2.2). In addition to the rise in the intra trade price

differential in the secondary market, the total volume and frequency of trade too goes up. In the

primary auction, a steep decline in price was concomitant with a sharp increase in the number of

bidders and the number of winners, i.e. increased entry and greater fragmentation of the market.

So, this was no crisis of a market freeze kind, in fact it was a crisis with spike in activity.

The model: In order to parse out the valuation, uncertainty and strategic effects, we draw

from the tools developed by the literatures on empirical auctions and financial economics (see

Kastl [2016] for an elucidation of the research agenda). We build on a great body of work on the

empirical analysis of treasury auctions (see Hortaçsu [2002], Kang and Puller [2008], Hortaçsu

and McAdams [2010], Kastl [2011], Hortaçsu and Kastl [2012] and Cassola, Hortaçsu, and Kastl

[2013]). In particular we augment the canonical empirical multi-units auction framework with

risk averse bidders and introduce aggregate or common uncertainty into the setup.5

We model the bidders as being risk averse for three reasons. First, it ensures that uncertainty

is not just "integrated out" and actually affects bidders’ behavior at the optimum. Second, it helps

bridge the gap between the literatures on empirical auctions and financial economics, most leading

models in the latter assumemarket participants to be risk averse (see for example Kyle [1989], Biais,

Glosten, and Spatt [2005] and Vives [2011]).6, 7 Third, it qualitatively squares with the empirical

5See Paarsch and Hong [2006] for a textbook treatment and Athey and Haile [2007] for an exhaustive survey on the
general state of the art in empirical auctions. Hortaçsu and McAdams [2016] provide a recent synthesis of the research
on empirical analysis of multi-unit auctions.

6On modeling financial institutions as being risk averse Biais, Glosten, and Spatt [2005] eloquently write "To speak
to this issue it could be fruitful to analyze theoretically the internal organization of these financial institutions. For
example, suppose the dealers need to exert costly but unobservable effort to be efficient and take profitable inventory
positions. To incentivize them to exert effort, it is necessary to compensate them based on the profits they make. In
this context, even if diversifiable risk does not enter the objective function of the financial institution, it plays a role in
the objective function of an individual dealer quoting bid and ask prices."

7See also Boyarchenko, Lucca, and Veldkamp [2021] and Cole, Neuhann, and Ordoñez [2022] for recent work that
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fact of reduced price and increased entry during the taper tantrum period. A risk-neutral model

would not predict increased entry unless accompanied by a substantial but temporary change in

idiosyncratic values for the sovereign bond for the frequent bidders, whereas the risk averse model

provides a direct reason for entry with increased uncertainty.

The valuation of bidders in our model is driven by both a private idiosyncratic component

and commonly unknown part, that is vi = z i + A, where each z i is independently drawn and A
is independently distributed and commonly unknown at the time of bidding.8 This too departs

from the standard set up in the estimation of multi-unit treasury auctions which assumes pure

independent private values, equivalent to A being deterministic in our setup. We want the reader

to think of A as the fundamental value of the sovereign bond and z i as the private component

driven by idiosyncratic demand to either hold the bond for portfolio and regulatory requirements

or to buy and sell as an intermediary.9 We measure the distribution of A through the set of prices

at which trade occurs in the secondary market, providing a first attempt at incorporating the larger

market structure into the structural estimation of fundamentals in a treasury auction.

Using this augmented set up, we derive a novel first-order necessary condition that optimal

bids must satisfy in this multi-unit auction framework. The condition pins down the tradeoff

between the marginal benefit and marginal cost of placing a particular bid step. The tradeoff can

be broken down into two components. First is the probability of winning (marginal benefit) and

the payment conditional on winning (marginal cost), which captures the standard intuition from

single unit first price auctions.

Second, risk aversion and common uncertainty introduce another tradeoff, the bidder faces

two lotteries: the endogenous probability of winning (marginal benefit) that makes her bid more

aggressively, and the exogenous risk of the value of A being low ex post (marginal cost) that makes

her bid cautiously.10 It is ex ante not obvious which force would dominate. The sheer magnitude

of the rise in uncertainty ensures that during the taper tantrum period, this tradeoff is resolved in

favor of excessive precaution.

Empirical results: As mentioned before, the main empirical result is that bid shading during

the taper tantrum period goes up substantially. The average bid shade across bidders goes from

0.04 price points before taper tantrum to 0.44 during to 0.12 immediately after it.11 For a typical

supply of 7×108 pieces of papers worth Rs 100 each, an extra bid shading of 0.4 price points means

builds on such models of pricing financial securities in rationalizing data from treasury markets.
8The valuation is a downward sloping function of quantities (the true idiosyncratic demand function), therefore A

sets the intercept of the demand and zi its slope: vi (q) = zi (q) + A.
9Broadly speaking there are two types of bidders in these auctions. The buy and hold types are primarily banks who

need to maintain a certain ratio of their assets in government bonds to satisfy a regulatory requirement known as the
statuary liquidity ratio. The buy and sell types are intermediaries who act as market makers in the secondary market
for sovereign bonds.

10The single unit version of this latter tradeoff is studied in Esö and White [2004] and Gupta, Lamba, and Muratov
[2024].

11A bid shading of 0.04 price points means that a bidder that values the bond at Rs 98 would bid Rs 97.96 and a bid
shading of 0.44 means that the bidder would bid at 97.56.
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a loss of Rs 2.8 × 108 (or US$ 4.5 million) per auction.12 This cost the Indian government a large

sum of money. The wasn’t simply caused by a decline in the ‘fundamental value’ of debt, but, as we

will argue below, increased uncertainty in the market for sovereign bonds and strategic behavior

on part of the bidders in responding to this uncertainty played a significant role.

Next, we explain the decrease in bids and simultaneous increase in bid shading, seeking to

add texture to the aggregate numbers. We take the following three pronged approach. First, we

compare the distribution of valuations across auctions. We find that the distribution during the

taper tantrum period is first-order stochastically dominated by that before and after. This points

to the valuation effect—valuations did indeed go down, which in turn reduced the level of bids.

However, digging a bit further into the change in valuations, we find that almost all of the change

is driven by a shift in the distribution of the common component, there is almost no change in

the private margin to own the bond. Formally, change in the distribution of vi = z i + A is almost

entirely driven by the change in distribution of A, while the distribution of z i remains almost the

same.

Second, we also evaluate bid shading in the standard risk neutral model, as in Hortaçsu and

Kastl [2012] and Cassola, Hortaçsu, and Kastl [2013]. This extricates from our aggregate numbers

the effect of common uncertainty. If the bidders were only best responding to a decrease in valu-

ation of other market participant, this exercise would capture the interaction of the valuation and

strategic effects. We find then that the standard model would explain only twenty five percent of

the average bid shade. The rest therefore is driven by the uncertainty effect and its interaction with

strategic effect.13

Third we separately calculate average shading of each bidder that participates in primary auc-

tion in the taper tantrum period. We find significant heterogeneity in these numbers. It suggests

that the ex ante symmetric assumption on bidders may not be a good one. We follow a creative

iterative procedure used by Cassola, Hortaçsu, and Kastl [2013] and club the bidders into groups

on the basis on their bid shades and redo the estimation. Here we are somewhat limited by the

data—a full fledged heterogenous evaluation or a fine partition of bidders is elusive.14 But, by par-

titioning the set of bidders into two or three groups in multiple ways we find a systematic way to

classify the heterogeneity.

The large banks and financial intermediaries, affected perhaps the most by uncertainty and ex-

pected to gain from it too, bid shade the highest. The fringe bidders, who appear in the primary

auction only during the taper tantrum period, bid shade the least, presumably they enter only due

to the significant decrease in price. This adds further credence to the strategic effect, that some bid-

ders are strategically responding to valuation and uncertainty effects in trying to make hay during

12Typically three to five auctions of varying maturities are conducted by the Reserve Bank of India every week.
13By interaction of valuation and uncertainty effects with strategic effect we mean the change in bidding behavior

of the participants due to a change in the distribution from which their opponents’ types and common uncertainty
respectively are drawn.

14The data considered by Cassola, Hortaçsu, and Kastl [2013] has about 300 bidders per auction, so they can create
bidder groups without loosing much power, whereas the number of bidders per auction in our data never exceeds 55.
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the crisis.

Alternate selling mechanisms: A natural question to ask on absorbing the above analysis is

this— can the central bank tweak the auction design in a way that decreases bid shading, improves

price discovery and increases revenue? The commonly held view is that uniform price auctions

perform better during times of financial stress.15 In fact the Reserve Bank of India changed the

format of the primary auction for long-term government securities from discriminatory to uni-

form, so in a given week the bidders were participating in a uniform price auction for long-term

bonds and a discriminatory auction for short-term T-bills. Using bid level data in uniform price

auctions, we show that the switch did not help. In fact the switch itself may have exacerbated the

uncertainty for the price in the auction for long-term bonds starts declining before the short-term

bond for which there was no change in format. Bidder surplus increased quite substantially after

the switch, suggesting that the tweak in auction design may need to be along a different dimension.

Inspired from a nascent but growing literature on quantity based (as opposed to price based)

market mechanisms (see, for example, Vives [2010] and Duffie and Zhu [2017]), we propose such a

tweak that can be evaluated using counterfactual calculations. We consider fixed price and flexible

quantity tenders, as opposed to the prevalent fixed quantity and flexible price ones. Vives [2010]

suggests that "an optimal demand schedule for the central bank should be more elastic when the

information problem is more severe." We calculate the counterfactual (ex post) revenue for fixed

prices under the marginal value estimates during the taper period. We find that in most auctions

the central bank would have exhausted the supply set in the original auction and done reasonably

well in terms of revenue by choosing a fixed price equal to the average of secondary market prices

during the previous week plus a markup.16

Recent work: To the best of our knowledge, three excellent studies have added risk aversion in

preferences to the estimation of valuations in multi unit auctions, since this paper was first circu-

lated: Häfner [2023], Wittwer and Allen [2024], and Grace [2024]. Since Häfner [2023] and Grace

[2024] assume a pure IPV model, they find more aggressive bidding under risk averse than under

risk neutral preferences, which is opposite to higher bid shading we obtain during taper tantrum.

