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Abstract

We study production responses to an emission capping regulation on manufacturing firms.
Firms reduce pollution by electrifying their production, producing less coal-intensive prod-
ucts, and increasing their abatement expenditures. Firms preserve profitability by increasing
their production of higher-margin products. However, firms in highly polluting industries
produce fewer products. In the aggregate, we document lower product variety, an altered
firm-size distribution, and lower business formation. Our findings highlight the mechanisms
behind how mandated pollution reduction can be effective and its costs, suggesting a loss in
agglomeration externalities.
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Policymakers are directing national efforts toward combating climate change, with regula-

tions that target firm emissions (IPCC, 2023; World Economic Forum, 2023). At the same time,

they care how emissions reductions are achieved, seeking firms to reduce their energy use by

making abatement investments and changing their production processes. Yet these policymakers

face capacity constraints to enforce rules and limited information to effectively target emissions

reduction (Duflo, Greenstone, Pande, and Ryan, 2013, 2018).

While there is robust evidence on the effectiveness of environmental regulations in curbing

emissions, much remains unknown about their impact on production decisions and the eco-

nomic mechanisms behind firms’ trade-offs when balancing emission reduction with economic

impacts.1 Firms often respond by shifting emissions to less-regulated jurisdictions and within

their supply chains (Bartram, Hou, and Kim, 2022; Ben-David, Jang, Kleimeier, and Viehs, 2021;

Duchin, Gao, and Xu, 2022; Schiller, 2018). At the same time, there is mixed evidence on whether

such regulations reduce firm output and productivity and increase consumer costs (Bertrand,

Djankov, Hanna, and Mullainathan, 2007; Fowlie, 2010; Greenstone, List, and Syverson, 2012).

Alternatively, there is a view that these costs might be temporary and that the regulations could

eventually boost productivity.2 Beyond these firm-level outcomes, the primary challenge in em-

pirically assessing the impacts of environmental regulation centers on the opacity of responses

within firms, encompassing changes in operational strategies, product inputs and outputs, and

energy management.

In this paper, we study within-firm responses in production decisions, on both the input and

output sides, allowing us to uncover the economic forces driving emissions reductions. To do

so, we combine detailed data on firm production and abatement expenditures with variation

from an environmental regulation in India. We show that the regulation meaningfully decreased

emissions, using hand-collected regulatory data and satellite emission readings. At the firm level,

we exploit detailed product-level data on inputs to show that firms operating in the highest-

polluting industries optimize their energy use and shift from in-house to external procurement

of electricity. Moreover, we find that the average firm makes substantial investments in pollution

1See, for example, Greenstone (2002); Greenstone and Hanna (2014); He, Wang, and Zhang (2020) and cites therein.
2Proposed mechanisms for this include R&D spillovers, first-mover advantages (Harrison, Martin, and Nataraj,

2017; Jaffe and Palmer, 1997; Lanjouw and Mody, 1996; Porter and Linde, 1995), and encouraging firms to optimize
energy use and adopt green technologies (Fan, Zivin, Kou, Liu, and Wang, 2019; Newell, Jaffe, and Stavins, 1999; Wu,
Yu, Jiaxing, and Zhou, 2023).
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abatement, on both extensive and intensive margins. On the output side, we find that firms

adjust by reallocating production toward their highest-margin products while maintaining overall

profitability. In terms of aggregate dynamics, we observe that firms in high-pollution industries

are significantly impacted as they transition to lower-emission products. Meanwhile, firms in less

polluting industries experience increased profit margins. Overall, there is a noticeable decline in

business dynamism, evidenced by reduced new firm entry and product variety.

Our setting is an emissions capping regulation targeting industrial clusters—co-located dy-

namic concentrations of related businesses—imposed by the Central Pollution Control Board

(CPCB) in India. In 2009, the CPCB introduced the Comprehensive Environmental Pollution

Index (CEPI) to quantify pollution levels of industrial clusters and their impact on local popu-

lations. They used this index to enforce emission reductions for firms located in these clusters

based on whether the cluster CEPI values exceeded pre-defined thresholds. We exploit the re-

sulting discontinuities in enforcement intensity, both within and across industrial clusters, in

a difference-in-discontinuities (DiRD) design. Combined with detailed firm- and product-level

data, this allows us to identify within-firm changes in production decisions on both the input and

output sides and to cleanly quantify the costs and benefits of such regulations.

The analyses proceed in four parts. First, we show that the regulation reduced aggregate

emissions in industrial clusters. To do so, we hand-collect data from follow-up monitoring stud-

ies conducted by the CPCB and find improvements in environmental impact, on average, among

industrial clusters with the highest enforcement intensity. We complement these analyses with

satellite readings on industrial emissions and document a significant and persistent reduction.

To rule out concerns regarding unobserved time-varying trends driving these results, we conduct

a placebo test on emissions from energy producers, which are subject to similar seasonality and

economic fluctuations but were not targeted by the regulation. Reassuringly, we do not find any

change, in terms of both economic magnitude and statistical significance, in these emissions.

Second, we use the granular product-level data to understand the drivers behind the ag-

gregate reduction in emissions. We leverage detailed product-level information on manufactur-

ing firms, unique to India, due to mandatory disclosure requirements (Bau and Matray, 2023;

De Loecker, Goldberg, Khandelwal, and Pavcnik, 2016). Specifically, on the input side, we map

product-level energy consumption to carbon emissions to estimate product-level emissions (Lyu-
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bich, Shapiro, and Walker, 2018). We find that firms respond to the regulation by decreasing

the amount of energy inputs per product and the estimated CO2 emissions per unit produced.

Furthermore, we find that, on average, firms shift away from coal use and from producing to pur-

chasing electricity. Notably, we find that firms increase their abatement expenditures, on average,

both on extensive and intensive margins. Additionally, we exploit cross-sectional differences in

government monitoring strictness by estimating the differential impact on high-pollution indus-

tries (Harrison, Martin, and Nataraj, 2017). Our analyses suggest that firms in high-polluting

industries within treated industrial clusters relative to others primarily change their input mix,

while firms in other industries increase their abatement expenditures.

Third, on the output side, we examine changes to product mix and product-level pricing.

On average, we find that firms do not change the quantity or the number of products produced.

However, there is a significant reduction in product variety driven by a lower probability of

adding a new product in a given year. These average treatment effects mask significant hetero-

geneity within cluster differences in firm response. Specifically, firms in high-polluting industries

increase the quantity of products produced but produce fewer products compared with other

firms in the same industrial cluster and product markets. Moreover, they shift their product

portfolio away from their highest-margin and coal-intensive products. By contrast, firms in other

industries shift toward highest-margin and coal-intensive products. Together, these results sug-

gest that firms in high-polluting industries within industrial clusters, relative to firms in other

industries, drive the average reduction in emissions.

Fourth, at the firm level, on average, these product-level changes result in an increase in

firm efficiency at converting inputs to revenue (revenue productivity) while preserving their

profitability. Additionally, firms do not pass on the increased costs through product price adjust-

ments. However, notably, we observe an increase in product margins and revenue productivity

among firms in other industries in addition to a concomitant decrease in raw material expen-

ditures. The reverse is true for firms in high-polluting industries within these clusters. These

results suggest a potential impact on the competitiveness of clusters, with the disproportionate

cost of the regulation borne by firms in the highest-polluting industries.

A natural question is whether and how these regulations impact industrial clusters in the

aggregate. Development strategies in emerging economies often emphasize and rely on indus-
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trial clusters to catalyze growth and innovation primarily through agglomeration externalities

(Juhász, Lane, Oehlsen, and Pérez, 2022). Given their importance, we examine changes to firm

entry into these clusters around the regulation. We document a decrease in entry across the firm

size distribution among both large and small firms. This effect is strongest in industrial clus-

ters with the greatest enforcement intensity. These findings suggest a dampening competitive

pressure within the cluster having lower potential agglomeration benefits. Thus, while we find

that regulated firms improve their efficiency by lowering their energy intensity in the production

process, it is unclear whether this compensates for the loss in business dynamism resulting from

lower firm entry.

Lastly, we examine other margins of adjustments through which firms may reduce emissions.

One potential margin is that firms could relocate their production outside the industrial cluster

or shift their emissions by expanding capacity elsewhere. We present two pieces of evidence

ruling out these possibilities. First, we do not find a change in the average probability of a

merger and acquisition for firms located in the industrial cluster and as a function of enforcement

intensity. Second, we do not find a change in the average probability of announcing a new plant

or abandoning the expansion of existing plants. Together, these results suggest a reduction in

emissions from production changes instead of firms shifting their emissions elsewhere.

Our results on opening up the ’brown box’ of how firms change their inputs and outputs are

important in designing effective environmental regulations for industrial clusters. A key insight

is that these regulations prompted a fixed-cost shift away from high-emission energy sources

alongside investments in efficiency improvements. This suggests that emissions reduction could

be more effectively targeted by mandating specific energy input use rather than imposing caps

on emissions followed by continuous monitoring. At the same time, it highlights the need for

coordinated policies on decarbonization. Even if the shift toward electricity does not necessarily

steer away from coal at present, it could pave the way for such a transition when it becomes

technically and economically viable to green the power grid, thereby facilitating a smoother

transition to cleaner fuels. Moreover, our results point to aggregate costs in terms of lower

business dynamism, potentially impairing competitiveness in the global economy.
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Related Literature. Our paper contributes to the literature that quantifies the impacts of envi-

ronmental regulation. We focus on an emissions capping regulation aimed at industrial clusters.

Prior research has focused on regulations that take the form of either command-and-control or

cap-and-trade policies (Fowlie (2010); Harrison, Hyman, Martin, and Nataraj (2019); Bartram,

Hou, and Kim (2022); Ivanov, Kruttli, and Watugala (2023)). Similar to our setting, regulations

studied in the literature are often localized, targeting specific geographic regions, industries, or

pollutants. A key insight from this body of work is that firms often substitute their emissions

within and across firms to regions with less stringent regulations, have spillover effects on un-

regulated firms, or pass it along their supply chains (Aichele and Felbermayr (2015); Schiller

(2018); Kim and Xu (2021); Ben-David, Jang, Kleimeier, and Viehs (2021); Dai, Duan, Liang, and

Ng (2021a), (2021b)). In our paper, we focus on regulations targeting firms in industrial clusters.

These clusters, common in both advanced and developing economies, are often seen as engines

of growth, while being responsible for 15–20 percent of global carbon emissions. Different from

prior work, we find no evidence of emissions shifting, while the average firm reduces their emis-

sions by reallocating inputs and output and through technological upgrades. This demonstrates

the importance of widening the literature to include evidence from the full firm-size distribution,

including private firms, and consider emerging economies to develop a better understanding of

the balance between environmental concerns against development and equity considerations.

Several papers have examined the firm-level impacts of environmental regulations (Berman

and Bui (2001); Greenstone, List, and Syverson (2012); Harrison, Hyman, Martin, and Nataraj

(2019); He, Wang, and Zhang (2020); Kala and Gechter (2023)). There is mixed evidence on

the impact on outcomes such as productivity (Duflo, Greenstone, Pande, and Ryan (2013);

Kalmenovitz and Chen (2021); Kala and Gechter (2023)) and financial performance (Lenox and

Eesley (2009); Servaes and Tamayo (2013); Fan, Zivin, Kou, Liu, and Wang (2019);Naaraayanan,

Sachdeva, and Sharma (2021)). Our evidence suggests that firms reorganize their production pro-

cesses by adjusting inputs and outputs to maintain profitability and productivity. However, this

conceals significant heterogeneity. Less regulated and smaller firms, on average, make abatement

investments and display higher productivity. By contrast, more regulated and larger firms re-

spond by adjusting their energy inputs and product portfolios away from coal. Because we have

uniquely comprehensive data on production responses, we can document firms’ margins of ad-
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justment when they reduce their emissions and accurately trace who bears the disproportionate

costs of regulation.

More broadly, our study contributes to the literature on how firms impact the environment.3

Extant research has highlighted the importance of the nature of ownership (Dimson, Karakaş,

and Li (2015); Krueger, Sautner, and Starks (2020); Naaraayanan, Sachdeva, and Sharma (2021);

Dimson, Karakaş, and Li (2021); Azar, Duro, Kadach, and Ormazabal (2021); Atta-Darkua, Gloss-

ner, Krueger, and Matos (2023); Ilhan, Krueger, Sautner, and Starks (2023); Berg, Ma, and Stre-

itz (2023)), disclosures (Jouvenot and Krueger (2019); Tomar (2023); Bonetti, Leuz, and Miche-

lon (2023)), financial institutions (Kacperczyk and Peydró (2022); De Haas (2023); De Haas and

Popov (2023); Ivanov, Kruttli, and Watugala (2023)), and self-commitments (Dahlmann, Branicki,

and Brammer (2019); Freiberg, Grewal, and Serafeim (2021); Comello, Reichelstein, and Reichel-

stein (2021); Duchin, Gao, and Xu (2022); Bolton and Kacperczyk (2023)). Our contribution lies

in documenting how production responses to environmental regulation shape the environmen-

tal profile of firms while highlighting the mechanisms behind firms’ trade-offs when balancing

emission reduction with economic impacts.

While our focus is on India due to the availability of granular data and quasi-natural ex-

perimental variation, our results have implications for other contexts considering emissions re-

ductions in industrial clusters. For example, the World Economic Forum recently launched a

global initiative aiming to reduce heavy industry asset emissions in regional industrial zones

(World Economic Forum, 2023).4 Notably, these industrial clusters account for a significant frac-

tion of global CO2 emissions, making them a target for emission reductions worldwide. Our

study suggests that regulating industrial clusters by capping their emissions may effectively

achieve net-zero targets but that such a regulation will likely impede economic competitiveness

by dampening industrial clusters’ agglomeration benefits.

3In contrast to a literature analyzing the implications of investors’ green preferences on asset prices (see, e.g.,
Heinkel, Kraus, and Zechner (2001); Chowdhry, Davies, and Waters (2018); Pástor, Stambaugh, and Taylor (2021);
Pedersen, Fitzgibbons, and Pomorski (2021); Berk and Van Binsbergen (2021); Bolton and Kacperczyk (2021); Broc-
cardo, Hart, and Zingales (2022); Zerbib (2022); Oehmke and Opp (2023); and De Angelis, Tankov, and Zerbib (2023).

4Nine leading industrial clusters in China, Indonesia, Japan, Spain, and the United States have joined the World
Economic Forum initiative, ”Transitioning Industrial Clusters towards Net Zero,” to help industries reduce emissions.
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1 Institutional Background

This paper focuses on a regulation in India targeting pollution from industrial clusters—dense

concentrations of firms associated with positive productivity and innovation spillovers. The

principal national regulator, CPCB, implemented a regulation in 2009 to curb emissions and

their health impacts. They developed a Comprehensive Environmental Pollution Index (CEPI)

that identified 88 prominent industrial clusters in consultation with the Ministry of Environ-

ment, Forest and Climate Change (MoEF&CC). To arrive at the index values, they conducted a

comprehensive environmental analysis and data-gathering effort in these clusters through rec-

ognized environmental laboratories. Through the analysis, the CPCB developed an index that

takes a value between 0 and 100, to characterize the environmental quality at a given location.

The CEPI combined proxies for (i) the amount and toxicity of pollutants, (ii) the potential impact

of that pollution on humans and ecosystems, and (iii) an assessment of the quality of actions

already taken by cluster firms to capture or adequately dispose of emissions. Figure 1 describes

the construction of the CEPI. See Central Pollution Control Board of India (2009) for a complete

discussion of the components and construction of the CEPI.

[PLACE FIGURE 1 HERE.]

The CPCB used these index values to enforce improvements in environmental quality in these

clusters based on whether the values exceeded pre-defined thresholds. In our empirical setting,

we exploit the resulting discontinuities in enforcement intensity, both within and across industrial

clusters. Specifically, the CPCB classified those clusters with a CEPI at or above 60 and below

70 as “Severely Polluted Areas” (henceforth, CEPI[60,70)). These clusters were subject to central

monitoring and involved installation of online continuous emission/effluent monitoring systems

in these clusters combined with in-person quarterly audits. Further, they classified industrial

clusters with a CEPI value of at least 70 as “Critically Polluted Areas” (henceforth, CEPI[70,100]).

Firms within these clusters were subject to the same monitoring treatment as CEPI[60,70) clusters.

Moreover, as part of the regulation, the CPCB in partnership with the local environmental

government agencies (State Pollution Control Boards) also mandated remedial plans to be un-

dertaken by firms operating within the clusters, detailing the actions and timelines for improving
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the environmental quality. If a firm failed to comply with the directives of the action plan, then

it would lose its Environmental Clearance and Consent to Operate permits that allow firms to

function within the formal economy.5 Moreover, Consent to Establish permits could not be is-

sued to new operations if they do not fully comply with the cluster regulations and action plans.

Of the 88 industrial clusters subject to the regulation in 2009, 43 industrial clusters in 17 states

had a CEPI value of 70 or above. A further 32 industrial clusters had a CEPI value between 60

and below 70.

A prominent concern among policymakers and academics relates to the lax enforcement of

environmental regulations driven by concerns about limited institutional and governance capac-

ity (Duflo, Greenstone, Pande, and Ryan, 2013, 2018; Greenstone, Pande, Sudarshan, and Ryan,

2022).6 We present evidence that, in our setting, these have a limited role. First, we rely on CPCB

audits that updated the CEPI values twice in the following five years to assess the effectiveness

of the action plans.7 We hand-collected the results of this follow-up monitoring that recalcu-

lated the CEPI for the CEPI[70,100] clusters (according to the 2009 ranking) in 2011 and 2013. Our

analyses demonstrate that the CEPI regulation effectively reduced emissions at industrial clus-

ters. The top panel of Figure 2 reproduces the original 2009 CEPI distribution. The vertical line

represents the cutoff at 70. The bottom panel reports the distributions of the recalculated CEPI

values for the 2009 CEPI[70,100] clusters in 2011 and 2013. The distributions shifted to the left in

both follow-up assessments, with significant improvement continuing between 2011 and 2013.

This evidence accords with the CPCB’s narrative of the regulation as part of an ongoing process

of long-term improvement in environment quality at these clusters. We also observe that while

the average cluster improved, several clusters continued to have CEPI values above the cutoffs in

2013, indicating the difficulties of mandating pollution below a certain threshold.

[PLACE FIGURE 2 HERE.]

5All firms, except for those in a few nonpolluting sectors, are required to apply for and receive approval from their
respective State-level Pollution Control Boards (SPCBs). New activities require a permit called Consent to Establish,
while new activities and renewals require one called Consent to Operate (Bhat, 2010; Fenske, Haseeb, and Kala, 2023b;
Kapur and Khosla, 2019).

6Appendix Figure IAB6 presents anecdotal evidence collected from media reports of compliance with actions
plans. the For a detailed discussion on enforcement of environmental regulation in India since the 1980s; see Green-
stone and Hanna (2014); Harrison et al. (2019).

7Treated clusters were monitored continuously and audited quarterly, but the more extensive full re-analysis of
the CEPI value took place at intervals of two years.
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Second, in Section 4, we document a significant reduction in cluster-level air emissions us-

ing satellite readings, providing suggestive evidence on the effectiveness of the regulation . In

Section 5, we show that firms alter their production decisions to reduce their product-level CO2

emissions.

The analysis of action plans sheds further light on their key role in overcoming constraints

and improving environmental quality at these clusters. Notably, the remedial action plans man-

dated by the regulator clearly identified specific actions and provided time frames for completion.

Further, they also indicated cost estimates for undertaking these actions and allocated the cost

between firms, industry associations, and local governments. Typically, the costs for larger in-

vestments, such as a common effluent treatment plant (CETP) shared by several firms within the

cluster, was borne by the local government and regulator, while costs for smaller investments,

such as installation of scrubbers, was borne either by specific firms and or by industry asso-

ciations. Furthermore, small- and medium-sized enterprises within the targeted clusters were

offered grants and subsidies to undertake investments. Online Appendix B provides additional

details and examples of CPCB monitoring efforts including specifics of action plans.

Finally, we utilize an additional source of variation in pre-existing enforcement intensity of

environmental regulation while conditioning on the cluster-level treatment assignment. This

allows us to better understand within-cluster dynamics. Specifically, we rely on MoEF&CC des-

ignated industries as “highly polluting” (HPI). Firms in these industries were subject to stricter

monitoring standards in 2003 (see, Harrison, Martin, and Nataraj (2017), for detailed discus-

sions).8 Thus, our empirical strategy exploiting the within-cluster variation in enforcement allow

us to control for differences in enforcement across clusters while providing suggestive evidence

on which firms win and lose from the regulation.

2 Data and Summary Statistics

2.1 Data
8The specific industries include aluminum, copper, iron and steel, and zinc smelting. Also included are the

production of chlor-alkali, cement, dyes, fertilizer, pesticides, petrochemicals, pharmaceuticals, sugar, and pulp and
paper, as well as tanneries, distilleries, oil refineries, and thermal power plants.
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Policy Data. We hand-collected data on the 2009 regulation from policy documents published

by the CPCB. These include cluster-level CEPI values and their corresponding component values

broken down by medium (air, water, and land). Additionally, we hand-collected data from two

follow-up rounds of monitoring by the CPCB in 2011 and 2013 in clusters with a 2009 CEPI value

at or above 70. This data also includes information on the institutional details, monitoring, and

enforcement mechanisms of the regulation. See Online Appendix B for more details.

Industrial Clusters. We hand-collected the location of the near universe of industrial clusters

in 2009 from the CPCB. We compile a dataset of more than 2,000 clusters by name and location.

As industrial clusters are a dense agglomeration of SMEs, we map them to the most granular

regional unit available across different datasets. Specifically, we standardize the cluster names,

extract their geolocation from Google API, and match them to PIN codes and cities.9 For our

primary analyses that uses firm-level data, city is the most granular regional unit, and hence we

aggregate CEPI values to the city level by assigning each city the maximum index value among

all the industrial clusters within it. Through this procedure, we can match 61 of the 88 industrial

clusters for which the CPCB released data on the CEPI. Overall, the firms in our sample represent

a significant share of economic activity, producing over 70% of output between 2005 and 2015.

Emissions Datasets. To measure cluster-level changes in air emissions, we rely on the Emis-

sion Database for Global Atmospheric Research (EDGAR). EDGAR is a comprehensive global

database that documents human-caused emissions of greenhouse gases and other pollutants. We

use the highest resolution data available: emissions measured in 0.1° × 0.1° grids at a monthly

frequency. This data presents several advantages for assessing emissions impact. First, EDGAR’s

figures are derived independently, using consistent international statistics and an established

IPCC methodology.10 Second, the data provide emissions data for various distinct emissions

9We match the location of industrial clusters to the more granular PIN code level in the business registration
dataset. In India, a PIN code, which stands for Postal Index Number code, is a numerical code used by the postal
system to facilitate the sorting and delivery of mail. PIN codes are employed to specify precise locations for mail
delivery. On average, a single post office serves an area of approximately 21 square kilometers and a population of
around 10,000.

10See https://edgar.jrc.ec.europa.eu/ and Crippa, Guizzardi, Muntean, Schaaf, and Oreggioni (2019); Crippa, So-
lazzo, Huang, Guizzardi, Koffi, Muntean, Schieberle, Friedrich, and Janssens-Maenhout (2020); European Commis-
sion, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL) (2020) for more informa-
tion.
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separately. We use emissions data for nitrous oxide (NOx), particulate matter less than 2.5 µm in

diameter (PM2.5), and particulate matter less than 10 µm in diameter (PM10). Finally, the data

are adjusted to separate emissions from industrial activities from other sources such as fires. This

separation allows us to focus exclusively on emissions from industrial sources. These features of

the EDGAR dataset make it well suited for studying changes in emissions, a substantial limita-

tion in prior research on environmental regulations in emerging markets (Greenstone and Jack,

2015).

We link emissions from EDGAR to exact locations of clusters identified from the policy docu-

ments. This involves two main steps. First, we define the area around each plant as a circle with

a 5-kilometer radius, creating what we refer to as a ‘footprint.’ This concise footprint ensures that

we attribute changes in air emissions to firms operating within distinct industrial clusters. Sec-

ond, we apportion the monthly measurements from the grid to this footprint. If a footprint spans

multiple grid cells, we calculate the pollution using a weighted average based on the respective

land area of those cells. See Online Appendix C for more details.

We supplement these analyses with data on fine particulate matter (PM2.5) from Van Donke-

laar, Martin, Spurr, and Burnett (2015). These data are constructed by combining aerosol optical

depth (AOD) data from several satellite sources and then calibrating the readings to pollution

monitor data using a geographically weighted regression (GWR). The data are available monthly

at the spatial resolution of 1km × 1km.

Firm Financials. We use firm- and product-level data from Prowess, a database maintained by

the Centre for Monitoring the Indian Economy (CMIE). Several prior studies on Indian firms

have used this dataset, including Bertrand, Mehta, and Mullainathan (2002); Gopalan, Nanda,

and Seru (2007); Lilienfeld-Toal, Mookherjee, and Visaria (2012); Gopalan, Mukherjee, and Singh

(2016); Naaraayanan and Nielsen (2021); and Naaraayanan and Wolfenzon (2023). We extract

data from the latest vintage of Prowess, which is free from survivorship bias, as highlighted by

Siegel and Choudhury (2012).

The CMIE gathers data from balance sheets and income statements for approximately 37,000

publicly listed and private firms. The covered firms account for more than 70% of the industrial

output, 75% of corporate taxes, and over 95% of excise taxes collected by the government of
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India and are representative of large and medium-sized firms in India (Bau and Matray, 2023).11

Moreover, in addition to headline firm financial statements, the data also captures firm abatement

expenditures, a proxy to measure one of the key levers that the regulation used to combat cluster

emissions. Therefore, the data is particularly useful for examining how firms adjust over time in

response to environmental regulations.

Product-level Inputs and Outputs. To shed light on within-firm decisions, we use detailed

product-level data made available due to mandatory disclosure requirements set out in the Com-

panies Act of 1956, and subsequently the Companies Act of 2013. On the output side, the dataset

captures total sales and total quantity sold at the firm-product level, allowing us to compute unit

prices and quantities. In addition, it provides information on capacities, production, and sales

from company annual reports (see Goldberg, Khandelwal, Pavcnik, and Topalova (2010) and Bau

and Matray (2023) for more details).12 We construct a panel of product-level output and prices,

with unit-level prices for each product defined as the total unit sales over total unit quantity.