Wittwer and Allen [2024] use mean variance preferences where asset returns are noisy and where

the noise is common knowledge—this maps conceptually to our framework with common uncer-

tainty, even though the economic question and formal model are quite different.

15We learnt this fact through personal conversations with the auctioneers at the Reserve Bank of India. The underlying
reasoning is intuitively plausible − a unique price can help to reduce uncertainty during crisis episodes. Friedman [1960]
offered a similar reasoning to argue for uniform price over discriminatory price for the primary auctions conducted by
the US Fed.

16In recent work, Awaya and Krishna [2021] offer a theoretical model to analyze why fixed price regimes may do
better than flexible pricing regimes in times of panic.
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2 The background and data

2.1 The summer of taper tantrum

In May 2013, the then chairman of the Fed spoke about the possibility of tapering off the purchases

of long-term bonds, effectually signaling a withdrawal or at least a tempering of quantitative easing.

The Economist later wrote "the announcement that it [Fed] would start tapering the pace of its

quantitative-easing programme caused money to stampede for safety."17 It is important to note

that foreign institutional investors in India are limited in the amount of treasury bonds they can

buy. This is done precisely to keep the hot money phenomenon in check. However, through large

movements in the exchange rate which translated into a change in the interest rate and a general

rise in uncertainty in the market, the bidder behavior of the domestic actors was affected.

A full recap of the episode is beyond the scope here, we refer the readers to Sahay et al. [2014]

for a detailed analysis of the lessons on emerging market volatility and to Basu, Eichengreen, and

Gupta [2015] for the specific impact on India. Our endeavor is to use this as an example to explore

the general question of auction design by central banks during times of crisis and in the process

provide a revealed preference foundation to the macro question of volatility in financial securities

in emerging economies.

2.2 The primary auction

Sovereign bonds in India are broadly classified into two categories: treasury bills (or T-Bills) and

government securities (or G-Secs); the former are short-term, classified into three distinct maturity

baskets- 91, 182 and 364 days, and the latter are long-term with maturities like 5, 10, even 20

years. Given the data we have, and owing to their simpler structure, we primarily analyze the

three months T-Bills, with the exception of Section 6 where also look at the ten year G-Secs. The

Reserve Bank of India (like most other central banks over the world) issues new bonds into the

market through a primary auction. The primary auction for the three months T-Bill is held weekly

and the auction calendar is announced well in advance.

T-Bills are zero coupon securities, issued at a discount and redeemed at face value. For one piece

of paper at a face value of Rs. 100, we will typically see a market clearing price in the set [96, 99] for
the three 3-months T-Bill. For example, for the auctions conducted between April 2013 – Januray

2014, the market clearing prices ranged from 97.09 to 98.22, as can be seen in Figure 1. An auction

of Rs. 7 × 1010 bond will involve selling of 7 × 108 pieces of "paper" (denoted by Q = 7 × 108)

each worth Rs. 100. The bidders can submit multiple bids in the form of price-quantity pairs. A

typical bid is of the form
{
(p1, y1), (p2, y2)

}
with 100 ≥ p1 ≥ p2; it means that the bidder is willing

to buy y1 pieces of paper at a total price p1y1, and y1 + y2 pieces of paper at price p1y1 + p2y2, and
so on. If both bids win, the bidder makes a transfer of p1y1 + p2y2 to the central bank, and is paid

17The Economist [2015]
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100(y1 + y2) at the time of maturity.

The main features of the T-Bill auctions are as follows. First, treasury auctions world over are

share auctions, i.e. multi-unit divisible goods auctions. For a total notified amount Q , each player

can bid for any fraction of Q . Multiple bidders can "win" the auction. Second, the auction is

characterized by a market clearing price. After all the bids are in they are arranged in descending

order of prices. As we go down the list, the price at which the cumulative quantity demanded

exceeds Q is christened the market clearing price. Third is the payment rule. For the quantities

won, do the bidders pay the price they bid or the market clearing price? In the example above, if

pm ≤ p2 ≤ p1 is the market clearing price, does the bidder pay p1y1 + p2y2 or pm (y1 + y2)? The

former is called discriminatory price auction and latter uniform price auction. The T-Bill auction

in India is discriminatory.

We use bid level data from April 2013 – January 2014 for the 3-month T-Bill auction. The

auction is held every week on a Wednesday. On the Friday of the week before, the RBI posts

an announcement on its website informing the bidders about the date and time of the auction,

and the total amount on sale. After the auction ends, the market clearing price, number of bids

received and the total amount sold are published. For all the 42 auctions conducted between April

3rd 2013 – January 15th 2014, our data set consists of all the bids submitted (including both prices

and quantities), and the quantity won by each bidder. We do not observe the exact identity of the

bidder, but can track it across auctions through a unique identity number. Moreover, each bidder

is assigned a particular category by the central bank which we observe—for example, is the bidder

a national bank, foreign bank, pension fund or mutual fund, etc.

Table 1 presents the summary statistics. The total quantity supplied varied during the forty two

auctions, but it remained almost constant during the taper tantrum period (see Figure 3a), which

helps control for an important auction covariant. The market clearing price as we have already

discussed saw a big dip (Figure 1). In lieu of a complete demand function, bidders submit steps in

these multi-unit auctions. Figure 3b plots the distribution of steps submitted by all bidders, the

one during the crisis episode first-order stochastically dominates those before and after. The larger

number of steps during taper tantrum potentially exhibits increased uncertainty in the bidders’

evaluation of the market clearing price. In addition, the number of bidders and winners increased

significantly as the price was falling. Figures 3c and 3d plot respectively the time series of the

number of bidders and the number of winners across auctions, latter indicates that the market

was becoming more fragmented. Finally, the bid-cover ratio (aggregate quantity demanded as a

percentage of total supply) remained comfortably above one, so aggregate demand was strong.

2.3 The secondary market

There is an active secondary market for Treasury Bills in India, organized through an anonymous

order matching module called Negotiated Dealing System – Order Matching (NDS-OM). The

Reserve Bank of India website describes NDS-OM as “an order driven electronic system, where

9



Mean Median Min Max
Total supply (in Rs 1010) 6.26 7 4 7
Auction clearing price 97.72 97.83 97.09 98.22

# steps 2.44 2 1 19
# bidders 40.19 38 25 55

% Q demanded 3.55 3.43 1.63 7.16

Table 1: Summary statistics of forty two auction between April 2013 to January 2014
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Figure 3: Total supply, CDF of number of steps, and total number of bidders and winner

participants can trade anonymously by placing orders on the system or accepting the orders already

placed by other participants". After being issued on a Wednesday, most of the trade of the new

T-bills takes place on the Wednesday, Thursday and Friday of the same week. In addition to the

data on primary auctions, we have trade-level data on the secondary market. We see the price at

which trade occurs, the quantity traded, the date and time of the trade, and the maturity date of

the traded security.18

Under the broad rubric of empirical market microstructure, a large literature in financial eco-

nomics has furthered our understanding of financial securities through their trade in secondary

markets (see for example Hasbrouck [2007]). However, the secondary market has not been used

much in the structural estimation of treasury auctions. Secondary markets act as a fair indica-

tor of the market clearing price in the primary auction and vice-versa.19 We shall use the price of

18See Fleming, Saggar, and Sareen [2016] for a detailed overview of the Indian treasury bond market, both the key
aspects of the primary auction and the development of the secondary market.

19Outside the taper tantrum episode, the maximal difference between the average secondary market price and the
auction clearing price that week for the financial year 2013-14 is only 0.02.
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Figure 4: Secondary market activity spiked

trades in the secondary market as a measure of the fundamental value of the bond and the common

component of the bidders’ demand functions.

Large variance in the price of financial securities is often accompanied by an increase in the

aggregate activity in the market—this correlation typically operates through the mechanism of

a rise in speculative trade. Figures 4a reports the total volume traded in the secondary market

and Figure 4b reports the total number of transactions. These along with Figure 2a clearly point

towards a spike in volatility and activity in the secondary market during the taper tantrum period.

It seems natural that this effect be incorporated in the analysis of the primary auction.

3 Model

In this section we present a model of multi-unit discriminatory auctions and derive a necessary

condition for optimal bids. The necessary condition gives us a mapping from the data to the

fundamentals of the model, which forms the basis for our estimation. We build on the model in

Kastl [2012] with two critical differences: (i) bidders in our model are risk averse, and (ii) there is

both a common component and a private component in their demand for securities.

3.1 Primitives

Let Q be the total amount of T-bills up for sale, and N = {1, 2, ...,N } be the set of bidders.

Each bidder receives a private signal si ∈ [0, 1] that parameterizes her valuation function, v i :

[0, 1] × [0, 1] → R+. Here v i (q, s) is the marginal value of bidder i for a share q (or total quantity

qQ ) of T-bills when she receives a private signal s .

Assumption M1. S = (si)Ni=1 is distributed on [0, 1]N according to F that admits a continuous

density f , and the signals across bidders are drawn independently.

Assumption M2. For each i, v i is continuous and weakly decreasing in q , and strictly increasing

in s .
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Assumption M3. For each i, v i (q, s) = z i (q, s) +A, where A is an exogenous constant distributed

according to µ on a discrete grid {a1, ..., aM }.

Assumptions M1 and M2, define the independent private values (IPV) part of the demand

function, and ensure that it is downward sloping. Assumption M3 makes it clear that the marginal

valuation of each bidder is additively composed of a pure private component and a pure common

component. The private (and independent) signal si perfectly informs agent i about the marginal

value function z i (., si). However, all the agents are symmetrically (un)informed about A. We

assume that it A is exogenously distributed, and it is termed the parameter of common uncertainty.
Note that ours is neither a classical IPV nor a common values set up.20

There are typically two types of bidders in these auctions—the buy and hold types and the

buy and sell and types, the former participate for portfolio reasons or regulatory requirements

whereas the latter are intermediaries who sell to other clients. For each of them z i represents the
idiosyncratic demand. The common component A refers to fundamental value of the sovereign

bond to which z i is appended as the private margin. The variance of A measures uncertainty in

the bond market. We will rely on the secondary market prices and trades to estimate A and µ.

Further, bidder i submits a bid b i : [0, 1] × [0, 1] → R+, where b i (q, s) is the price bidder i
with private signal s is willing to pay for qQ units of T-bills. It is restricted to be weakly decreasing

in q . The total payment for share q can be written as:

B i (q, s) =
q∫

0

b i (x, s)dx

Writing V i (q, s) =

q∫
0
v i (x, s)dx to be the total value function, bidder i’s utility from being

allocated q fraction of T-bills when her signal is s is given by

U i (q, s) = u
(
V i − B i ◦ (q, s)

)
Assumption M4. u : R+ → R is a von-Neumann-Morgenstern utility function that satisfies

u (0) = 0, u′ > 0 and u′′ < 0.

That is, the bidders evaluate their net surplus (total valuation of the amount won minus total

payment to the seller) according to a strictly concave function. This assumption departs from the

standard linear utility model used in the literature. Next, we assume, as is empirically relevant,

that bids are steps functions.
20The motivation for A being common for all bidders comes from there being a fundamental value of the sovereign

bond. And, the motivation for it being symmetrically unknown comes form the secondary market: the set of trades
for the 3-month bond on the secondary market are publicly observable, so all bidders can form a common estimate of
the mean and variance of the fundamental value of the bond to be issued in the primary auction. The idiosyncratic
component z i captures the individual demand shock to selling or holding the bond. This is a function of the demand
received by the bidder from clients or portfolio requirements of its own, etc. These are assumed to be symmetrically
drawn within each bidder group and independently drawn across all bidders.
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Assumption M5. A typical bid is of the form
(
b i
k, q

i
k

)Ki

k=1
, where Ki ∈ {1, 2, ...,K }, b1 > b2 >

... > bKi , and q1 < q2 < ... < qKi ≤ 1.

The share of issue amount demanded at any price p can be succinctly expressed as: y i (p |si) =

q ik1
(
b ik+1<p≤b

i
k

) . The price at which themarket clears then has a simple definition: pc = max
{
p | D (p) = 1

}
where D (p) =

N∑
i=1

y i (p |si), and the max operator breaks ties in favor of the auctioneer.21

Assumption M6. The total quantity is randomly distributed on
[
Q,Q

]
with strictly positive den-

sity conditional on si ∀ i.

This assumption is a technical requirement for precluding mass points at any quantity in the bid-

der’s demand at the optimum. Intuitively, one can think of this as the uncertainty faced by the

bidder on where to place her last step. We want the reader to think of the distribution as being

tightly centered around Q , say with support [Q − ϵ,Q + ϵ ] and a small variance.

3.2 Bidder behavior

Themulti-unit auctionmodel is hard to precisely pin down analytically. General theoretical results

are elusive (see Ausubel et al. [2014] for the "solvable" cases). The approach has therefore been to

push the theory to provide a set of necessary conditions that optimizing bidders must satisfy and

invoke those to put structure on bid-level data to back out valuations and its distribution. An

added layer of challenge in our framework is the non-linearity of bidders’ utility function.

Our bidder faces two tradeoffs in placing a particular bid step (bk, qk). First is the standard

intuition from single unit first price auctions with independent private values. A higher bid price

increases the probability of winning at that step, but conditional on winning it increases the pay-

ments (see Krishna [2010], Chapter 2).

A second tradeoff is introduced by the combination of risk aversion and common uncertainty:

It is well known that in a single unit first price auction with independent private values and without

uncertainty, a model with risk averse bidders predicts higher bids than the risk neutral model

(Maskin and Riley [1984] and Krishna [2010], Chapter 4). On the other hand, for any positive

and fixed level of risk aversion, it is also well known that the bids are decreasing in the level of

common uncertainty, as the bidders seek greater risk premia (see Esö and White [2004]). So,

for a fixed level of uncertainty, the independent private values component makes the bidder bid

more aggressively than the risk neutral model, and for any fixed private value component, greater

uncertainty makes her bid more cautiously than the risk neutral model.
21Note that since aggregate demand is also a step function, it is very likely (in fact with probability one in equilibrium)

that the vertical total supply line intersects the demand function in the horizontal part of the step rather than at the
edge. In such a situation the quantities are rationed. We apply, as is standard in the literature, the pro-rata rule of
rationing, that is, quantities on the last step are allocated according to the intensity of demand at the step. This is also
the methodology used by the Reserve Bank of India.
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Both aforementioned tradeoffs are present here at each step of the bid, and since we are dealing

with a multi-unit auction, these are then linked across steps in a bidder’s strategy. This makes a

direct generalization of the theoretical results that generate these intuitions to multi-unit auctions

non-trivial, in fact mostly intractable. However, the spirit of the intuition carries through to the

empirical analysis we do around the first-order necessary condition that we derive next.

3.3 First-order necessary condition

Using a perturbation approach we can derive a necessary condition that the quantity demanded

at any step of a pure strategy Bayesian Nash equilibrium must satisfy. This condition will be used

to extract the fundamentals (marginal values) from the observable (bids). In what follows, let v i
m

be the marginal value, and V i
m be the area under the value curve when the common component is

A = am .

Proposition 1. Under Assumptions M1-M6, in any K-step equilibrium of a discriminatory price auc-
tion, for almost all si , every step k < Ki in the equilibrium bid function yi (·|si) has to satisfy:

M∑︁
m=1
µm

{
P
(
bk > pc > bk+1

��si ) (v i
m (qk, si) − bk

) [
u′

(
V i
m − B i ◦ (qk, s)

) ����bk > pc > bk+1, si
]}

=

M∑︁
m=1
µm

{
P
(
bk+1 ≥ pc

��si ) (bk − bk+1
)
E

[
u′

(
V i
m − B i ◦ (qk, s)

) ����bk+1 ≥ pc , si
]}

(1)

and at the last step Ki it has to satisfy v (q̄, si) = bKi where q̄ is the largest quantity allocated to bidder
i of type si is equilibrium.

Proof. See Appendix. □

Equation (1) is derived by perturbing the expected payoff of the bidder i around the quantity

she bids at the k t ℎ step, keeping the price component of the bid fixed. Note that P
(
bk > pc > bk+1

��si )
refers to the probability of the bidder winning her k t ℎ step but not the (k + 1) t ℎ step, while

P
(
bk+1 ≥ pc

��si ) refers to the probability that she wins her (k + 1) t ℎ step and possibly more.

To fix ideas first consider the thought experiment that the bidder is risk neutral and there is no

common uncertainty, then all the u′ terms and µm vanish:

P
(
bk > pc > bk+1

��si ) (v i (qk, si) − bk
)
= P

(
bk+1 ≥ pc

��si ) (bk − bk+1
)
.

The left hand side of equation captures the expected marginal benefit of v (qk, si) − bk from de-

manding quantity slightly in excess of qk at step k. The right hand side measures the expected

marginal cost of paying an extra bk − bk+1 for the increase in quantity at step k. Then, solving for
v (qk, si) − bk gives us the bid shade of bidder i at step k.22

22This is exactly the equation obtained in Kastl [2011, 2012].
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Now, add to the picture the fact that the bidder is risk-averse. Then, both the marginal ben-

efit and the marginal cost are scaled by the marginal utility of the bidder at the monetary value

generated by the area under the value curve minus bidding curve:

P
(
bk > pc > bk+1

��si ) (v i (qk, si) − bk
)
·
[
u′

(
V i − B i ◦ (qk, si)

) ����bk > pc > bk+1, si
]

= P
(
bk+1 ≥ pc

��si ) (bk − bk+1
)
E

[
u′

(
V i − B i ◦ (qk, si)

) ����bk+1 ≥ pc , si
]
.

The right hand side has an expectation over marginal utility because perturbation of the k t ℎ step

can change the expected allocation at the optimum: when the market clearing price is weakly

less than the (k + 1) t ℎ bid, the allocation can be different for different values of pc . Optimality

requires the equation to hold for all steps individually, and unlike the risk-neutral case, there is

inter-dependence between the equation for each step through the marginal utility term which is

evaluated at the aggregate monetary value.

Finally, when common uncertainty is added, both sides are averaged over discrete density given

by {µm}, which gives us Equation (1). If the analyst knows or observes all fundamentals other than

the bidder’s marginal value curve, then with a little more structure, Equation (1) allows him to

back out valuation of the bidder at each step that she bids at.

4 Estimation

Recall, a central question we ask is this—why did prices fall so much during the taper period? Did

the fundamental value for T-bills decrease or was the fall precipitated by increased uncertainty and

strategic bidding? To answer this question, in what follows, we estimate the marginal valuations of

bidders in the primary auctions. Equation (1) gives us a relationship between the bids we observe

in the data and the valuations that rationalize them.

There are three steps in the estimation procedure: (1) estimating the probability distribution of

themarket clearing prices, (2) estimating the probability distribution µ of the common component

A, and finally (3) estimating the marginal valuation v (qk, si) for every bidder in every auction at

the observed quantities. We explain each step in detail below.