On the input side, Prowess captures product-wise energy consumption reported in company

annual reports.13 The data are at the firm-product-year-energy-source level and are expressed in

energy input units per reported production unit. We transform energy input into CO2 output by

making assumptions about each energy source’s energy content and CO2 output. We calculate

tonnes of CO2 emitted per reported production unit for each firm-product-year-energy-source

and collapse to the firm-product-year level across energy sources (see Online Appendix D for

more details). To our knowledge, no other data source offers comparable granularity and scope

11It is worth considering how alternative datasets compare to Prowess. Most prominently, prior research on India
has used the Annual Survey of Industries (ASI) to examine impact of reforms on the manufacturing sector. Most
notably, Prowess is a firm-level panel dataset whereas ASI is an establishment-level dataset which surveys a repeated
cross-section of 30,000 establishments per year (Martin, 2011; Sivadasan, 2009) Moreover, ASI is limited in terms of
panel coverage, making it particularly ill suited for studying within-firm responses to environmental regulations.

12The Companies Act does not mandate or specify the units for reporting, leading to a lack of standardization both
across and within firms over time. Therefore, we standardize units within and across firms and drop observations in
instances there is insufficient information to reconcile changes in unit types within a firm-product over time.

13Sub-section (1), clause (e) of section 217 within the Companies Act of 1956 stipulates that all companies are
obligated to report their total energy consumption in a specified format. Nevertheless, there is no legal requirement for
companies to disclose their product-specific energy consumption per production unit. Consequently, one limitation
of the analysis on changes in product-level energy consumption is that firms can decide whether to disclose this
information. Not all firms choose to do so. In Online Appendix D, we explore the representativeness of this data.
Importantly, we observe in our data that when a firm initiates the reporting of product-level energy inputs, it typically
does so consistently throughout the entire period. Moreover, we find that there is a reduction in the probability
of filing energy inputs at all in the post-regulation period but no discontinuity in this probability at the treatment
thresholds.
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to understand the intersection of firm production and energy consumption.

Plant Announcements. We use data on new and abandoned plant announcements from the

CapEx database maintained by CMIE. This dataset contains information on all new and aban-

doned plants announced in India since 1990. Specifically, it provides information on the project

announcement date, location, ownership, cost, and industry classification. CMIE obtains the data

from multiple sources, including annual reports, news articles, and government press releases.

The database is updated daily and contains information on the entire project life cycle whenever

information is available. Typically, projects costing more than INR 100 million (approximately

USD 2 million) are included in the database (Alok and Ayyagari, 2020; Naaraayanan and Wolfen-

zon, 2023).

Other Data Sources. We use the near-universe of firm registrations from the Ministry of Cor-

porate Affairs (MCA), allowing us to track business formation across all formal firms in the

economy. Furthermore, we use data from the 2001 Population Census to examine whether ob-

servables differ significantly in treated and control clusters around the CEPI value treatment

thresholds and to test the assumption that the CEPI thresholds are economically meaningful to

firms because of the 2009 regulation and not because they correspond to other policy or econom-

ically relevant thresholds. Finally, we convert the data into real values using the capital deflator

series from the Ministry of Statistics and Programme Implementation (MOSPI).

2.2 Final Sample and Summary Statistics

Our primary focus is understanding the impact of regulation targeting pollution from industrial

clusters, which feature dense agglomeration of manufacturing firms. Our estimation sample,

therefore, comprises manufacturing firms located in the 61 clusters for which we have a CEPI

value. We focus on a five-year window around the 2009 regulation. Moreover, as we aim to

study the within firm response to the regulation, we focus on multiproduct firms, allowing us to

better understand different margins of adjustment. These firms represent over 95% of the output

during the sample period.14

14This focus on multiproduct firms is consistent with prior studies (De Loecker, 2011; De Loecker, Goldberg,
Khandelwal, and Pavcnik, 2016; Eckel and Neary, 2010).
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Table 1 presents the descriptive statistics for the sample of manufacturing firms from 2005

to 2015. Included firms are multiproduct manufacturing firms in industrial clusters assigned a

2009 CEPI value. Panel A reports summary statistics at the firm-year level. The average (median)

firm has 3.5 (0.6) million INR in total assets and 3.3 (0.8) million INR in total sales.15 The

sample firms are, on average, moderately indebted, with average (median) leverage ratios (bank

borrowing scaled by total assets) of 0.27 (0.25). The average (median) company exports, deriving

16.3% (1.6%) of its total sales from exports of goods. The average (median) firm produces 3 (2)

distinct products a year.16 The average (median) firm is also moderately profitable, reporting 11%

(10%) of the value of year-before sales in new earnings before interest, taxes, depreciation, and

amortization. Focusing on the listed firms in our sample, the average (median) market-to-book

ratio is 0.88 (0.41).

[PLACE TABLE 1 HERE.]

Panel B of Table 1 describes the product-year-level panel dataset. Our dataset has 1,178

unique products, and a single firm can produce multiple types of products. The overall picture

is of significant heterogeneity in operations. Product profit margins—defined as (unit price - unit

cost) / unit price—tell us that the average (median) firm-product earns 0.01 (0.14) INR per unit

produced. This granular evidence is consistent with the firm-level profitability distribution. Fi-

nally, the distribution of product sales, cost, and price are all highly skewed, as is the distribution

of unit-level CO2 emissions, calculated for those firms that report product-level energy inputs.

Overall, the panel of manufacturing firms involves a broad cross-section of firms and is consistent

with industrial clusters composed of a few large firms and many medium-sized ones.

3 Empirical Strategy

To study the effects of environmental regulations, we rely on two main sources of variation. Our

main analysis exploits cross-sectional variation in enforcement around the implementation of

the regulation in 2009. As described in Section 1, firms in clusters just to the left of the CEPI

15As of March 2009, 1 USD was equivalent to 50.61 INR.
16Note that we drop firms that produce one product throughout the sample but not firms that switch between

being single- and multi-product producers, so that we preserve variation from the extensive margin.
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value of 60 faced no sanctions, while those in clusters with CEPI just to the right of 60 were

subject to heightened emissions monitoring. Further, those firms located in clusters to the right

of the second CEPI treatment threshold at 70 were mandated to take targeted steps through the

implementation of remedial action plans.

The resulting discontinuities emanating from implementation of the regulation naturally

lends itself to a difference-in-discontinuities (DiRD) research design. We take as given the regu-

latory implementation across clusters and exploit the treatment discontinuity at the CEPI value

of 60. This empirical design allows us to difference out the effect of any potential pre-existing

discontinuity at the treatment cutoff, and, by focusing on the variation at the threshold, and

circumvents concerns often associated with the difference-in-differences approach, where con-

trol firms might not serve as an appropriate counterfactual for treated firms.17 Specifically, we

estimate:

Ykijcst = β1Postt × CEPI[60,70)
c + β2Postt × CEPI[70,100]

c +

+β3CEPIc + β4Postt + γi + κjst + ϵkijcst, (1)

where k, i, j, c, s, and t represent a product, firm, industry, city, state, and year, respectively.

Our running variable, CEPIc, is the pollution index value, defined at the city level as described

in Section 2. We assign firms to industrial clusters based on their headquarters city as of the

2009 regulation.18 Specifically, CEPI[70,100] takes the value 1 if the city has a maximum industrial

cluster CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the city

has a maximum industrial cluster CEPI value greater than or equal to 60 and below 70, and

zero otherwise. The omitted category includes firms whose city has a maximum industrial

cluster CEPI value below 60. Including both CEPI[70,100]
c and CEPI[60,70)

c group indicators captures

17An additional concern with the difference-in-differences approach could be that in the presence of spillovers,
whereby firms may relocate their operations in responding to the regulations, comparing firms in targeted and untar-
geted clusters likely violates the Stable Unit Treatment Value Assumption (SUTVA).

18As mentioned in Section 2.1, we map hand-collected information on names and location to the most granular
location observed in our dataset, firm headquarter city. Specifically, we aggregate CEPI values to the city level by
assigning each city the maximum index value among all the industrial clusters within it. This procedure represents
our most refined approach for treatment assignment. However, it may result in the misclassification of some firms
by labeling them as ’treated’ when they are actually ‘control,’ and vice versa. However, such misclassification likely
biases our estimates against finding any effect by narrowing the estimated difference between outcomes in the two
treatment groups. Moreover, we provide evidence below that the identification assumptions are satisfied, which likely
mitigates other sources of bias.
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differences in treatment intensities for firms located in cities where the maximum CEPI value is

greater than or equal to 70.19

The variable Postt is an indicator variable taking the value 1 for all years after and including

2009, the year in which the CEPI regulation was implemented. Finally, the granularity of the

data allows us to address concerns about location-specific and industry-specific effects that may

differentially affect firms’ production and emission decisions using the empirical specification.

Specifically, we include firm fixed effects (γi) to control for unobserved time-invariant firm char-

acteristics.20 We include state-by-industry-by-year fixed effects (κjst) to control for time-varying

industry shocks within the same state. The stringency of these fixed effects allows us to rule

out several location- and industry-specific concerns such as technical innovation and regulation,

which vary considerably over states and industries. We cluster standard errors at the cluster

level, the level at which we define treatment (Abadie, Athey, Imbens, and Wooldridge, 2017;

Bertrand, Duflo, and Mullainathan, 2004; Roberts and Whited, 2013).

The DiRD coefficient of interest is, β1, that quantifies the effect of being located in a cluster

with a CEPI value of at least 60 on the outcome Yijcst relative to the effect of being located in

a cluster to the left of the cutoff with a CEPI value below 60, while controlling for additional

treatment from being in a cluster subject to a remedial action plan (Post ×CEPI[70,100]). Note that

the β2 quantifies the regulation’s effect on firms located in clusters with CEPI values above 70

relative to firms located in clusters with values below 60. An advantage of including these firms

in our specification is that it allows us to shed additional insight on whether the treatment effects

predominantly relate to the extensive margin of treatment (crossing the 60 CEPI threshold) or to

the intensity of treatment, which incurs additional regulation and consequences (crossing the 70

CEPI threshold).

In a second specification, we recover the average treatment effect using a difference-in-

differences (DiD) specification, that combines the regulatory thresholds without distinguishing

between them. This specification estimates the average treatment effect for all firms located in

clusters with a CEPI value of at least 60, allowing us to generalize the results beyond the local

19In the final sample, there are 33 cities with a maximum CEPI value greater than or equal to 70 in 2009 and an
additional 20 cities with a maximum 2009 CEPI value greater than or equal to 60 and below 70.

20Note that the main effect of CEPIc, which is invariant within a firm, drops out with the inclusion of the firm fixed
effects, while the main effect of Postt drops out with the inclusion of state-by-industry-by-year fixed effects.

16



treatment effects identified by the DiRD specification. Note that as a matter of deliberate choice,

the DiD specification still only includes all firms located in the industrial clusters identified by

the regulation. This is to avoid selection issues emanating from differences between firms lo-

cated in targeted and untargeted industrial clusters. Specifically, we estimate the following DiD

empirical specification:

Ykijcst = δ1Postt × CEPI[60,100]
c + δ2CEPIc + δ3Postt + γi + κjst + ϵkijcst, (2)

where, as before, k, i, j, c, s, and t represent a product, firm, industry, city, state, and year,

respectively. The coefficient of interest is, δ1, that quantifies the average effect of being located

in a cluster with a CEPI value of at least 60 on the outcome Yijcst relative to the effect of being

located in a cluster to the left of the cutoff with a CEPI value below 60. As before, we include the

same set of fixed effects.

Implementing both specifications serves two purposes. First, the DiD estimates helps evaluate

the generalizability of the discontinuity analyses while allowing us to check for identification

assumptions. Second, from a policy design perspective, it allows us to evaluate differential

effects between being assigned to monitoring versus the more hands-on remedial action plan

treatment.

As the second source of variation, we exploit industry-level variation in pre-existing regu-

latory burden and compliance costs. We exploit an intra-cluster source of treatment variation

from the institutional detail that treatment affected firms in “highly polluting industries” more

intensely than firms in other industries located within the same cluster. To do so, we estimate

the following empirical specification:

Ykijcst = ω1Postt × CEPI[60,100]
c + ω2Postt × CEPI[60,100]

c × High-Pollutingj +

ω3CEPIc + ω4Postt + ω5High-Pollutingj + γi + κjst + ϵkijcst (3)

In other words, we interact treatment indicators CEPI[60,100]
c in Equation 2 with High-Pollutingj.

High-Pollutingj is equal to 1 if the firm’s main industry in 2008 was one of the 17 industries con-

sidered highly polluting industries by the CPCB, and zero otherwise. See Section 1 for further
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details about this classification and how it interacts with treatment intensity. As before, we in-

clude the same set of fixed effects and cluster standard errors at the cluster-level.

3.1 Identification Assumptions

The key identification assumptions of DiRD are pre-trends evolve in parallel and that potential

outcomes are smooth around the cutoffs. While the parallel trends assumption is fundamentally

untestable, we present several pieces of evidence in support of it. Moreover, the latter assumption

requires that firms do not perfectly manipulate the policy thresholds used to assign treatment

and control groups and that the thresholds are not economically important for reasons other than

treatment assignment (Grembi, Nannicini, and Troiano, 2016).