4.1 The distribution of market clearing prices: an algorithm

The first step is to estimate the probability terms in Equation (1) : P
(
bk > pc > bk+1

��si ) and

P
(
bk+1 ≥ pc

��si ) . To that end, we employ a standard “resampling” approach. We partition the

set of bidders into three groups, the exact method of the group formation is explained in Section

5.2 and then later in the appendix. Since the probabilities are specific to a bidder in an auction, for

a fixed auction and a fixed bidder i with N = N1+N2+N3 bidders, we use the following algorithm.
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1. Fix an auction and a bidder with the bid (b i
k, q

i
k)

K
k=1. If bidder i belongs to group 1, draw

N1 − 1 bids from all the bids of group 1 bidders and N2 and N3 bids from all the bids of

groups 2 and 3 respectively. Analogously, if bidder i is in group 2, draw N1, N2 − 1 and N3

bids from the three groups.23

2. The resampled vector of rival bids represents one simulation of the state of theworld from the

point of view bidder i. Intersect this vector with the fixed bid to get one possible realization

of the market clearing price.

3. Repeat the first two steps 5000 times to get an empirical distribution of market clearing price

conditional on the fixed bid of bidder i.

We use this simulated distribution of market clearing prices to get empirical estimates for the

probabilities in Equation (1). The asymptotic properties of the resulting estimators established in

Hortaçsu and Kastl [2012] extend to our setting. A more detailed explanation is provided in the

appendix. The following assumption underlies the resampling procedure.

Assumption E1. The private information of bidders is identically distributed within their respec-

tive groups and independent across bidders and auctions.

4.2 The distribution of common uncertainty

To estimate the support and probability distribution of A, we use data from the secondary market.

The support of A is taken to be set of prices at which trade takes places all week preceding the

primary auction, and probability of each element is the frequency with which trades take place

at that price. Since the data is publicly available, our estimate satisfies the assumption the bidders

know the distribution of common uncertainty when they bid in the auction.24 Suppose the list of

prices at which trades take place in a given week is given by R and it constitutes m distinct values:

{a1, a2, ..., aM }. Then, we assume the following.

Assumption E2. A ∈ {a1, a2, ..., aM }, and µm := P(am) = #am ∈R
#R , where #am ∈ R is the number

of times aM appears in the set of trades and #R is the total number of trades.

4.3 Adding structure to the valuation function

Recall that the total valuation term is defined as V i (q, s) =
∫ q
0 v i (x, s)dx . Therefore, we need to

add more structure toV i to be able to back out the valuation curve from Equation (1). We assume

23When the number of bidders in one auction is not large enough, following Hortaçsu and Kastl [2012], we pool
the bids from two nearby auctions. We cannot, however, pool data from more auctions because there is a trend in the
auction clearing prices.

24We could also measure the support and distribution of A using the secondary market price for working days after
the auction date and before the next auction, thereby invoking a "rational expectations" assumption. Our empirical
results are quantitatively similar for this alternate specification.

16



that the akin to the bids, the valuations are also decreasing step functions. make the following

functional form assumption:

Assumption E3. There exists a set of values {v1(s), v2(s), ..., vK (s)}s∈[0,1] such that v (q, s) =

v (qk, s) = vk (s) ∀ q ∈ (qk−1, qk], where q0 = 0.

That is, we assume that the marginal valuation function is a step function which is constant

between the quantities that are observed in a bid, and the constants are given by the marginal values

at exactly the observed quantities. Hence, for a bid (b i
k, q

i
k)

K
k=1 in the data, if we know the vector

of marginal values at the observed steps {v1, v2, ..., vK } then we know the entire marginal value

function that generates that bid.25

This assumption is mostly made for simplicity of calculation. Note however that for a fixed

bid, valuations as step functions give the lowest possible values of bid shading in the class of all

possible downward sloping continuous valuation functions. Since we are interested in showing an

increase bid shading during the taper tantrum period, this choice gives a robust lower bound, any

other value function would necessarily give higher bid shading for the fixed bid.26

4.4 Risk aversion

The final unknown object in the estimation equation is the utility function of the bidders. Here

we assume that the bidders evaluate their net surplus using the following CRRA utility function.

Assumption E4. u (V i − B i) = (V i−B i )1−σ
1−σ

This is, as we mentioned in the introduction, a departure from the literature on empirical

analysis of treasury auctions, but very much in line with the literature on financial economics.

The literature on empirical analysis of auctions with risk averse bidders is sparse, arguably because

of the technical difficulty it presents both the theorist and the econometrician.27

A suggestive test for risk aversion of our bidders in the empirical fact of increased participation

by bidders in the auctions during the taper tantrum period. Figure 5 presents a scatter plot of the

variance in secondary market prices, our proxy for the level of uncertainty, and the number of

bidders that participated in the auction, the raw correlation coefficient is 0.5.28

For the risk neutral model to predict increased entry, it must be that the valuation of the

frequent bidders goes down substantially whereas the value of the "fringe" bidders does not change

much, which would then lead the latter to enter the auction. However, the model with risk averse
25Since v i = z i + A, technically the Assumption E3 is imposed on the function z i (q, s).
26Through interviews with bidders we also reached the conclusion that it is a good model of how bidders actually

think of their "true demand functions".
27Standard tools of mechanism design are not easily applicable with risk averse agents, see Maskin and Riley [1984]

for a leading exception to the rule. Moreover, a striking result by Guerre, Perrigne, and Vuong [2009] shows that
simultaneous estimation of risk aversion and distribution of valuations is impossible in many standard settings. See
Vasserman and Watt [2021] for a recent on the theory and empirics of auctions with risk averse bidders.

28Note that there are various other reasons that we do not observe whichmay influence themarginal or fringe bidders’
decision on whether to participate in the auction.
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Figure 5: Correlation between uncertainty and number of bidders that participate in the auction

bidders and common uncertainty predicts an increased entry simply through a rise in common

uncertainty. As the variance of the common component goes up, the equilibrium price declines,

which then encourages the fringe bidders to enter the auction.

There at least two papers that estimate Bayesian models of auctions with risk averse bidders.

In a lab experiment, Bajari and Hortaçsu [2005] find that the risk averse model predicts bidder

behavior much better than the risk neutral one in standard first price auction. They use a CRRA

utility function and estimate the coefficient of relative risk aversion to beσ = 0.77. Lu and Perrigne

[2008] too invoke the CRRA model and find σ = 0.35 for bidders in the auctions for timber in

California. We estimate our model for all values of σ ∈ [0, 1] and report the results for σ = 0.3

and σ = 0.8 in Section 5.29

4.5 Putting it together

Using the CRRA formulation, the first-order condition (Equation 1) for bidder i’s k t ℎ step in the

observed bid (b i
k, q

i
k)

K
k=1, can be re-written as follows:

M∑︁
m=1
µm

{
P
(
bk > pc > bk+1

��si ) (vk − bk
) [ K∑︁

l=1

(z l + am − bl ) (ql − ql−1)
]−σ}

=

M∑︁
m=1
µm · P

(
bk+1 ≥ pc

��si ) (bk − bk+1
) 

K∑︁
j=k+1

P
(
b j > pc > b j+1

)
P
(
bk+1 ≥ pc

) ©«
j∑︁

l=1

(
z l + am − bl

) (
ql − ql−1

)ª®¬
−σ (2)

If we plug-in our estimated distributions of market clearing prices and common uncertainty,

and a numerical value for the risk aversion parameter σ, then for a K -step bid, we get a set of K
simultaneous non-linear equations involving K unknowns {z1, z2, ..., zK }. Under the assumption

of a Bayes optimizing agent, we can numerically solve the system of equations to back out the

vector of marginal valuations for every bidder in every auction.
29See also recent work by Luo and Takahashi [2023] and Bolotnyy and Vasserman [2023] on empirical estimates of

risk aversion in single unit first price auctions.
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Figure 6: Bid shading increases significantly during the taper tantrum period

5 Results

We present the results piecemeal, starting with the aggregate numbers across bidders, followed by

the decomposition of the aggregates, and heterogeneity across bidders.

5.1 Averages

Our main empirical result is depicted in Figure 6. It plots the market clearing price and average

marginal value under the standard risk-neutral model and our model with risk averse bidders and

common uncertainty. While three curves follow each other fairly closely before the dip, they

diverge quite a bit during the taper tantrum period. This wide gulf represents the increase in average

bid shading, the associated failure of price discovery, and the consequent loss to the exchequer.

Table 2 presents the average bid shading across bidders before, during and after taper tantrum

period for three different values of σ. Looking at each column individually it is quite clear that

average shading went up significantly during the crisis episode. While we use σ = 0.3 for our

leading estimates, we enlist the value for the risk neutral model and for higher risk aversion to

argue that whether bidders are risk averse or not is more important up to a first-order for the

estimates than how risk averse they are.30

Aswe can see from Figure 6, the risk neutral model, since it integrates out all of the uncertainty,

would predict that most of the drop in price is due to a change in valuations; for example, see the

difference between the highest purple dot and the intermediate orange dot at Auction 16, the first

auction in the middle region, i.e. crisis, episode. There is still significant bid shading in the risk

neutral model (it increases by 900 percent in the first column of Table 2), but the sudden change

in price is majorly attributable to a drop in actual valuation or "change in fundamentals".

As we show in what follows, our model, because it allows us to incorporate uncertainty, con-

30Note that for σ > 0, the marginal value of a bidder is calculated as vi = zi + E[A].

19



σ = 0 σ = 0.3 σ = 0.8

Before 0.0109 0.0474 0.0537
[0.0074,0.0164] [0.0302,0.772] [0.0244,0.1217]

During 0.1018 0.4434 0.4444
[0.0603,0.1889] [0.3630,0.5770] [0.3367,0.6523]

After 0.0393 0.1091 0.1174
[0.0249,0.0860] [0.0419,0.2338] [0.0509,0.2874]

Table 2: Average bid shading before, during and after the taper tantrum period

cludes that the driving force behind the steep fall and then rise in price is the spike in common

uncertainty, and the strategic effect associated with it. So, an even greater part of the fall in price

is explained by the increased bid shading, which in turn, is largely attributable to the increase in

risk premia sought by the bidders and the interaction of these risk premia in a strategic setting.

5.2 Decomposition and heterogeneity

There are broadly three reasons for the increase in bid shading. The distribution of the bidders’

valuations stochastically declined. There was an increase in common uncertainty, that is variance

of the component component. And, the bidders strategically responded to the change in the two

distributions. We call these three the valuation effect, uncertainty effect and strategic effect, respec-

tively. The valuation effect exogenously leads to a decline in price and uncertainty effect naturally

leads to bidders asking for higher risk premia. It is the interaction of the valuation and uncertainty

effects with the strategic effect that drives the endogenous decline generated within the model.

We start the decomposition by evaluating the change in marginal valuations. Figure 7a plots

the density of the average marginal values across the three time periods.31 The values during the

taper tantrum period constitute an almost complete leftward shift in comparison to those before

and after. This makes it clear that the aggregate valuation effect is important—the value of the

bond in the market did go down. Moreover, the bell becomes fatter, which implies that values also

become more dispersed.

However, recollect that vi = z i + A, and Figure 7a makes a statement about the average value,

that is z i +E[A]. What about the distribution of the idiosyncratic component, the private margin

for the bidders? Figure 7b plots the distribution of the private idiosyncratic component, z i , across
bidders for the three time periods. These are small numbers (in magnitude) because the private

margin most bidders hope to earn in these auctions are mostly in two decimal points. The change

in distribution is minimal: while the mean remains more or less the same, there is only a slight

increase in variance.
31Figure 7a plots the distribution of quantity weighted marginal values. Suppose K = 2 and the quantity demanded

at the two steps is given by y1 and y2. Then, the quantity weighted marginal value is given by v1y1+v2y2
y1+y2 . This is right

notion of average marginal value for a bidder. Similarly in Figure 7b we define quantity weighted private component as
z1y1+z2y2
y1+y2 .
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Figure 7: Density of marginal values before, during and after taper tantrum

The striking observation then is that yes there was a change in valuations, but it was driven

almost exclusively by the change in fundamentals through a shift in the distribution of the common

component. From the perspective of private values, the bond did not change much in value for the

bidders.

Next, we want to understand how much of the average bid shade is explained by the valuation

effect. As a proxy, we appeal to estimates of our model for σ = 0. Here the uncertainty effect is

completely shut down. From the numbers in Table 2 we can conclude that about 25 percent of the

total bid shade can be explained by the valuation effect and its interaction with the strategic effect

of bidders reacting to a change in the distribution of fellow bidders’ valuations. Therefore a large

component of the bid shading, about three-fourths, during the taper tantrum period is explained

by the uncertainty effect and its interaction with the strategic effect. And, it is this increased bid

shading that contributes significantly to the drop in price of the bond in the primary auction.

Finally, we want to understand the extent of heterogeneity across bidders. Here we use the

methodology of Cassola, Hortaçsu, and Kastl [2013] of dividing the bidder into groups. The

procedure has to be tailored to our model and data, and as is discussed is the appendix. We see

the bidders split themselves broadly into three categories. A significant fraction of bidders come

to every auction, we call them Group 1. Another group of bidders comes reasonably frequently,

importantly these bidders appear in some auction in all three time periods—before, during and

after taper tantrum, we refer to them as Group 2. However, there is a third groups of bidders that

appears only during the taper tantrum period, we call them Group 3.

σ = 0.3 Group 1 Group 2 Group 3

Before 0.05 0.04
[0.02,0.12] [0.01,0.08]

During 0.55 0.35 0.15
[0.37,0.84] [0.25,0.51] [0.11,0.30]

After 0.13 0.07
[0.04,0.28] [0.03,0.16]

Table 3: Average bid shading across the three different bidder groups
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Figure 8: Distributions of bids and marginal values of fringe vs frequent bidders during the taper tantrum
period

Table 3 reports bid shading across groups. It is clear that on average Group 1 bidders shade the

most, Group 2 are intermediate, and Group 3 shade the least. The level of bid shading is inversely

proportional to frequency of participation in the auction.

Group of 1 consists mostly of the primary dealers that are required, due to a contractual agree-

ment with the Reserve Bank of India, to appear in every auction. Their objective is a mix of

intermediation whereby they sell wins in the secondary market, and buy and hold, to meet the

requirements of government bond holdings in their portfolios. Group 1 is the most exposed to the

uncertainty, and mostly likely the most to benefit from it—they bid shade a lot.

Group 2 consists mostly of large non-primary dealers such as big public and private sector

banks. Majority of them are buy and hold types. They sense an opportunity and so enter more

frequently, but still bid small quantities due to the uncertainty. In the taper tantrum period, they

bid shade a lot, though less than Group 1. And, Group 3 mostly consists of small banks and finan-

cial institutions that appear only in the taper tantrum period and would have otherwise bought on

the secondary market (or not at all).

The "fringe" bidders, those in Group 3, not only shade the least, they also have the lowest

marginal values. Figure 8a plots distributions of the fringe bidders and a united class of Group 1

and 2 bidders, termed frequent, during the taper tantrum period. We would miss this stochastic

dominance that we see in marginal values if we just plotted the bids of the fringe and frequent

bidders, as in Figure 8b. Therefore, as the price of the bond is declining, in large part due a rise in

uncertainty, it becomes attractive for those at the margin in terms of actual valuations to enter the

auction and buy some of the bonds.

6 The switch that did not help: uniform price

It is folk wisdom, at least since Friedman [1960, 1991], that the uniform price auctionmay do better

than the discriminatory auction in terms price discovery and revenue. A majority of sovereigns

though still use the discriminatory price auction, the US being an exception. The theoretical
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literature does not point towards a clear winner and the empirical evidence is at best mixed.32

Creating counterfactual estimates for a switched multi-unit auction format has so far been

elusive, it is almost impossible to compute what exact step functions would the bidders post, even if

we know theirmarginal value functions. The state of the art in the literature to evaluate an alternate

uniform price auction for marginal value curves computed under a discriminatory auction is to

construct the market clearing price and the associated revenue under the assumption that bidders

bid truthfully. The revenue estimate for the hypothetical auction then gives an approximate upper

bound on the revenue that can be collected in any equilibrium of a uniform price auction.33 In

our setup with risk averse bidders, these estimates are an even looser upper bound than in the risk

neutral model, since this exercise does not take into account the risk faced by the bidders. Table 4

enlists the counterfactual exercise for uniform price auctions.

Auction Actual auction Uniform auction Revenue as a fraction
clearing price price of actual revenue

16 97.59 97.98 1.0032
17 97.33 97.70 1.1037
18 97.27 97.39 1.0008
19 97.35 97.53 1.0038
20 97.23 97.31 1.0004
21 97.32 97.94 1.0062
22 97.09 97.40 1.0026
23 97.27 98.00 1.0079
24 97.41 97.48 1.0006
25 97.46 97.50 1.0003
26 97.64 97.67 1.0002
27 97.67 97.68 1.0000

Table 4: The uniform price estimates for the 3-month T-Bills under truthful bidding

We find that if the bidders did bid close to being truthful, the uniform price auction would

have led to better "price discovery" (by definition), and would have done almost as well in terms

of revenue. Of course, we have no systematic way of knowing how the bidders would actually bid

in the auction. But the exercise does provide some credence to the aforementioned folk wisdom.

Luckily, due to a critical decision made by the Reserve Bank of India during the summer of 2013,

we can say a bit more.

At the onset of the taper tantrum crisis, the Reserve Bank of India actually switched the format

of the primary auction for long term securities from discriminatory to uniform. Anticipating the

impact of announcements by the Fed, the Reserve Bank preemptively tried to lessen the turmoil

32In a recent survey paper, Hortaçsu and McAdams [2016] conclude that "when bidders have private information the
ranking of the pay-as-bid and uniform-price auction is ambiguous, both in terms of revenue and efficiency."

33This is the approach used in Hortaçsu and McAdams [2010]. Note however that Kastl [2011] shows the bidders
may actually bid higher than their marginal values in a uniform price auction, so there is no clear mathematical result
that establishes revenue from truthful bidding as an upper bound. But, even in his sample few bidders actually bid above
their marginal value. Based on that, the analysis done in Hortaçsu and McAdams [2010], and our own conversations
with bidders we think this is still a worthwhile number to analyze.
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Figure 9: Auction clearing prices for the 10 year bond fresh issues, April 2013-Jan 2014

by changing the format.34 Figure 9 plots the market clearing prices for the 10 year sovereign bond

during the same time period we looked at before. The auction for the these maturities happen less

frequently. The vertical lines enclose the same calendar weeks as in Figure 1, however, the switch

actually happens at the first dot.

A casual glance at the numbers reveals that the switch perhaps did not work. The price declined

substantially, much more than what the change in interest rate at the time would suggest. We can

again ask the same question we asked for the 3-month T-Bill, did the valuation for the sovereign

bond decline substantially or was the decline driven in large part by uncertainty and strategic

considerations? This would require the re-development of technical machinery of introducing risk

averse preferences and common uncertainty ported to the uniform price auction format. We do

that in detail in a separate note, Gupta and Lamba [2023]. Here we simply report the bid shading

numbers generated by the structural estimation of the the risk-neutral uniform price auctionmodel

that follows Kastl [2011].