Across several tests, we provide evidence supporting these assumptions. Specifically, we

graphically show similar trends for treatment- and control-group firms across key outcomes in

the pre-regulation period. Furthermore, we present evidence of no manipulation of the CEPI

value by industrial clusters, no discontinuity in firm-, product-, and cluster-level characteristics

at the CEPI thresholds before the regulation.

First, we begin by testing the assumption that industrial clusters could not influence their

position around the thresholds at 60 and 70 by manipulating their CEPI values, our running

variable. This is a crucial identification assumption because it underpins our ability to assume

that firms whose industrial clusters have pollution rankings on opposite sides of the cutoffs are

otherwise comparable. We test for ranking manipulation around the cutoffs at the industrial-

cluster level in 2009.

As a summary test, we combine the CEPI thresholds of 60 and 70 into one variable through

a normalized measure of CEPI value, which we create by subtracting the closest threshold from

each cluster’s CEPI value.21 Specifically, we fit the distribution of the ranking variable on either

side of the pooled cutoffs and then test whether those distributions differ statistically (McCrary,

2008). Figure 3 reports the results for the pooled sample.

[PLACE FIGURE 3 HERE.]

21We have limited observations in the cluster to the left of the CEPI threshold at 60. As a result, we do not have
enough power to examine the two cutoffs separately. Hence, to be consistent, we present results with normalized
thresholds throughout these tests.
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We do not find evidence of bunching around the cutoffs, and the p-value from a two-sided

test is 0.58. Thus, we fail to reject the null hypothesis of no manipulation of the CEPI ranking.

A remaining concern is that omitted variables affect the composition of industrial clusters. We

assuage these concerns in Section 6.6, where we document no evidence of changes in mergers

and acquisitions activity, leading firms to exit the industrial clusters in response to the stringent

environmental regulations.

Second, in Figure 4, we present the geographical variation in the industrial clusters selected

by the CPCB for the environmental assessment relative to the location of all industrial clusters as

of 2009 (gray dots). We find that the industrial clusters targeted by the CPCB are representative

of clusters in general, with above- and below-threshold clusters coming from geographically

proximate regions within each state.

[PLACE FIGURE 4 HERE.]

Next, we test the identifying assumption that there are no discontinuous jumps in our key

outcomes and firm- and product-level characteristics at these thresholds in the pre-regulation

year.22 The intuition is that if we observe discontinuities around the thresholds even before the

CPCB evaluation, then it is likely that some other policy differentially affected firms at these

cutoffs, making it hard to isolate the effect of the environmental regulation from these other

policies.

[PLACE FIGURE 5 HERE.]

Figure 5 presents the scatter plots of means of several firm-level covariates, defined as of

2008, by different bins (each of size 1) around the pooled threshold. We normalize the thresholds

to zero by subtracting off their respective threshold values from the CEPI value of the industrial

cluster. We find no evidence of discontinuities in baseline covariates. The characteristics we

examine include total assets, total sales, leverage, exporting intensity, investment, wage bill, and

market capitalization (for listed firms). Panel A of Table 2 demonstrates that none of these

characteristics are statistically different across the cutoffs even in a regression setting.

22This is analogous to the regression discontinuity assumption that potential outcomes are smooth around the
cutoffs.
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[PLACE TABLE 2 HERE.]

Similarly, Figure 6 tests for discontinuities at the pooled thresholds for product-level covari-

ates defined as of 2008. Again, we see no significant discontinuous jumps in the product char-

acteristics. Panel B of Table 2 reports the associated average differences of products of firms in

industrial clusters with CEPI values below versus above the threshold and the coefficient and as-

sociated p-value of the regression discontinuity specification at the threshold between CEPI[60,70)

and CEPI[70,100] cluster status. There is no significant jump, both statistically and economically.

[PLACE FIGURE 6 HERE.]

Lastly, in Online Appendix Table IAA1, we examine whether there are discontinuous jumps

in cluster-level covariates defined as of 2008, taken from the Population Census conducted in

2001, and Harari (2020). As before, we see no evidence of significant ex-ante discontinuities in

various proxies for economic activity—both demand and supply for goods—and determinants

of pollution extent and its impact.

The preponderance of evidence thus suggests that the treatment thresholds do not proxy

for pre-existing differences in policies that affected firms in the same way as the environmental

regulation. Furthermore, they alleviate concerns that firms in the control group are not a valid

counterfactual for treated firms, thereby allowing us to cleanly identify the effect of environmen-

tal regulations.

4 Changes in Cluster-Level Air Emissions

At the industrial cluster level, our primary outcome of interest is emissions from industrial ac-

tivities within the clusters. As discussed in Section 2, we extract emissions data, measured in

milligrams per month within a spatial resolution of 0.1°x 0.1°, from the EDGAR dataset. We

build a monthly panel of emissions from industrial activity split by the type of pollutant at

the cluster-address level and estimate the following event study difference-in-differences (DiD)
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specification:

Emissionspcst = ∑
k∈{−4,−2}

βkDk × CEPI[60,100]
c + ∑

k∈{0,6}
βkDk × CEPI[60,100]

c +

CEPIc + γcp + γpst + ϵpcst (4)

where p is pollutant, c is cluster, s is state, and t is year-month. Figure 7 plots the estimated

coefficients (βk) normalized to the fiscal year of 2008 and their corresponding 95% confidence

intervals, comparing the evolution of emissions in treated clusters relative to others. The vertical

gray dotted line indicates the regulation year of 2009. Standard errors are clustered the address

level.

[PLACE FIGURE 7 HERE.]

As evident from Panel (a) of Figure 7, there are no differential pre-trends in the average emis-

sions from industrial activities between treated and control clusters, suggesting that targeting by

regulators did not, on average, coincide with the differential improvement in air quality.23 These

parallel pre-trends support the DiRD identification assumption that outcomes of the treated and

control groups would have evolved similarly in the absence of treatment, locally around the

thresholds. Moreover, in the post-regulation period, there is an immediate and persistent de-

crease in the average emissions levels within treated clusters. In Panel (b) of Figure 7, we find

a significant decrease in PM2.5 emissions. Note that the relatively large decrease suggests that

post-regulation emission levels in treated clusters, which had higher levels to begin with in the

pre-regulation period, become similar to emission levels in clusters with a CEPI value below 60.

[PLACE TABLE 3 HERE.]

Table 3 presents these results in a regression framework. Column 1 combines all pollutants

into a single regression and accounts for their differential impact by including high-dimensional

fixed effects. These fixed effects interact cluster and state×year-month fixed effects with the

specific pollutant type. Consistent with Figure 7, we find a statistically significant decrease in

relative emission levels for treated clusters compared with industrial clusters having a CEPI value

23For this analysis, we pool emissions data across following pollutants: NOx (nitrogen oxides), PM2.5, and PM10.
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below 60. In terms of the economic magnitude of β1, clusters with CEPI pollution index values

just to the right of 60 have 7.232 mg per month lower pollution, representing a 31.3% decrease

relative to the pre-treatment average total pollution of clusters with CEPI just less than 60 of

23.09 mg per month. Note that this effect is relative to the cluster’s own mean and controls for

state-year-month trends in pollution, such as from production seasonality.

From the table, we see that the treatment effect is statistically indistinguishable in clusters

with 2009 CEPI value of at least 70 and in clusters with values between 60 and 70. This suggests

that continuous monitoring by regulators led to the immediate reduction in emissions, while

action plans are likely more effective in the longer-term.24 This immediate reduction is also con-

sistent with the dynamics of the effect we presented in Figure 7, which showed an immediate and

significant reduction in emissions. Lastly, the average treatment effect from the DiD specification

is similar in magnitude to the DiRD estimate, again suggestive of the role played by continuous

monitoring.

In the remaining columns of Table 3, we separate the estimates by different type of pollutants.

We chose the pollutants highlighted in the section of the action plans devoted to air emissions.

Across the columns, we find a similar decrease across different hazardous air pollutants.

Moreover, in Online Appendix Table IAA2, we supplement these analyses using satellite data

on measurements of fine particulate matter (PM2.5) at a granular level (Van Donkelaar, Martin,

Spurr, and Burnett, 2015). These data are constructed by combining aerosol optical depth (AOD)

data from several satellite sources and then calibrating to pollution monitor data using a geo-

graphically weighted regression (GWR). The data are available monthly at the 1km × 1km reso-

lution. As before, we build a monthly panel and find a statistically significant decrease in relative

emission levels for treated industrial clusters in a five-kilometer and 500-meter radius around the

center of each cluster. In terms of economic magnitude, relative to the pre-regulation mean in the

control group, this change represents a 4.0% decrease, significant at the 95% confidence level.25

Finally, to rule out concerns regarding unobserved time-varying trends drive these results,

24As we note in Online Appendix B, finalizing the action plans took up to a year and these typically mandated the
implementation with timelines varying up to three years.

25The differences in economic magnitude relative to the results presented in Table 3 are likely an artifact of the low
correlation between PM2.5 readings across the two datasets (ρ = -0.06). These differences could arise from variations
in calibration methods, differences in spatial resolution, and the level of industrial activity captured. We believe that,
given the low correlation, both data sources provide orthogonal measurements that help establish a robust reduction
in emission levels in response to the CPCB regulation.
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we conduct a placebo test on emissions from energy producers. The key idea is that these energy

producers are subject to similar seasonality and economic fluctuations but were not targeted by

the regulation. Online Appendix IAA3 presents results from such an exercise. Reassuringly, we

do not find any change, in terms of both economic magnitude and statistical significance, in these

emissions, suggesting that (unobserved) time-varying trends do not explain the lower emissions.

Overall, the results suggest that firms targeted by the regulation lowered their emissions,

with a larger reduction observed among firms in clusters subject to higher treatment intensity.

5 Lower Emissions: Greening Production & Abatement Investments

In this section, we shed light on the drivers behind aggregate reduction in emissions and doc-

ument operational response by firms. We begin by analyzing the granular product-level data.

Specifically, we focus on the input side in Section 5.1 and analyze product-level energy con-

sumption and changes in estimated carbon emissions. Subsequently, in Section 5.2, we focus

on abatement expenditures reported in annual financial statements and provide supplementary

evidence from annual reports on the specific actions undertaken by firms.

5.1 Energy Inputs

In this subsection, we focus on the sample of manufacturing firms that reported energy inputs

at the product level. We begin by documenting that their estimated CO2 emissions at the prod-

uct level also decrease, consistent with the results from the previous section on lower aggregate

cluster-level emissions. Notably, we show that firms reduce emissions by changing their energy

inputs i.e., reduce their reliance on coal and shift from purchasing rather than producing electric-

ity. Further, we document that firms shift manufacturing output towards less carbon-intensive

products.

Table 4 reports within-firm changes in firm-level energy inputs around the regulation. In

column 1, the outcome is the natural logarithm of INR value of product-level energy inputs. We

see that the average treated firm reduces their expenditures on energy, controlling for the quantity

of the product they produced in the same year. The average treated firm in a cluster with CEPI

value just to the right of 60 reducing its energy inputs significantly relative to the average firm
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in a cluster with a CEPI value just to the left of 60. The estimate suggests that treated firms

reduced their energy inputs to the average product by approximately 63% on an annual basis.

Relative to the 2008 average energy expenditure of 8.906 million INR per product, this represents

a reduction of about 5.6 million INR on the average product, equivalent to a reduction of about

124,740 in 2008 U.S. dollars.

[PLACE TABLE 4 HERE.]

Coal is the primary energy input in our data and a key source of industrial cluster air emis-

sions. In column 2 of Table 4, we test for the use of coal by firms in treated relative to control

clusters. We find a considerable decrease of 29% in the use of coal as a product input in firms

in CEPI[60,70) clusters relative to firms in clusters with CEPI just to the left of 60. This represents

a drop from 17% of inputs to 10% of inputs for the average product, relative to the 2008 control

use of coal as an input per product.

Treated firms, on average, reduced energy use per product relative to control firms. One

mechanism for this reduction was reducing dependence on coal as an energy input.26 Further,

column 3 of Table 4 indicates that firms shift from producing electricity to purchasing it. Specifi-

cally, the average treated firm located in the cluster right above 60 relative to firms located right

below 60, increases the proportion of energy that they purchase from the electrical grid by 19.6

percentage points.27

Next, Table 5 tests whether product-level CO2 emissions decrease with the energy input

changes. We transform energy input into CO2 output by making assumptions about each energy

source’s energy content and CO2 output.28 We then calculate tonnes of CO2 emitted per reported

production unit for each firm-product-year-energy-source and collapse to the firm-product-year

level across energy sources. The outcome for column 1 is the natural logarithm of the total CO2

emissions of each product-year. The outcome for column 2 is the natural logarithm of the per-

unit CO2 emissions, calculated as the ratio of total annual CO2 emissions and total production

26During the sample period, coal was the primary source of electricity generation, accounting for roughly two-
thirds of total electricity generation in India. At the same time, the share of renewables in electricity generation
remained stable at 20% (calculated using data from International Energy Agency).

27In the data, the majority of firms use electricity. In 2008, the average control firm purchased 46% of the electricity
used to make the typical product and produced the remaining 64% by burning coal, diesel, oil and gas, or biomass,
in that order of frequency.

28See Section 2.1 and Online Appendix D for more details.
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units for the product year. Emissions fall sharply relative to control firms. These findings are

consistent with the cluster-level emissions evidence in Section 4.