The average bidder surpluses for the period we defined as "before", "during" and "after" are

0.6897, 0.5562 and 0.2837 respectively. This shows that the bidders were anything but truthful

and were "shading" a lot even in the uniform price auction format. Average bid shading in the

discriminatory auction just before the switch was 0.078, which leads us to conclude that switch

just before an impeding crisis could have spooked the bidders even more.35

This is not to say that uniform price auction can’t do better in times of crisis, just that we cannot

disentangle at the margin howmuch the switch actually helped given the general rise in uncertainty

in the market, the timing of the switch itself, and limitations of counterfactual estimates. However,

given the pure decline in price and our estimated numbers for bid shading even for the risk neutral

34In personal conversations with the auctioneers, it was revealed to us that the switch was done in anticipation of the
effect of the Fed announcement. The central bank prefers to have a unique price during times of stress while in times
of normalcy the discriminatory auction potentially earns higher revenue.

35It is most likely that if we add risk aversion and uncertainty to this setting, the numbers would go up even more.
This entails a separate technical problem, that we take up in Gupta and Lamba [2023]. Moreover, since the number of
bidders and the frequency of auctions is smaller for the long-term bonds, the standard errors are higher. We want the
reader to think of these are high level numbers that show bid shading goes up a lot in these auctions as well.
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case, it seems fair to conclude that switch on the ground did not work.

7 Tweaking the design: fixed price tenders

A thought experiment worth exploring is this—what if the central bank simply posted prices and

let the market decide howmuch to buy? There are at least three reasons why this simple procedure

may be attractive in times of crisis. First, if the central bank knows "more than the market", it

might be in a better position to set prices. The auction might actually tie its hand in a crisis

episode. Second, it could arrest uncertainty by plugging the speculation channel at least in the

primary auction, which may have desired downstream effects on the secondary market. Third,

it is not unusual for the central bank to take an out of the box policy lever in times of distress;

arguably the Fed did the same in the aftermath of the collapse of Lehman Brothers in 2008-09.

Since the estimation procedure arms us with the marginal value curve of individual bidders and

hence the aggregate market, we can precisely determine how much of the quantity will be sold and

revenue raised at each price point. The exact exercise is as follows. Fix a posted price. Given this

price, we can compute the quantity that maximizes the expected utility of each bidder. Assume

that all bidders who participated in an auction will be willing to buy their optimum quantity at

the posted price. Then, sum up the individual quantities to compute the counterfactual aggregate

demand for the fixed price.

A natural question to ask then is what should this posted price be? How does the central bank

determine this price? We perform the counterfactual calculation using secondary market prices as

our marker. The posted price equals the average of all secondary market trades in the days leading

up to the auction plus a small markup. In Table 5 below, we report the aggregate quantity that the

central bank can potentially sell when the markup is 0.02 price points.36 Only in 3 out of the 12

auctions does aggregate demand fall significantly below the actual quantity sold in the auction, and

in three other auctions much more quantity is sold than the actual supply set by the central bank.

In fact, a simple back of the envelope calculation show that the total quantity sold and revenue

raised in the 12 fixed price sales would be higher than that in the actual auctions.

To come up with a fixed price, this counterfactual calculation takes the secondary market price

as being fixed. But, in reality the secondary market price itself may react to the fixed price chosen

by the central bank and the quantity sold at that price. It is worthwhile therefore to perform an

exercise equivalent to that in section 6 and come up with the fixed price that would exactly exhaust

the total supply originally set by the central bank, assuming the bidders optimally choose their

quantity. The numbers turn out to be close to those under truthful bidding - the price is always

slightly lower than the third column of Table 4 and the fraction of revenue is slightly lower too,

though still always above one. The exercise is presented in Table 6.37

The analysis for uniform price auction and fixed price auction makes us conclude that suitably

36We use this markup because in our data (outside of the taper period) themaximum difference between the secondary
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Auction Actual Q Fixed Q Sold
Sold (108) Price at Fixed Price (108)

16 7 97.77 9.154
17 7 97.92 2.759
18 7 97.46 2.216
19 7 97.50 6.604
20 7 97.33 3.952
21 7 97.21 15.207
22 7 97.33 8.775
23 7 97.31 17.126
24 7 97.47 9.998
25 7 97.49 8.103
26 7 97.65 10.462
27 6 97.69 6.309

Table 5: The fixed price counterfactual

Auction Actual auction Price which Revenue as a fraction
clearing price exhausts Q of actual revenue

16 97.59 97.98 1.0032
17 97.33 97.69 1.1036
18 97.27 97.33 1.0001
19 97.35 97.49 1.0034
20 97.23 97.29 1.0002
21 97.32 97.92 1.0060
22 97.09 97.35 1.0020
23 97.27 98.00 1.0079
24 97.41 97.48 1.0006
25 97.46 97.50 1.0003
26 97.64 97.65 1.0000
27 97.67 97.68 1.0031

Table 6: The fixed price estimates for the 3-month T-Bills for optimizing bidders

chosen fixed price tenders could have potentially had the desired effect that the switch to uniform

price could not. By monitoring prices in the secondary market and quantity sold in the primary

sale every week, the Reserve Bank of India, by setting a suitable fixed price, could have ensured

steady supply of debt and revenue to the exchequer, while tempering down uncertainty around

the value of the bond. Of course, a deeper analysis into the question would require a richer model

and experimental data which is a good agenda for future research.

market price before the auction and market clearing price in the auction is 0.02 price points.
37The main difference between Table 6 and Table 4 is that in Table 6 we are assuming that bidders optimally respond

to the price set by the central bank in choosing their quantity, whereas in Table 4 we assumed that they buy at the their
expected marginal value curve, the latter does not take into account the risk borne by the bidders.
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8 Final thoughts

Summary: Taper tantrum led to what may be regarded as the "spillovers debate"- what effect

monetary policy in one country can have on another and what are the channels through which

it propagates (see Mishra and Rajan [2018])? While we take the spillovers as given in starting out

from the decline in bond prices, we provide some explanation to the second question by appealing

to the rise of uncertainty and speculative behavior associated with it.

More formally, through bid level data in the primary auctions for sovereign debt in India, we

record a substantial rise in average bid shading and hence bidder surplus. The steep decline in price

was not only a sign of changing fundamental value but equally or even more significantly, it was a

function of the rise of uncertainty about the true value of the bond and a strategic response of the

key financial players in the domestic market.

We make a technical contribution towards the empirical analysis of multi-unit auctions by in-

troducing risk averse preferences for bidders and common uncertainty in valuations. We take both

to be natural assumptions for treasury bills. The financial economics literature has often invoked

risk averse agents to analyze such markets. Risk aversion also squares better with the empirical

facts around the taper tantrum period. And, given that value of a government bond is linked to

quality of the sovereign debt, we include a common component for all bidders whose variance can

spike in times of uncertainty. We hope these additions to the burgeoning literature on empirical

multi-unit auctions allows us to model crisis episodes well.

Validity of the model: A fair critique of our approach goes as follows: What validates our

model, the top purple line in Figure 6, in comparison to the standard linear independent private

values model, the middle orange line in Figure 6. Put alternatively, is there a sense in which one is

a better fit for the data than the other? There is no easy answer to this question, but we offer three

points in the support of our approach, emphasizing at the outset that the difference matters most

for estimates and for policy implications during times of high uncertainty.

First, given themassive rise in uncertainty, as measured by the activity in the secondarymarket;

simply by introspection, it would make sense for the model to incorporate the role of uncertainty

in the primary auction too. The standardmodel integrates out all the uncertainty without affecting

bidding behavior. While thismay be a reasonable approximation in normal times, in crisis episodes,

purely intuitively speaking, this seems incomplete. Projecting this onto our estimates, the primary

reason for a drop in price to be a drop in actual (ormean) valuation as opposed to rise in uncertainty

seems also not to square with basic intuition.

Second, a fairly large literature in finance explicitly models risk aversion in the market for

financial securities, the classic reference being Kyle [1985, 1989]. In recent work, complimentary

to ours but distinct in the questions they ask, Boyarchenko, Lucca, and Veldkamp [2021] and Cole,

Neuhann, and Ordoñez [2022] use these models inspired from the financial economics literature
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to rationalize data from treasury auctions, They too emphasize the role of risk aversion in their

analysis. Our paper can be viewed as bridging this gap between standard empirical auction models

and the financial economics way of modeling bidding for securities.38

Finally, a salient feature of the data is simultaneous increased entry in the primary auction and

fragmented winnings during the taper tantrum period—that is more bidders and more winners.

Even though we do not explicitly model entry in this paper, as an external check on the model, it

is much easier to rationalize this fact with the model with risk aversion and common uncertainty:

As uncertainty increases, exisiting bidders start demanding higher risk premia, which shoots down

the price. This incetivizes bidders with lowermarginal values to enter the auction. However, owing

to higher uncertainty all bidders bid smaller quantities, which leads to more number of winners.

These forces are absent in the standard risk neutral independent private values model.39

Alternate selling mechanism in crisis: With a final look at Figure 6, we emphasize that our

model predicts a failure of the auction only during taper tantrum period, both before and after

periods see the marginal value line follow the market clearing price relatively closely. It is useful

for central banks to perhaps have a flexible schedule of quantity at such times and even take the

initiative in setting prices in the market. Of course, the success of the approach depends critically

on the credibility of the treasury and the central bank, for which it is important that such a clause

of temporarily abandoning the auction and using posted prices not be abused.

9 Appendix

9.1 Proof of Proposition 1

The result is established through a perturbation argument. For the ease of notation, we suppress

the common uncertainty term in much of the proof, and show how the proof statement and proof

generalize as a last step. We follow the proof style in Kastl [2012] closely, adjusting at each step for

the fact that bidders are risk averse bidders.

For a step k < K , let us perturb the quantity demanded from qk to q ′ = qk − ϵ . Given the bid

price bk of this bidder at the k t ℎ step, depending on the realization of the random variables (Q, S)
and hence market clearing price, the states of the world can be partitioned into five subsets:

θ1(qk) : When the market clearing price is above the bid price at k t ℎ step, the bidder does not

win anything at this step and hence the total share won in equilibrium (Q c ) is less than the

38Add the new references... xxx
39In future work, it would be interesting to model entry in such auctions. To simultaneously estimate valuations,

risk preferences and entry costs though would require richer data sets, which is the reason we refrain from that exercise
here, See Li, Lu, and Zhao [2015] for work on single unit auctions with risk averse bidders and selective entry.
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cumulated share demanded at k t ℎ step, i.e.

bk < pc and Q c < qk

θ2(qk) : When the market clearing price is exactly the same as the price bid at k t ℎ step, the bidder

wins a proportion of the quantity demanded at k t ℎ step and hence the total share won in

equilibrium is still less than the cumulated share demanded at this step, i.e.

bk = pc and Q c < qk

θ3(qk) : Market clearing price is between the k t ℎ and the (k + 1) t ℎ bid price, so the bidder wins

all the share demanded at k t ℎ step. Thus:

bk ≥ pc > bk+1 and Q c = qk

θ4(qk) : When the market clearing price is weakly lower the (k + 1) t ℎ bid price and there is no tie
at bk+1, so the total share won in equilibrium is more than the cumulated share demanded at

k t ℎ step. That is:

bk+1 ≥ pc and Q c > qk

θ5(qk) : Now the market clearing price is exactly the (k + 1) t ℎ bid price, and so the total share

won in equilibrium is more than the cumulated share demanded at k t ℎ step. That is:

bk+1 = pc and qk+1 > Q c > qk

The difference between θ4 and θ5 is that in the states in θ5 the bidder could be rationed at the

(k + 1) t ℎ step, and so the total share won could potentially be less than qk+1.
Now, when we slightly reduce the quantity demanded at the k t ℎ step, the market clearing price

will either remain the same or decrease. As a result, the probability weights on the thetas defined

above changes. In particular, the states in θ2(qk) in which price decreases due to the perturbation

nowmove to θ3(q ′). Let us denote these states asω2(q ′). Similarly, we can define the new partition

after perturbation as follows:

θ1(q ′) = θ1(qk)

θ2(q ′) = θ2(qk) − ω2(q ′) − ω4(q ′)

θ3(q ′) = θ3(qk) + ω2(q ′) − ω3(q ′)

θ4(q ′) ∪ θ5(q ′) = θ4(qk) ∪ θ5(qk) + ω3(q ′) + ω4(q ′) (3)
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where ω3(q ′) and ω4(q ′) are the states that move from θ3(qk) and θ2(qk) to θ4(qk) ∪ θ5(qk).
As noted above, the main difference between the states θ4 and θ5 is in the allocation. Since,

there is no tie at bk+1 in θ4, the bidder wins all the quantity demanded at k + 1t ℎ step. Therefore,

when we perturb to q ′, the bidder surely wins the ϵ as well. However, in state θ5 and in the event

of a tie, the bidder might not win all of the ϵ share.

Expected Utility under qk :

We denote the expected utility in each of the different sets of states of the world θ j (qk) (where

j ∈ {1, 2, 3, 4, 5}) as:

E

[
u
(
Vj − B j

) ����θ j (qk)]
and we define Vj and B j for each j below.
Let us start with θ1(qk). In this set, the bidder does not win anything on the k t ℎ step. So,

the expected utility does not change with the perturbation. Thus we can ignore these states of the

world.

When the state is in θ2(qk), the bidder wins all the quantity demanded at (k − 1) t ℎ and also

some rationed amount of (qk − qk−1), let us call it c2 ∈ (qk−1, qk]. Then, the total value and

payment can be written as follows:

V2 =

∫ qk−1+c2

0
v i (x, si)dx

B2 =

k−1∑︁
m=1

(
qm − qm−1

)
bm + (c2 − qk−1)bk

where q0 = b0 = 0. For example: if k = 2, B2 = q1b1 + (c2 − q1)b2, and if k = 3, then B2 =

q1b1 + (q2 − q1)b2 + (c2 − q2)b3.
Similarly, when state is in θ3(qk), the bidders wins exactly qk . So the corresponding total value

and payment expressions are:

V3 =

∫ qk

0
v i (x, si)dx

B3 =

k∑︁
m=1

(
qm − qm−1

)
bm

Now, when the state is in θ4(qk), the market clearing price is weakly lower than the price at

this bidder’s (k + 1) t ℎ step and there is no tie at the (k + 1) t ℎ step. Therefore, the bidder wins at

least qk+1. If the bidder is rationed at the l t ℎ step where l > (k + 1), then we have:
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V4 =

∫ ql−1+c4

0
v i (x, si)dx

B4 =

l−1∑︁
m=1

(
qm − qm−1

)
bm + (c4 − ql−1)bl

where c4 ∈ (ql−1, ql ].
For the last case, when state is in θ5(qk), the bidder wins all the quantity demanded at (k) t ℎ

step and also some rationed amount of (qk − qk+1). Thus:

V5 =

∫ qk+c5

0
v i (x, si)dx

B5 =

k∑︁
m=1

(
qm − qm−1

)
bm + (c5 − qk)bk+1

where c5 ∈ (qk, qk+1].

Expected Utility under q ′:

With the perturbation some quantity is reduced from k t ℎ step and increased at the (k + 1) t ℎ step.
All other demands remain the same. This will affect the allocations (both rationed and otherwise)

and payments in the different state of the world. Again, let us denote the expected utility as below:

E

[
u
(
Vj − B j

) ����θ j (q ′)]
where q ′ = qk − ϵ and j ∈ {1, 2, 3, 4, 5}.
For states in θ2(q ′) − These are the states in which the bidder is rationed at the k t ℎ step. The

allocation after rationing will reduce because the total amount demanded at the k t ℎ step is less due

to the perturbation, and so:

V ′
2 =

∫ qk−1+c ′2

0
v i (x, si)dx

B ′
2 =

k−1∑︁
m=1

(
qm − qm−1

)
bm + (c ′2 − qk−1)bk

where c ′2 < c2 and c ′2 ∈ (qk−1, qk].
For states in θ3(q ′) − There is no rationing in this set of states. The bidders wins everything

till the k t ℎ step. But since we are perturbing the demand on the k t ℎ step, the bidders wins q ′ < qk .
Hence:

31



V ′
3 =

∫ q ′

0
v i (x, si)dx

B ′
3 =

k∑︁
m=1

(
q ′m − q ′m−1

)
bm

where q ′m = qm ∀m < k and q ′k = qk − ϵ .
Now, in θ4(q ′) there is no tie at bk+1, so allocations do not change at the k t ℎ and the k+1t ℎ step,

but the payment on ϵ will change. Again, if the bidder is rationed at the l t ℎ step when l > (k + 1),
then:

V ′
4 =

∫ q ′l−1+c
′
4

0
v i (x, si)dx

B ′
4 =

l−1∑︁
m=1

(
q ′m − q ′m−1

)
bm + (c ′4 − q ′l−1)bl

where :



c ′4 = c4 and c ′4 ∈ (q ′l−1, q
′
l ],

q ′m = qm ∀ k + 1 < m < k,

q ′k = qk − ϵ, and

q ′k+1 = qk+1 + ϵ .

In states θ5(q ′), the bidder is rationed at the (k +1) t ℎ step. Thus, the rationed quantity changes
because the demand on the (k + 1) t ℎ step is now q ′k+1 = qk+1 + ϵ . It is important to note here that

the bidder might not win all of ϵ . The total value and payments, thus, are:

V ′
5 =

∫ q ′k+c
′
5

0
v i (x, si)dx

B ′
5 =

k∑︁
m=1

(
q ′m − q ′m−1

)
bm + (c ′5 − q ′k)bk+1

where :



c ′5 ∈ (q ′k, q
′
k+1],

q ′m = qm ∀ m < k,

q ′k = qk − ϵ, and

q ′k+1 = qk+1 + ϵ .

Note that when we write the expected utility for θ4(qk) ∪ θ5(qk), we will write the expression

usingV4 and B4 using l ≥ (k + 1). Now, we have take the difference between the expected utilities
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before and after the perturbation.

Difference between the two Expected Utilities:

EV (si
��qk) = Pr(θ1) · E

[
u (V1 − B1)

����θ1(qk)] + Pr(θ2) · E
[
u (V2 − B2)

����θ2(qk)]
+Pr(θ3) · [u (V3 − B3)] + Pr(θ4 ∪ θ5) · E

[
u (V4 − B4)

����θ4 ∪ θ5(qk)] (4)

and

EV (si
��q ′) = Pr(θ1) · E

[
u
(
V ′
1 − B ′

1
) ����θ1(q ′)] + Pr(θ2) · E

[
u
(
V ′
2 − B ′

2
) ����θ2(q ′)]

+Pr(θ3) · E
[
u
(
V ′
3 − B ′

3
) ����θ3(q ′)] + Pr(θ4 ∪ θ5) · E

[
u
(
V ′
4 − B ′

4
) ����θ4 ∪ θ5(q ′)]

Using the definitions of the partition for q ′, we get:

= Pr(θ1) · E
[
u
(
V ′
1 − B ′

1
) ����θ1(qk)] + Pr(θ2) · E

[
u
(
V ′
2 − B ′

2
) ����θ2(qk)]

−Pr(ω2) · E
[
u
(
V ′
2 − B ′

2
) ����θ2, ω2

]
− Pr(ω4) · E

[
u
(
V ′
2 − B ′

2
) ����θ2, ω4

]
+Pr(θ3) ·

[
u
(
V ′
3 − B ′

3
) ]

+ Pr(ω2) ·
[
u
(
V ′
3 − B ′

3
) ����θ3, ω2

]
− Pr(ω3) ·

[
u
(
V ′
3 − B ′

3
) ����θ3, ω3

]
+Pr(θ4 ∪ θ5) · E

[
u
(
V ′
4 − B ′

4
) ����θ4 ∪ θ5(qk)] + Pr(ω3) · E

[
u
(
V ′
4 − B ′

4
) ����θ4 ∪ θ5, ω3

]
+Pr(ω4) · E

[
u
(
V ′
4 − B ′

4
) ����θ4 ∪ θ5, ω4

]
(5)