[PLACE TABLE 5 HERE.]

Specifically, column 1 of Table 5 reports that product CO2 emissions decrease by approxi-

mately 66% for treated firms in clusters with 2009 CEPI between 60 and below 70 relative to

firms in clusters with CEPI less than 60. Interpreted relative to the 2008 control mean of 162,230

tonnes of CO2 per product-year, this is a reduction of 107 thousand tonnes of CO2. Column 2 of

Table 5 tells a similar story, but this time considering tons of CO2 per reported production unit

(e.g., tonnes of CO2 per tonnes of widgets produced). Here we see a 58.7 average percentage-

point reduction in emissions per unit for firms in CEPI[60,70)
c clusters.

We also examine changes in product-level shifts based on their emissions. Panel (a) of Fig-

ure 8 plots the effect over time on the weight of the treated firm’s portfolio weight on the firm’s

highest-emission product in 2008, relative to control firms. We normalize coefficients to one

period before the regulation. We clearly see that the weight falls, on average, especially after

2011. In other words, firms in treated clusters shift production away from their highest-emission

products.

[PLACE FIGURE 8 HERE.]

Column 3 of Table 5 presents the estimates from a regression analysis. Specifically, we find

that the average firm shifted its product portfolio away from its highest-coal-input product in

2008. While the average control firm weighted its highest-coal-input product at 0.78 in 2008, the

average treated firm in a cluster with a CEPI value of at least 70 reduced that weight by 30.9

percentage points.

5.2 Abatement Expenditures

Next, in addition to changing their energy inputs, firms may also engage in abatement invest-

ment to comply with the regulation.29 To ascertain whether firms in the targeted industrial

29Such investments may involve adoption of new technology, energy-efficiency enhancing strategies such as
retrofitting boilers, process upgrades including installation of scrubbers, or other abatement activities that often re-
quire re-optimizing inputs.
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clusters implemented abatement investments, we rely on expenditures towards pollution control

equipment, as captured in financial statements. This is the best available proxy to measure firm

exposure to regulation-imposed investment mandates because it captures the portion of firm

expenditures that contributes to cluster-wide investment.

Table 6 examines changes in abatement expenditures around the environmental regulations.

We find that firms increase their abatement expenditures, on average, both on the extensive and

the intensive margin. Specifically, column 1 reports the extensive margin response. The outcome

1Abatement is an indicator that takes the value 1 if the firm’s abatement expenditure as a fraction of

total assets is non-zero, and 0 otherwise. We see that only firms in the clusters with a CEPI value

of at least 70 significantly increase their likelihood of making abatement investment relative to

the abatement investment rate of firms in control clusters. Note that the coefficients between the

two treatment groups is statistically significant at the 95% confidence level. The interpretation

relative to the 2008 level of abatement among firms in control clusters is a 7.7 percentage point

increase in the probability of making any abatement investment from 4.8% to 12.5%, or a 160%

relative increase from baseline following the pollution intervention.

[PLACE TABLE 6 HERE.]

At the extensive margin, we see in column 2 that abatement expenditures increase signifi-

cantly among all firms in treated clusters relative to firms in control clusters, with no significant

difference between the treatment groups. The outcome is abatement investments as a propor-

tion of total firm assets. The effect is relatively stronger in clusters with a 2009 CEPI of at least

70, which is as expected since these clusters are those facing mandated abatement investments.

Specifically, firms in clusters with CEPI value between 60 and 70 increase their abatement ex-

penses as a ratio of their total assets by approximately four percentage points relative to control

firms in clusters with a CEPI just below 60. This is a very large effect; at baseline, control firms

spent 1.4% of the value of their assets on abatement expenses. Thus, in relative terms, the reg-

ulation led to an approximate 286% increase in abatement expenses relative to the abatement

undertaken by control firms. Online Appendix B.1 presents supplementary evidence on specific

abatement investments mandated by the action plans and as reported by firms in their audited

annual financial statements.

26



Taken together, we find that the CEPI regulation led to an aggregate reduction in cluster-level

emissions through firms reallocating their energy inputs and investing significantly in abatement

technologies, especially those that were mandated to undertake such investments through reme-

dial action plans.

6 Cluster Dynamism and Aggregate Impacts

In the last section, we study whether these changes were accompanied by other operational

changes with concomitant impacts on firm profitability and productivity. To do so, we analyze

the output side and study both the extensive and intensive margins of the production response

and changes to the product portfolio mix around the regulation. We then examine the aggregate

impact of these changes on firm-level productivity and profits. In doing so, we leverage within-

cluster variation in pre-existing regulatory enforcement intensity to shed light on the winners

and losers from the regulation. Lastly, we focus on the aggregate impacts of the regulation and

study its implications for creative destruction through firm entry decisions.

6.1 Changes to Product-level Outputs

As a first step, we study whether the reallocation of energy inputs was accompanied by other

operational changes at firms targeted by the regulation. Specifically, we examine changes in firm

output at the product level. Ex ante, it is unclear whether we should observe any treatment effect,

given that the manufacturers in our sample are primarily upstream in their supply chains and

have long-term production relationships with the firms they supply. On the other hand, changes

in energy inputs suggests that firms are re-optimizing their production decisions, and hence are

likely to change outputs as well. We test between these explanations and report the results in

Table 7.

Column 1 of Table 7 reports that there is no differential response, on average, between the

production on the intensive margin of firms in treated and control clusters, as proxied for by

the natural logarithm of the product-level production quantity. Column 2 shows no evidence of

any differential extensive margin response, proxied for by the natural logarithm of the number

of product lines at the firm level.

27



[PLACE TABLE 7 HERE.]

In columns 3 and 4 of Table 7, we test for the effect of the regulation on product variety

in the following years. In aggregate, treated firms are significantly less likely to introduce new

products. The reduction is about a 12 percentage point decrease in the probability that a firm

in the highest-treatment clusters with CEPI above 70 will introduce a new product in the five

years following the regulation in 2009. The probability of dropping a product is positive but

insignificant in the aggregate.

6.2 Who Bears the Costs?

Next, we exploit an additional source of pre-existing variation in enforcement intensity based

on pollution intensity (see, Harrison, Martin, and Nataraj (2017)).30 This allows us to better

understand within-cluster dynamics while conditioning on the cluster-level treatment assignment

and helps in advancing our understanding on which firms win and lose from the regulation.

To see the divergence between the firms operating in HPI and non-HPI industries more

clearly, we investigate the dynamics in a DiD empirical specification described in Section 3 where

the treatment indicator is pooled across the two treatment thresholds.31 Panel (a) of Figure 9

splits the coefficient into the effect on firms in high-pollution industries (gray diamonds) and

firms in other industries (black dots). The split reveals a stark divergence between firms in HPI

and other industries. Namely, only firms in highly polluting industries shift production away

from their highest-emission product, while firms in other industries increase their weight on their

dirtiest product. Specifically, the average treated firm in a highly-polluting industry decreases

the weight on its highest-emission product in 2008 by 20 percentage points relative to control,

while firms in non-HPI industries do not change their weight on their highest-emissions product,

on average (see column 1 of Panel B of Appendix Table IAA4). This divergence in the behavior

of HPI and non-HPI firms masked in the aggregate model further underlies the importance of

30They argue that firms operating in HPI industries faced greater scrutiny from environmental regulators. For ex-
ample, monitoring stations were more likely to be placed near HPI plants and were subject to firm-specific abatement
investment mandates under the directive of the Supreme Court.

31Balance analysis reported in Appendix A show no evidence of ex-ante imbalance between treated and untreated
clusters and we do not see evidence of non-parallel pre-trends. Moreover, in our main results, the DiD specification
is statistically identical to our DiRD estimates. Thus, while DiD represents a less stringent specification than DiRD, it
maximizes power and allows us to easily interpret the results.
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observing detailed production decisions to accurately estimate the effects of emissions regulation

and determine winners and losers.

[PLACE FIGURE 9 HERE.]

Moreover, Figure 8 reports a shift toward the highest-margin product, defined as of 2008,

that begins at the regulation and increases over time.32 But in contrast to the pattern in Figure 9,

we observe a stark divergence between the shift toward high-margin products in non-HPI firms

and the shift away from the highest-margin product among HPI firms in the same cluster that

the aggregate coefficients had masked. The difference widens over time, suggesting that the

regulation’s impact on production decisions is long-lasting, especially for the highest-treatment

group (the HPI sectors), while less-treated firms (the non-HPI sectors) adjust production deci-

sions that increase profitability over time. From column 2 of Appendix Table IAA4, we see that

the magnitude of the shift towards their highest-margin product by non-HPI firms is an increase

of approximately 15 percentage points on average over the entire post period. A reason for this

divergence is that the highest-polluting product is also the highest profit margin product for HPI

firms 40 percent of the time in 2008.

6.3 Firm-level Impact

We next explore whether the dichotomy in response between HPI and non-HPI firms impacts

firm-level productivity and profitability. It is ex-ante unclear what should be effect of regulations

on productivity. On the one hand, pollution imposes an implicit tax on firms located in tar-

geted industrial clusters and hence may dampen productivity by diverting resources away from

profitable investment opportunities (Bertrand, Djankov, Hanna, and Mullainathan, 2007; Duflo,

Greenstone, Pande, and Ryan, 2013; Greenstone and Hanna, 2014; Harrison, Hyman, Martin,

and Nataraj, 2019; He, Wang, and Zhang, 2020; Jaraitė, Kurtyka, and Ollivier, 2022). On the other

hand, regulations may spur firms to adopt newer technologies, reduce costs and thereby improve

productivity (Linn, 2008; Lu and Pless, 2022; Newell, Jaffe, and Stavins, 1999; Wu, Yu, Jiaxing,

and Zhou, 2023). We follow the literature in highlighting firm productivity and profitability.

32The weight on the highest-margin product is marginally significantly less than zero three years before the regu-
lation in 2006, but there is no clear trend in the coefficients, and the pooled pre-period does not differ from zero, with
quite precise error bounds.
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Our main measure of productivity is revenue productivity, or the INR of revenue generated

for each INR of input—measured as capital, labor, and material inputs (Levinsohn and Petrin,

2003).33 We measure profitability by firm earnings before interest, taxes, depreciation, and amor-

tization as a fraction of contemporaneous total assets.

Columns 1 and 2 of Table 8 report that treated firms have higher revenue productivity and

do not significantly differ from control in their profitability. This is somewhat surprising given

that we have documented that treated respond to the regulation. In Section 6.4, we provide

evidence that regulators pro-actively took measures to limit cost impacts on firms, especially for

the small-and-medium firms that make up the bulk of our sample. Another possibility is that

we are classifying all firms in treated clusters as treated while in reality we know that costs, and

likely compliance, were unevenly distributed within treated clusters. Consistent with this, in

Panel B of Table 8 we see that there is a significant increase in revenue productivity for firms

in the less polluting industries (non-HPI), which is consistent with an adverse effect on firms

more likely to bear the costs of the regulation. Similarly, though the relative difference is not

statistically significant, the sign of the coefficients points to firms in non-HPI industries as those

able to preserve profits following the regulation. This is consistent with the prior evidence that

the regulation results in HPI firms shifting production away from their highest-margin product.

[PLACE TABLE 8 HERE.]

To further test this, we turn to product-level profit margins in Table 9, which zooms in on the

product-level pricing decisions of the average treated firm (Panel A) and the relative decisions

of treated firms in HPI and non-HPI sectors (Panel B). The average net result of the product

portfolio changes is higher product margins (column 1). Consistent with the results from Table 8,

this effect is driven by firms in non-HPI sectors. While statistically insignificant, columns 2 and

33When we estimate the production function, we measure output using the total sales value, including income
earned by the firm from selling industrial goods and their raw materials, by-products, stores, and waste. Other inputs
in our estimations include: (i) a proxy for capital using gross fixed assets, including tangible assets, such as land,
building, plant, and machinery, and intangible assets, such as goodwill, software, etc., (ii) labor is compensation to
employees that includes all cash and payments in kind made by a company to its employees, (iii) material inputs are
the sum of intermediate inputs, proxied for by the combined value of raw materials, power, and fuel consumption,
(iv) raw materials, which we define as the sum of expenses on raw materials, stores, spares, and tools firms use in
production, and (v) energy inputs are proxied for as power and fuel, including the firms’ expenses on power, fuel,
and water. We follow best practices by controlling for firm size and deflating all numbers using industry deflators to
reflect real values.
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3 of Table 9 demonstrate similar patterns, with only treated firms in HPI sectors facing increased

marginal costs and the need to increase prices.

[PLACE TABLE 9 HERE.]

Finally, in Online Appendix Table IAE13, we follow De Loecker, Goldberg, Khandelwal, and

Pavcnik (2016) to construct quantity productivity, measuring the efficiency of turning inputs into

outputs. Examining quantity and revenue productivity together provides insight into what as-

pect of value creation is affected by the regulation while minimizing the disadvantages of each

measure.34

We see that, unlike revenue productivity, the efficiency of converting inputs to revenue, there

is no significant relative difference in quantity productivity for treated and control firms. If any-

thing, the sign of the (insignificant) effect is negative. While we are only able to calculate quantity

TFP for a subset of treated firms, the overall conclusion is similar to the picture suggested by Ta-

bles 8 and 9 that it is primarily the productivity of firms in non-HPI sectors that is affected by

the emissions regulation, with no evidence of productivity benefits.35

Thus, the weight of the evidence suggests that the CEPI emissions regulation did not in-

crease average firm productivity. Instead, firms in highly polluting industries that complied with

the regulation and changed their production decisions to lower emissions became less produc-

tive and profitable, further supporting the assertion that HPI firms are the ones that respond

by changing energy inputs—only this group experienced a significant increase in raw material

expenditures. Conversely, non-HPI firms within the same cluster that received relatively less

treatment increased product margins and their efficiency in translating inputs into revenue, pre-

serving their overall profitability even after the regulation.

One may wonder why profit-maximizing firms do not adopt more efficient techniques and

technologies in the absence of regulatory intervention, especially if these changes enhance pro-

ductivity and do not impact profitability. Several factors can explain this behavior. Techno-
34Atkin, Khandelwal, and Osman (2019) find that TFPQ performs poorly at measuring quantity productivity,

shows excessive dispersion across firms, and correlates negatively with quality productivity. They attribute this to the
difficulty of adjusting for product specifications and quality to make apples-to-apples comparisons. They find that
TFPR does better than TFPQ at capturing broad firm capabilities. However, TFPR suffers from an inability to separate
effects from changes in productivity, markups, the firm product mix, and product quality. See Online Appendix E for
more details about the assumptions and methods we use and for evidence that the assumptions hold in our setting.

35In Online Appendix Table IAA5, we do not find that treated firms make more investments or are increasing their
R&D, suggesting that they are responding to the specifics of the regulation.
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logical opportunities are continually evolving, and a combination of uncertainty, incomplete

information, and organizational inertia shape firm decisions (Bandiera, Best, Khan, and Prat,

2021; Bertrand and Schoar, 2003; Fenske, Haseeb, and Kala, 2023a; Kala, 2017, 2024; Skrastins

and Vig, 2019). Additionally, firm-level constraints and market-level distortions, such as lack of

competition, diminish the incentive to invest in productivity-enhancing investments.

6.4 Supplementary Evidence from Action Plans and Firm Annual Reports

As documented above the regulation was effective at reducing emissions by inducing firms to

change their production and the costs mainly fell on the highest-polluting, though aggregate

effects on firm performance are muted relative to the magnitude of the emissions reduction

achieved, on average. In this section, we explore narrative evidence to further flesh out how this

was achieved. We focus on the clusters with 2009 CEPI of at least 70 for which we have gathered

detailed documentation on the action plans and regulator follow-on assessments. From Table 6,

we know that it was primarily this group that responded with abatement investments, while all

treated lower emissions through production changes. Thus, we focus on evidence of abatement.

Appendix B describes the action plans and provides a few detailed examples. We find that

the plans are clear about what actions need to be taken and give specific time frames. These

actions are primarily at the industry, rather than firm- or plant-specific level, and specify which

actions the cluster industry association should undertake, e.g., to build a shared waste treatment

plant. This evidence makes it clearer why a more aggregate targeting mechanism was effective.

There are also examples of specific plants being mandated to take action. Rationally, these are

focused on the plants of large firms.

Critically, the action plans provide rough cost estimates and specify which party should bear

them. Typically, they allocate cost bearing between firms and local governments and regulators.

There is also frequent mention of the potential for grants, especially for small- and medium-sized

enterprises. The fact that we do not see large average reductions in productivity or profitability

for treated in clusters with 2009 CEPI between 60 and 70, even though we document a similar

magnitude of reduction in air emissions, suggest this approach to regulation extended to all

treated clusters.
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Overall, we find that the action plans are clear about what actions need to be taken, in what

time frame, provide rough cost estimates, and specify which costs should be borne by firms,

industry groups collectively, and government agencies. That the government shared risks and

costs helps to explain the relatively muted effect on firm performance we document on firms and

why we find no evidence of negative economic spillovers on firms in relatively low-polluting

industries.

6.5 Business Dynamism: Firm Entry

Lastly, we move beyond within-firm exploration and aim to quantify a key dimension of aggre-

gate impact of environmental regulations. The primary motivation for organizing manufacturing

activity as part of an industrial cluster is to boost firm productivity through economies of scale

and positive spillovers (Juhász, Lane, Oehlsen, and Pérez, 2022). We focus on firm entry as a

summary measure of the agglomeration benefits since it reflects the net benefits and costs of

agglomeration in a given cluster that are unobservable and observable in our dataset.

Table 10 reports the results from our DiRD design on firm entry, run at the cluster level. The

sample for Panel A is all firms from the formal firm registry obtained from the MCA, not just the

relatively larger firms present in the Prowess dataset. We interpret these results as the effect of

entry of the average, small firm into a cluster. As in the cluster-level emissions tests, the control

group comprises clusters for which the CPCB constructed a CEPI value in 2009 but whose values

are below the lowest treatment threshold at a CEPI value of 60.

[PLACE TABLE 10 HERE.]

The regulation decreases firm entry, driven by the effect in CEPI[70,100] clusters. Column 1

presents a linear probability model on the incidence of new firm creation. We see an approxi-

mately 2.7% drop in new firm registrations in clusters with a CEPI of at least 70, significant at

the 90% confidence level.

Column 2 of Table 10 demonstrates the effect on the natural logarithm of the number of firms

in CEPI[70,100] versus control areas. We again see a reduction. The magnitude is about an 8%

reduction in new firms in control clusters in 2008 for firms in CEPI[70,100] clusters relative to

control clusters within the bandwidth. Column 3 runs the same test except that the outcome is

33



the inverse hyperbolic sine function (i.e., asinh(x) = ln(x + sqrt(x ∗ x + 1))), which, unlike the

natural logarithm, is well-defined at zero, while column 4 presents a model with the levels of

the number of firms in each cluster as the outcome and estimates a Poisson model instead of

ordinary least squares (Cohn, Liu, and Wardlaw, 2022; Silva and Tenreyro, 2006). Results are

consistent with those of columns 1 and 2. The implication is that the regulation’s costs were

sufficiently large to deter business formation and new firm entry.

In Panel B of Table 10, we repeat the exercise using only firms in the Prowess database, which

are typically large compared to the average firm in the economy. These are also the firms in our

regression sample. The interpretation of this panel is the effect on the average large firm. We

also see in this subsample that (1) firm entry significantly decreases; (2) clusters with a CEPI of

at least 70 again drive the effect; and (3) the magnitude is economically meaningful relative to

the ex ante pattern in control firms.

In summary, we document a decrease in firm entry across the firm size distribution. This

effect is strongest in industrial clusters with the greatest enforcement intensity. These findings

suggest a dampening competitive pressure within the cluster, with lowered potential agglomer-

ation benefits. These results, along with the evidence in Section 6.1 of decreased product variety,

adds to the literature that contends that regulation can lower emissions but comes at a cost to the

economy.36

6.6 Other Margins of Adjustment

In this section, we consider alternative margins of adjustment for lower emissions among firms

in treated clusters. Firms may relocate or expand their operations to regions with less stringent

environmental regulations to reduce their production costs, particularly those related to environ-

mental compliance (Copeland and Taylor, 1994, 2004). Prior work has documented that localized

policies shift emissions within and across geographies (Bartram, Hou, and Kim, 2022; Ben-David,

Jang, Kleimeier, and Viehs, 2021).

We examine two margins of adjustment by firms, beyond altering their production decisions.

36A full, general equilibrium analysis is beyond the scope of this paper, limited as we are by less information on
the direct costs of the regulation and the counterweight from health benefits from lower emissions. We do find that
costs and benefits of the regulation (1) occur over different horizons, with costs accumulating in the more medium-
and long-term in the data; and (2) there are winners and losers, so accounting for heterogeneity is key in any welfare
analysis.
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First, we focus on changes in merger and acquisition activity around the regulation. Specifically,

we examine whether firms in the targeted industrial cluster are more likely to be acquired or

merged with firms outside the cluster. In Online Appendix Table IAA6, we show that, on average,

firms in treated clusters are unlikely to be a target or to be acquired in merger and acquisition

around the regulation, with the probabilities being similar across treated and control clusters.

Second, instead of entirely relocating their operations through mergers and acquisitions,

firms may relocate their production activities by building new plants and expanding capacity

elsewhere. We explore this possibility in Online Appendix Table IAA7. Specifically, our findings

indicate that, on average, firms are unlikely to announce new plant constructions or to abandon

the expansion of existing plants.

7 Discussion

Our results open up the ’brown box’ of how firms change their inputs and outputs in response

to environmental regulations. We find that these regulations lowered emissions by prompting a

shift away from high-emission energy sources alongside investments in abatement. However, in

the aggregate, these regulations lowered business dynamism, potentially impairing competitive-

ness. Our results point to the mechanisms that policymakers could target to balance these costs

against lower emissions.

First, it is firms subject to higher monitoring intensity who change their energy inputs. Alter-

native emissions targeting could mandate specific energy input use rather than imposing caps on

emissions followed by continuous monitoring. By contrast, it was firms subject to relatively more

diffuse monitoring that make abatement investments. This suggests that command-and-control

mechanisms may not be the most effective means to cost-effectively incentivize investment and

technology adoption.

Second, another dimension that constrained regulators should consider when allocating their

monitoring efforts is where in the supply chain they are focusing regulation. Our sample is

concentrated upstream in the supply chain, and this is perhaps the primary reason we find firms

internalizing rather than passing on costs to their customers and suppliers.

More broadly, our results speak to the importance of disclosure of emissions at different
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stages of production. Our study informs policymakers about how to effectively target and mon-

itor firms using these data. Policymakers are already considering such disclosure requirements

around the world. For example, Gary Gensler, the chair of the United States Securities and Ex-

change Commission, has called for more detailed emissions disclosures including indirect and

supply chain emissions (Gensler, 2023). At the same time in the European Union, the Corpo-

rate Sustainability Reporting directive requires all public firms to report their greenhouse gas

emissions, including from Scope 3 (European Commission, 2021). Our results suggest that these

disclosures will enhance the effectiveness of environmental regulations and play an important

role in national efforts to combat climate change.

Finally, our results highlight the need for coordinated policies on decarbonization. Arguably,

the shift toward purchasing rather than producing electricity that we document does not nec-

essarily steer away from coal at present. However, incentivizing firms to use electricity could

facilitate a smoother transition to cleaner fuels as it becomes technically and economically viable

to green the power grid.

8 Conclusion

Policymakers are increasingly setting emission targets for industrial clusters while considering

the impact on firm productivity and global competitiveness. However, evidence on such regu-

lation’s effectiveness and cost is mixed. In particular, research on climate regulation’s effect on

within-firm adaptation is limited. Estimating emission cap impacts is challenging due to opaque

within-firm responses, including operational, product, and energy adjustments.

This paper explores within-firm production responses, inputs, and outputs to emissions re-

duction, using novel product-level data combined with an environmental regulation in India.

We show that this regulation significantly decreased emissions, as seen in regulatory data and

satellite readings. Our detailed analysis of product-level firm data reveals that on the input side,

firms optimize energy use and shift from producing to buying electricity, investing significantly

in abatement technology. On the output side, there’s a shift away from high-coal, high-emission

products to higher-margin ones, with no evidence of operations moving outside the cluster, un-

like in developed economies.

36



Our analysis within industrial clusters shows that high-pollution industries primarily drive

operational changes and bear the costs of emissions reduction, leading to decreased productiv-

ity. By contrast, other sectors see productivity and profitability gains. This indicates a trade-off

between emissions reduction and productivity. Comparing firms within the same cluster allows

control over many unobservables and alternative narratives. Overall, while there are both win-

ners and losers, the aggregate impact suggests a trade-off at the industrial cluster level, marked

by reduced economic dynamism, fewer new firm entries, and less product variety.
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Pollutant score
A = A1 × A2

Toxin score (A1)

Industrial activ-
ity score (A2)

Pathway score B
= B1 + B2 + B3

Pollutant concen-
tration score (B1)

Human im-
pact score (B2)

Eco-geological
impact score (B3)

Receptor score C
= C1 + C2 + C3

Potentially affected
population score (C1)

Level of expo-
sure score (C2)

Risk to sensitive
receptors (populations,

habitats) score (C3)

Quality pollution
control facilities score

EPI = A + B + C + D

FIGURE 1: THE COMPREHENSIVE ENVIRONMENTAL POLLUTION INDEX (CEPI)

This figure presents the components of the Comprehensive Environmental Pollution Index (CEPI), which classifies
industrial clusters into Critically Polluted Areas (CPA) and Severely Polluted Areas (SPA).
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FIGURE 2: EVOLUTION OF THE RANKING VARIABLE

This figure illustrates the evolution of the CEPI. Panel A presents the ranking distribution of 88 industrial clusters
with CEPI values computed by CPCB in 2009. The vertical line marks treatment thresholds at CEPI = 60 and CEPI =
70. Panel B displays the CEPI distribution in 2011 (solid line) and 2013 (dashed line) government studies, focusing on
the subset of clusters initially classified with CEPI values > 70 in 2009.