Taking the difference:

EV (si
��qk) − EV (si

��q ′) = Pr(θ2) · E
[
u (V2 − B2) − u

(
V ′
2 − B ′

2
) ����θ2]

+Pr(θ3) ·
[
u (V3 − B3) − u

(
V ′
3 − B ′

3
) ]

+Pr(θ4 ∪ θ5) · E
[
u (V4 − B4) − u

(
V ′
4 − B ′

4
) ����θ4 ∪ θ5(qk)]

+Pr(ω2) ·
{
E

[
u
(
V ′
2 − B ′

2
) ����θ2, ω2

]
− u

(
V ′
3 − B ′

3
)}

+Pr(ω3) ·
{
u
(
V ′
3 − B ′

3
)
− E

[
u
(
V ′
4 − B ′

4
) ����θ4 ∪ θ5, ω3

]}
+Pr(ω4) ·

{
E

[
u
(
V ′
2 − B ′

2
) ����θ2, ω4

]
− E

[
u
(
V ′
4 − B ′

4
) ����θ4 ∪ θ5, ω4

]}
(6)
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Taking the Limit:

The next step is to divide the difference EV (si
��qk) − EV (si

��q ′) by qk − q ′ and take the limit

q ′ → qk . Let us look at each term in equation (5) separately.

The first term on the RHS involves the probability of θ2. This set contains the states in which

the bidders is rationed at the k t ℎ step. So, we can invoke Lemma 1 here and argue that in equilib-

rium: Pr(θ2) = 0. Thus, this term vanishes.

The second term can be re-written as:

Pr(θ3) · lim
q ′→qk

[
u (V3 − B3) − u

(
V ′
3 − B ′

3
)

qk − q ′

]

= Pr(θ3) ·
d
dqk

{u (V3 − B3)}

= Pr(θ3) · u′ (V3 − B3) ·
d
dqk

(V3 − B3)

Using the definitions of V3 and B3, we get:

= Pr(θ3) · u′ (V3 − B3) ·
(
v i (qk, si) − bk

)
= Pr

(
bk > pc > bk+1

��si ) [v (qk, si) − bk
] [

u′
(
V i − B i

) ����bk > pc > bk+1, si
]

(7)

For the third term, following the same steps as above and we get:

Pr(θ4 ∪ θ5) · E
[
u′ (V4 − B4) |θ4 ∪ θ5(qk)

] d
dqk

(V4 − B4)

Since the perturbation does not affect the allocation in these states, the derivative ofV with respect

to qk is zero. Thus, we are left with:

Pr(θ4 ∪ θ5) · E
[
u′ (V4 − B4) |θ4 ∪ θ5(qk)

] d
dqk

(−B4)

⇒ Pr
(
bk+1 ≥ pc

��si ) · E [u′ (V i − B i
) ����bk+1 ≥ pc , si

] [
−
(
bk − bk+1

) ]
(8)

Now, we are left with the ω-terms. Define ν j := limq ′→qk ω j , where ∈ {2, 3, 4}. Note that to

generate the movement in states due to the perturbation, it must be that the states in ν2 are such

that the residual supply function is vertical at qk and it goes through bk but not bk+1. [See Figure
1(a) for an illustration.] Thus, the allocation in state ν2 is q ′.

Similarly, for states in ν3 residual supply is vertical at qk , and goes through bk+1 but not bk , as
shown in Fig 1(b). And finally for states in ν4, residual supply is vertical at bk and goes through

both bk and bk+1, as shown in Fig 1(c). As a result, the allocation in both ν3 and ν4 is qk .
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Figure 10: Illustration of the states in ν2, ν3 and ν4

Given these allocations, the utility terms that are subtracted in the ω-terms in equation (5) are

equivalent. Hence, all ω-terms will be 0 in the limit.

The difference between the expected values must be 0 in the limit, which gives us the necessary

condition:

Pr
(
bk > pc > bk+1

��si ) [v (qk, si) − bk
] [

u′
(
V i − B i

) ����bk > pc > bk+1, si
]

= Pr
(
bk+1 ≥ pc

��si ) · E [u′ (V i − B i
) ����bk+1 ≥ pc , si

] (
bk − bk+1

)
This completes the proof for Proposition 1. □

9.2 On the consistency of the estimation procedure

In this section, we show the consistency of the resampling estimator for the distribution of mar-

ket clearing prices. To do that we first define a V-statistic below. Recall that given a K -step bid

(b i
k, q

i
k)

K
k=1 for bidder i, the share of issue amount demanded by her at any price p is denoted as

y i (p |si). Now, fix an auction with total supply Q and the number of bidders N = N1 + N2 + N3.

Suppose that bidder i belongs to Group 1. Then, conditional on the bid of bidder i, we define an
indicator of excess supply at a price p as:

Φ(y1, ..., yN1−1, ..., yN1+N2−1, ..., yN −1) = 1 ©«Q −
N −1∑︁
j=1

y j (p |s−i) ≥ y i (p |si)
ª®¬

where s−i is the set of signals of all bidders other than i.
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Now consider the following V-statistic:

ξ (Γ̂; p) = 1
(N1T )N1−1

· 1
(N2T )N2

· 1
(N3T )N3

×
(T ,N1 )∑︁
α1=(1,1)

...

(T ,N1 )∑︁
αN1−1=(1,1)

×
(T ,N1+N2 )∑︁

αN1+1=(1,N1+1)
...

(T ,N1+N2 )∑︁
αN1+N2=(1,N1+1)

×
(T ,N )∑︁

αN1+N2+1=(1,N1+N2+1)
...

(T ,N )∑︁
αN −1=(1,N1+N2+1)

Φ(yα1, ...yαN −1 ; p)

where αi = {(1, 1), ...(T ,N )} is the index of the bid in the subsample and Γ̂ is the empirical

distribution of bids if T is the total number of auctions in our sample. This statistic represents the

probability with which the market clearing price is weakly lower than p in the data if we draw all

possible subsamples (with replacement) of size (N1 − 1) + N2 + N3 from the full sample of N ×T
data points.

Let us denote the resampling estimator of P
(
pc ≤ p

��si ) as Ĥ (p). Note that Ĥ B (p) is a simulator

of the statistic ξ (Γ̂; p) in which only B subsamples are randomly drawn instead of all possible

subsamples.

Lemma 1. Suppose that the data is i.i.d across all T auctions and bidders, all bidders are ex-ante sym-
metric and N is fixed. Then, as T → ∞ and B

T → ∞, Ĥ B (p) → ξ (Γ̂; p).

Proof. Analogous to proof of Lemma 2 in Hortaçsu and Kastl [2012] □

This lemma assumes that the bidders are ex-ante symmetric. In our resampling procedure

bidders are symmetric only within the groups but the signals are independent across groups as

well. To prove consistency for within group symmetric bidders, we use Theorem 8.1 in Hoeffding

(1948) which proves the result in Lemma 1 for the case when the signal for each bidder is drawn

from a different distribution.

Proposition 2. Suppose the data is independent across all auctions and all groups, bidders are symmetric
within their groups, and N is fixed. Then, as T → ∞ and B

T → ∞, Ĥ B (p) → ξ (Γ̂; p).

Proof. Since Φ(·) is an indicator function, it is uniformly bounded. Therefore, it satisfies all the

conditions for Theorem 8.1 in Hoeffding (1948). Hence, our estimator is consistent. □

The consistency of the resampling estimator of P
(
bk > pc > bk+1

��si ) can be established in an

analogous analysis where the indicator functionΦ(·) is defined with the appropriate strict inequal-

ity.

9.3 On the iterative procedure to create bidder groups

In the model, bidders are ex-ante symmetric. In the data, however, there are two clear categories of

bidders − those who bid in all the auctions in our sample period (Group 1), and those who enter
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the auctions intermittently (Group 2). The second group can be divided further into those who

only enter during the “dip” period (Group 3). To account for this asymmetry, we differentiate

between these three categories in the resampling procedure. We split the total number of bidders

in an auction (N = N1 + N2 + N3) into three groups, and draw a fixed number of bids N j from

each group j .
Ideally, we would define the groups only on the basis of how many auctions they participate

in. However, the number of purely new entrants in the 12 auctions during the dip period is not very

high. Hence, we use a second criterion to identify the bidders in Group 3 − the average bid shade

across the 12 auctions in the dip period. Group 3 consists of the bidders that form the (lowest)

20th percentile of the average bid shade during the taper tantrum period.

To ensure that our definition of Group 3 is robust, we adopt the following iterative algorithm:40

Step 1. We start the algorithm by defining only two groups of bidders: those who appear in al-

most every auction form Group 1 and those who appear less frequently form Group 2. We

estimate the model using these groups and obtain the marginal values of each bidder in every

auction.

Step 2. We use the estimates to compute the amount by which each bidder shades her bid below

her true valuation. We find significant heterogeneity among bidders in Group 2 during the

taper tantrum period. This suggests a further division of Group 2 − we define the set of

bidders that belong to the lowest 20th percentile of average shade in the crisis period as

Group 3.

Step 3. The model is re-estimated using three groups.

Step 4. We identify the set of bidders in the lowest 20th percentile of average shading during the

crisis period. If this set coincides with the current definition of Group 3, the algorithm is

terminated. Otherwise, we repeat Step 3 with this new set as Group 3.

In practice, there are always some bidders who switch between Groups 2 and 3. However, a

fixed subset of the new entrants are always among the bidders we identify as Group 3. Note that

the composition of Group 1 stays fixed throughout the exercise. The iteration only affects whether

a bidder belongs to Group 2 or 3.
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