46



FIGURE 3: TESTING FOR MANIPULATION OF THE RANKING VARIABLE

This figure tests for manipulation of the industrial cluster pollution ranking variable, around the pooled thresholds at
the CEPI values of 60 and 70. The p-value is from a two-sided test with the null hypothesis that the distributions of
the rankings do not differ across the cutoff (Abadie and Cattaneo, 2018; McCrary, 2008).
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FIGURE 4: GEOGRAPHIC VARIATION OF INDUSTRIAL CLUSTERS

This figure presents the geographic variation of all industrial clusters as of the year 2009. Small gray dots illustrate
the location of all industrial clusters. Larger black circles correspond to clusters with CEPI values at or above the 70
threshold, triangles correspond to clusters with index values between the 60 and 70 thresholds and squares correspond
to clusters with index values below the 60 threshold.
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FIGURE 5: FIRM CHARACTERISTICS PRIOR TO THE INTRODUCTION OF THE CEPI

This figure presents regression discontinuity estimates of baseline firm characteristics from 2008, a year before CEPI regulation was introduced. It graphs the
average firm characteristic in CEPI bins near the cutoff, pooling data across the CEPI thresholds of 60 and 70, marked as zero in the figures. A linear fit is generated
separately for each side of 0, with the 95% confidence intervals displayed.
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FIGURE 6: BASELINE PRODUCT CHARACTERISTICS PRIOR TO THE INTRODUCTION OF CEPI

This figure presents the average firm-product characteristics from 2008, the year preceding the CEPI regulation, plotted in CEPI bins near the cutoff. The data
combines information across the CEPI thresholds of 60 and 70 (represented as zero in the figures). A linear fit is generated separately for each side of 0, with the
95% confidence intervals displayed.
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(a) All Pollutants

(b) Pollutant: Particulate Matter < 2.5µ

FIGURE 7: CHANGES TO CLUSTER-LEVEL INDUSTRIAL AIR EMISSIONS

This figure presents the dynamic coefficients and their corresponding 95% confidence interval from a difference-
in-differences empirical specification (Equation 4). Panel A incorporates all emissions, while Panel B focuses on fine
particulate matter less than 2.5 microns. Coefficients are relative to the year before CEPI regulation in 2009, marked by
a dotted vertical line and normalized to zero. The analysis includes the 88 industrial clusters targeted by CPCB in 2009,
excluding clusters with a CEPI below 60. Data source: Emissions Database for Global Atmospheric Research (Crippa
et al., 2019, 2020; European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment
Agency (PBL), 2020).
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(a) Highest emission product

(b) Highest margin product

FIGURE 8: CHANGES TO PRODUCT PORTFOLIO

This figure presents the dynamic coefficients and their corresponding 95% confidence interval from a difference-in-
differences empirical specification, where we pool the two treatment thresholds. The dependent variable in panel
(a) is the weight of the highest emission product as of 2008 while in panel (b) is the weight of the highest margin
product as of 2008. Coefficients are relative to the year before CEPI regulation in 2009, marked by a dotted vertical
line and normalized to zero. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with
the omitted category including clusters with a CEPI value below 60. Data source: CMIE Prowess.
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(a) Highest emission product, split by High Polluting vs.
Other Industries

(b) Highest margin product, split by High Polluting vs.
Other Industries

FIGURE 9: CHANGES TO PRODUCT PORTFOLIO, SPLIT BY HIGH POLLUTING VS.
OTHER INDUSTRIES

This figure presents the dynamic coefficients and their corresponding 95% confidence interval from a difference-in-
differences empirical specification, where we pool the two treatment thresholds, and split between High-Polluting
and other industries. The dependent variable in panel (a) is the weight of the highest emission product as of 2008
while in panel (b) is the weight of the highest margin product as of 2008. Coefficients are relative to the year before
CEPI regulation in 2009, marked by a dotted vertical line and normalized to zero. The sample is restricted to the 88
industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below
60.
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TABLE 1: SUMMARY STATISTICS

This table presents descriptive statistics for the firms and products in our baseline sample. Panel A summarizes the
firm-year panel dataset. Assets and Sales is in thousands of INR. Leverage is the sum of short- and long-term debt
obligations scaled by contemporaneously reported Assets. Exporting intensity are firm earnings from exports of goods
plus services scaled by contemporaneous total sales. Ln(Productivity) is the natural log of firm productivity, which is
calculated following Levinsohn and Petrin (2003) and controls for firm size. Profitability is Earnings Before Interest,
Taxes, Depreciation, and Amortization as a ratio of the prior year sales. Investments/Assets is gross fixed assets scaled
by lagged total assets. Raw Materials/Sales is the value of raw material inputs scaled by total net sales. Wages/Sales is
total wages scaled by total net sales. Market-to-book is reported for listed firms and is the total number of listed shares
multiplied by the share price at the end of the fiscal year, scaled by total assets. Panel B summarizes the firm-product-
year dataset. Ln(Product Sales) and Ln(Unit Cost) is the per-product production sales and cost, respectively. Ln(Unit
Price) is the natural logarithm of the per-unit price, where the unit is unique within but not across firms. Margin is
(unit price - unit cost)/unit price. Ln(Per Unit CO2 Emissions) are the author-calculated CO2 emissions per reported
unit of production. All variables are defined in Appendix Table IAA8.

Panel A: Firm characteristics

Obs Mean Std. dev. Min. Median Max.

(1) (2) (3) (4) (5) (6)

Assets (000 INR) 11,452 3,524 8,864 6.70 621 52,664
Sales (000 INR) 11,452 3,282 7,274 3.90 755 40,262
Leverage 10,307 0.27 0.20 0.00 0.25 1.13
Exporting Intensity 11,452 16.30 26.09 0.00 1.64 97.84
Ln(Revenue Productivity) 11,452 3.07 1.86 1.02 2.54 8.63
Number Product Lines 11,452 2.84 2.02 1.00 2.00 22.00
Profitability 11,452 0.11 0.08 -0.09 0.10 0.30
Investments/Assets 10,394 0.67 0.41 0.03 0.61 2.42
Raw Materials/Sales 11,451 0.58 0.22 0.03 0.60 1.01
Wages/Sales 11,451 0.05 0.05 0.00 0.04 0.30
Market-to-book 1,949 0.88 1.23 0.02 0.41 6.86

Panel B: Firm-product characteristics

Obs Mean Std. dev. Min. Median Max.

(1) (2) (3) (4) (5) (6)

Ln(Product Sales) 30,143 4.44 2.78 -2.30 4.76 9.63
Ln(Unit Cost) 15,589 -4.97 3.86 -15.35 -3.85 3.44
Ln(Unit Price) 16,329 -4.92 3.87 -15.24 -3.73 3.37
Margin (%) 15,589 0.01 0.70 -5.67 0.14 0.64
Ln(Per Unit CO2 Emissions) 1,163 -2.35 2.80 -9.83 -1.85 2.42
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TABLE 2: COVARIATE BALANCE

This table presents tests for differences in firm and product characteristics before the 2009 reform for the regression
sample. Panel A reports balance at the firm level while Panel B reports balance at the firm-product level. In both
panels, Column 1 present the unconditional mean for the whole sample while Columns 2 and 3 present the uncondi-
tional means for cities below the treatment threshold and cities above the treatment threshold, respectively. Column 4
presents the difference in means between cities below the treatment threshold and cities above the treatment thresh-
old. Column 5 shows the regression discontinuity estimate of the effect of being above the treatment threshold on the
baseline variable. The model is estimated within a bandwidth of 10 units of the CEPI around the treatment thresholds
at 60 and 70, and accounts for difference across states and within industries. Finally, Column 6 is the p-value for this
estimate, using bias-corrected, heteroskedasticity-robust standard errors of Calonico, Cattaneo, and Farrell (2020). All
variables are defined in Appendix Table IAA8.

Panel A: Firm characteristics

All Below Above Difference RD Estimate p-value

(1) (2) (3) (4) (5) (6)

Assets (000 INR) 2,443 1,916 2,526 -610 -1,342 0.63
Sales (000 INR) 2,418 1,853 2,519 -665 -348 0.90
Leverage 0.27 0.29 0.27 0.02 -0.041 0.39
Exporting Intensity 0.25 0.23 0.25 -0.022 0.095 0.17
Ln(Revenue Productivity) 3.3 3.3 3.3 -0.0028 -0.18 0.72
Number of Products 2.9 2.9 2.9 -0.035 0.35 0.35
Profitability 0.11 0.11 0.12 -0.0064 0.023 0.16
Investments/Assets 0.70 0.77 0.69 0.083 -0.16 0.14
Raw Materials/Sales 0.57 0.60 0.57 0.037 0.0006 0.99
Wages/Sales 0.064 0.059 0.065 -0.0055 0.029 0.15
Market-to-book 1.1 0.95 1.1 -0.14 0.81 0.35

Panel B: Firm-product characteristics

All Below Above Difference RD Estimate p-value

(1) (2) (3) (4) (5) (6)

Ln(Product Sales) 4.1 3.8 4.1 -0.30 -0.48 0.47
Ln(Unit Cost) -5.0 -4.7 -5.0 0.33 -0.37 0.52
Ln(Unit Price) -5.0 -4.7 -5.0 0.36 -0.26 0.59
Margin(%) -2.3 -1.5 -2.5 1.00 -4.5 0.57
Ln(Unit CO2 Emissions) -2.5 -2.2 -2.5 0.36 -0.85 0.27
Coal’s Proportion of Inputs 0.65 0.66 0.65 0.01 0.35 0.09
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TABLE 3: CHANGES IN CLUSTER INDUSTRIAL EMISSIONS BY POLLUTANT

This table reports the impact of CEPI reform on industrial emissions using data from EDGAR. The unit of analysis is
at the cluster-year-month level. The dependent variable is the measurement of emissions from the database within a
5 kilometer radius circle around the centroid of the industrial cluster. In column 1, we focus on all pollutants whereas
we break them down: PM2.5 (column 2), PM10 (column 3) and NOx (column 4). Post is an indicator variable taking
the value of 1 for all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the
value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value
of one if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The
sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including
clusters with a CEPI value below 60. All specifications include cluster-address fixed effects and State × year-month
fixed effects. The table also reports the p-value from the joint test of the coefficients and the mean of the dependent
variable in levels in the pre-reform year of 2008. The standard errors are clustered at the cluster-address level and are
robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are
defined in Appendix Table IAA8. Data source: The Emissions Database for Global Atmospheric Research (EDGAR).

Dependent variable: Pollution Measurement (mg per month)

Pollutant(s): All PM2.5 PM10 NOx

(1) (2) (3) (4)

Post ×CEPI[60,70) (β1) -7.232∗∗ -3.686∗ -7.113 -10.898∗

(3.597) (2.054) (5.653) (6.536)

Post ×CEPI[70,100] (β2) -7.109∗∗ -3.489∗ -7.669 -10.169∗

(3.225) (1.813) (4.748) (5.937)

2008 Dependent Variable Mean (Control) 23.09 16.86 38.95 13.45
Fixed effects:

Cluster × Pollutant Yes Yes Yes Yes
State × year-month × Pollutant Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.932 0.949 0.946 0.836
Observations 54,648 18,216 18,216 18,216
p-value [β1 − β2 = 0] 0.935 0.843 0.840 0.600
ATE -7.144 -3.545 -7.512 -10.375
t-statistic value [2.185] [1.928] [1.550] [1.702]
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TABLE 4: IMPACT ON FIRM INPUTS

This table reports the changes in firm inputs around the 2009 CEPI emissions regulation. The unit of analysis is
firm-product-year. The dependent variable in column 1 is the natural logarithm of the input energy value while in
column 2 it is the proportion of electricity purchased (as opposed to produced) for each product. Post is an indicator
variable taking the value of 1 for all years including 2009 the year in which reform was implemented and after.
CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise.
CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below
70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the
omitted category including clusters with a CEPI value below 60. All specifications include firm and State × two-digit
industry × year fixed effects. The table also reports the p-value from the joint test of the coefficients and the mean of
the dependent variable in levels in the pre-reform year 2008. The standard errors are clustered at the city level and
are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables
are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable Ln(Value Energy 1Coal Use Proportion Purchased
Input) Electricity

(1) (2) (3)

Post ×CEPI[60,70) (β1) -1.006∗∗∗ -0.289∗ 0.196∗∗∗

(0.219) (0.150) (0.059)

Post ×CEPI[70,100] (β2) -0.818∗∗ -0.301∗∗∗ 0.100∗∗

(0.294) (0.092) (0.036)

Ln(Production Quantity) -0.208 0.033 -0.034
(0.300) (0.027) (0.036)

2008 Dependent Variable Mean (Control) 8.91M INR 0.17 0.46
Fixed effects:

Firm Yes Yes Yes
State × Industry × Year Yes Yes Yes

Adjusted-R2 0.687 0.185 0.673
Observations 901 565 901
p-value [β1 − β2 = 0] 0.549 0.905 0.124
ATE -0.773 -0.308 0.151
t-statistic value [5.465] [3.350] [3.159]
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TABLE 5: IMPACT ON PRODUCT EMISSIONS

This table reports the changes in firm inputs around the 2009 CEPI emissions regulation. The unit of analysis is
firm-product-year. Across both panels, the dependent variables are: Product-level emissions (column 1), Product-
level emissions scaled by production quantity (column 2), and firm-level weight of the product that uses the highest
proportion of coal in its energy input mix in the firm’s overall product portfolio, measured in percentage points. Post
is an indicator variable taking the value of 1 for all years including 2009 the year in which reform was implemented
and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70, and zero
otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal to 60
and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009
with the omitted category including clusters with a CEPI value below 60. All specifications include firm and State ×
two-digit industry × year fixed effects. The table also reports the p-value from the joint test of the coefficients and
the mean of the dependent variable in levels in the pre-reform year 2008. The standard errors are clustered at the city
level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All
variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: Ln(Product CO2 Ln(Per Unit CO2 Highest Coal
Emissions) Emissions Product Weight2008

(1) (2) (3)

Post ×CEPI[60,70) (β1) -1.083∗∗∗ -0.885∗∗∗ -0.309∗∗

(0.283) (0.306) (0.123)

Post ×CEPI[70,100] (β2) -0.944∗∗ -0.687∗∗ -0.139
(0.346) (0.270) (0.114)

Ln(Production Quantity) 0.801∗∗

(0.334)

2008 Dependent Variable Mean (Control) 162229.58 2.79 0.78
Fixed effects:

Firm Yes Yes Yes
State × Industry × Year Yes Yes Yes

Adjusted-R2 0.836 0.656 0.775
Observations 901 901 705
p-value [β1 − β2 = 0] 0.691 0.579 0.123
ATE -1.414 -0.755 -0.181
t-statistic value [5.460] [3.709] [1.438]
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TABLE 6: IMPACT ON ABATEMENT INVESTMENT

This table reports the changes in firm-level abatement investment around the 2009 CEPI emissions regulation. The
unit of analysis is firm-year. Across both panels, the dependent variable in column 1 is an indicator variable if the
firm report environment and pollution control related expenses in that year while in column 2 is the intensive margin,
defined as the ratio of expenses and total assets winsorized at 1% tails. Post is an indicator variable taking the value
of 1 for all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the value of
one if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one
if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample
is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters
with a CEPI value below 60. The table also reports the p-value from the joint test of the coefficients and the mean of
the dependent variable in levels in the pre-reform year 2008. For ease of interpretation, we multiply the coefficients
by 100. All specifications include firm and State × two-digit industry × year fixed effects. The standard errors are
clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10%
level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: 1Abatement Abatement/Assets
(1) (2)

Post ×CEPI[60,70) (β1) 0.048 0.039∗

(0.031) (0.020)

Post ×CEPI[70,100] (β2) 0.077∗∗ 0.038∗∗

(0.029) (0.016)

2008 Dependent Variable Mean (Control) 0.06 0.01
Fixed effects:

Firm Yes Yes
State × Industry × Year Yes Yes

Adjusted-R2 0.638 0.676
Observations 10,752 10,752
p-value [β1 − β2 = 0] 0.029 0.933
ATE 0.072 0.038
t-statistic value [2.419] [2.385]
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TABLE 7: IMPACT ON PRODUCT PORTFOLIO

This table reports the changes to firm-level product portfolios around the 2009 CEPI emissions regulation. The unit of
analysis is firm-year. Panel A reports the average effect across all industries whereas Panel B reports treatment effects
split by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1 (column 2) is
the natural logarithm of the total quantity produced for each product (total number of products produced by a firm)
in a year. The dependent variable in column 3 is an indicator for whether the firm added a product in a year while
in column 4 it is an indicator for whether the firm dropped a product in that year. Post is an indicator variable taking
the value of 1 for all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the
value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of
one if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample
is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters
with a CEPI value below 60. The table also reports the p-value from the joint test of the coefficients and the mean of the
dependent variable in levels in the pre-reform year 2008. All specifications include firm and State × two-digit industry
× year fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗,
∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8.
Data source: CMIE Prowess.

Dependent variable: Ln(Product-level Ln(No. of 1Add Product 1Remove Product
Production Products)

(1) (2) (3) (4)

Post ×CEPI[60,70) (β1) -0.110 0.013 -0.117∗∗∗ 0.003
(0.182) (0.078) (0.041) (0.036)

Post ×CEPI[70,100] (β2) 0.030 0.007 -0.057∗ 0.023
(0.130) (0.072) (0.034) (0.030)

2008 Dependent Variable Mean (Control) 29,784 2.71 0.27 0.17
Fixed effects:

Firm Yes Yes Yes Yes
State × Industry × Year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.506 0.666 0.032 0.005
Observations 15,521 10,752 10,752 10,752
p-value [β1 − β2 = 0] 0.429 0.904 0.094 0.314
ATE 0.008 0.008 -0.068 0.019
t-statistic value [0.063] [0.118] [2.138] [0.621]
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TABLE 8: IMPACT ON REVENUE PRODUCTIVITY AND PROFITABILITY

This table reports the changes in firm profitability and revenue productivity around the 2009 CEPI emissions reg-
ulation. The unit of analysis is firm-year. Panel A reports the average effect across all industries whereas Panel B
reports treatment effects split by High-Polluting vs. Other industries. Across both panels, the dependent variable in
column 1 is the natural logarithm of total factor productivity estimated following Levinsohn and Petrin (2003) that
controls for firm size. The dependent variable in column 2 is firm profitability defined as the ratio of firm earnings
before interest, taxes, depreciation, and amortization (EBITDA) and sales winsorized at 1% tails, and in column 3 it is
the ratio of raw material expenses to firm-level net sales/totalsales. Post is an indicator variable taking the value of 1
for all years including 2009 the year in which reform was implemented and after. CEPI[60,100] takes the value of one if
the industrial cluster has a CEPI value at or above 60, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The
table also reports the mean of the dependent variable in levels in the pre-reform year 2008. All specifications include
firm and State × two-digit industry × year fixed effects. The standard errors are clustered at the city level and are
robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are
defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Ln(Revenue EBITDA/ Raw Material
Productivity) Sales Expense

(1) (2) (3)

Post ×CEPI[60,100] 0.122∗∗∗ 0.007 -0.034∗∗

(0.038) (0.014) (0.015)

2008 Dependent Variable Mean (Control) 2.77 0.10 0.56
Fixed effects:

Firm Yes Yes Yes
State × Industry × Year Yes Yes Yes

Adjusted-R2 0.805 0.525 0.528
Observations 10,752 10,752 10,752

Panel B: Industries Split by High Polluting vs. Others

Dependent variable: Ln(Revenue EBITDA/ Raw Material
Productivity) Sales Expense

(1) (2) (3)

Post ×CEPI[60,100] 0.142∗∗∗ 0.008 -0.040
(0.041) (0.014) (0.027)

Post ×CEPI[60,100] × High-Polluting -0.080 -0.006 0.026∗∗

(0.051) (0.006) (0.012)

Fixed effects:
Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Adjusted-R2 0.851 0.638 0.641
Observations 10,752 10,752 10,752
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TABLE 9: IMPACT ON PRODUCT PROFITABILITY

This table reports the changes in product-level profitability around the 2009 CEPI emissions regulation. The unit of
analysis is firm-product-year. Panel A reports the average effect across all industries whereas Panel B reports treatment
effects split by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1 is the
product-level profit margin computed as the difference between price and cost per unit as a fraction of price per unit,
winsorized at 1% tails. The dependent variable in column 2 is the natural logarithm of product unit price computed
as the ratio of total product sales to the total product quantity sold while in column 3 it is the natural logarithm of
product unit cost computed as the ratio of product cost of goods sold to the total product quantity sold. Post is an
indicator variable taking the value of 1 for all years including 2009 the year in which reform was implemented and
after. CEPI[60,100] takes the value of one if the industrial cluster has a CEPI value at or above 60, and zero otherwise.
The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including
clusters with a CEPI value below 60. The table also reports the mean of the dependent variable in levels in the pre-
reform year 2008. All specifications include firm and State × two-digit industry × year fixed effects. The standard
errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%,
and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Product Margins Ln(Unit Price) Ln(Unit Cost)
(1) (2) (3)

Post ×CEPI[60,100] 0.126∗∗ -0.116 -0.183
(0.058) (0.216) (0.189)

2008 Dependent Variable Mean (Control) 0.00 0.72 0.89
Fixed effects:

Firm Yes Yes Yes
State × Industry × Year Yes Yes Yes

Adjusted-R2 0.672 0.521 0.526
Observations 15,225 15,984 15,225

Panel B: Industries Split by High Polluting vs. Others

Dependent variable: Product Margins Ln(Unit Price) Ln(Unit Cost)
(1) (2) (3)

Post ×CEPI[60,100] 0.135∗∗ -0.146 -0.213
(0.057) (0.215) (0.192)

Post ×CEPI[60,100] × High-Polluting -0.034 0.102 0.116
(0.035) (0.081) (0.122)

Fixed effects:
Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Adjusted-R2 0.722 0.592 0.599
Observations 15,225 15,984 15,225
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TABLE 10: CHANGES IN CLUSTER-LEVEL FIRM ENTRY
This table reports changes in cluster-level firm entry around the 2009 CEPI emissions regulation. The unit of analysis is cluster-
industry-year. Panel A reports changes in firm entry using the universe of business registration from the Ministry of Corporate
Affairs while Panel B reports changes in firm entry from CMIE Prowess. Across both panels, the dependent variable in column 1 is
an indicator for whether atleast one manufacturing firm incorporates in the cluster in a given industry in the year. The dependent
variable in column 2 is one plus the natural logarithm of the number of newly registered manufacturing firms in that year while
in column 3 it is the inverse hyperbolic sine of the number of newly registered manufacturing firms in that year. Column 4 uses
the raw number of newly registered manufacturing firms in each cluster in a specific industry in that year. Post is an indicator
variable taking the value of 1 for all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the
value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if the
industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88
industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The table
also reports the p-value from the joint test of the coefficients and the mean of the dependent variable in levels in the pre-reform year
2008. In both panels, columns 1 through 3 are estimated using Ordinary Least Squares (OLS) while column 4 is estimated using
Pseudo-Poisson Maximum Likelihood (PPML). All specifications include cluster, two-digit Industry × year, and State × year fixed
effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%,
5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: Ministry of Corporate Affairs and
CMIE Prowess.

Panel A: All firms from business registry

Dependent variable: 1New Firm Log(No. of asinh(No. of No. of firms
firms) firms) (Poisson)

(1) (2) (3) (4)

Post ×CEPI[60,70) (β1) -0.005 -0.006 -0.007 -0.154
(0.011) (0.010) (0.013) (0.129)

Post ×CEPI[70,100] (β2) -0.018∗ -0.014 -0.018 -0.193∗

(0.010) (0.009) (0.012) (0.115)

2008 Dependent Variable Mean (Control) 0.07 0.19 0.19 0.19
Fixed effects:

Cluster Yes Yes Yes Yes
State × Industry × Year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.405 0.534 0.535
Observations 33,810 33,810 33,810 20,590
p-value [β1 − β2 = 0] 0.101 0.284 0.261 0.704
ATE -0.014 -0.011 -0.014 -0.177
t-statistic value [1.396] [1.288] [1.271] [1.602]

Panel B: Large firms in CMIE Prowess

Dependent variable: 1New Firm Log(No. of asinh(No. of No. of firms
firms) firms) (Poisson)

(1) (2) (3) (4)

Post ×CEPI[60,70) (β1) -0.003 0.001 0.001 -0.289
(0.017) (0.016) (0.021) (0.440)

Post ×CEPI[70,100] (β2) -0.041∗ -0.035∗ -0.045∗ -0.795∗∗

(0.021) (0.018) (0.023) (0.370)

2008 Dependent Variable Mean (Control) 0.01 0.01 0.01 0.01
Fixed effects:

Cluster Yes Yes Yes Yes
State × Industry × Year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.172 0.212 0.213
Observations 4,416 4,416 4,416 678
p-value [β1 − β2 = 0] 0.018 0.074 0.076 0.103
ATE -0.024 -0.019 -0.025 -0.655
t-statistic value [1.351] [1.433] [1.439] [1.672]
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Appendix A Additional figures and tables

TABLE IAA1: CLUSTER-LEVEL COVARIATE BALANCE

This table presents mean values for baseline city characteristics, as recorded in Population Census. Column 1 presents
the unconditional mean while column 2 (column 3) presents mean for clusters below (above) the treatment threshold.
Column 4 presents the difference in means between cities below the treatment threshold and cities above the treat-
ment threshold. Additionally, column 5 shows the regression discontinuity estimate, following the main estimating
equation, of the effect of being above the treatment threshold on the baseline variable and column 6 is the p-value for
this estimate, using heteroskedasticity robust standard errors. Data sources: Population Census and Harari (2020).

All Below Above Difference Estimate p-value

(1) (2) (3) (4) (5) (6)

City roads, km, 1981 337.206 268.936 391.822 -122.886 -297.226 0.486

Log(population), 2001 13.330 13.015 13.572 -0.556 0.403 0.693

Population density (000 per Sq. km), 2001 8.632 9.387 7.993 1.394 -1.081 0.802

Average rent (per Sq. m.), 2008 953.696 907.779 990.430 -82.651 356.072 0.422

Nearest waterway (km), 2008 13.901 17.660 10.948 6.713 -16.694 0.182

Agricultural yields (tons/ha), 2008 1.440 1.485 1.406 0.079 0.111 0.123

Area footprint (Sq. km.), 2008 187.831 114.277 250.069 -135.792 184.250 0.485
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TABLE IAA2: IMPACTS ON FINE PARTICULATE MATTER (PM2.5)

This table reports the impact of CEPI reform on fine particulate matter using data from Van Donkelaar, Martin, Spurr,
and Burnett (2015). The unit of analysis is at the cluster-year-month level. The dependent variable is the measurement
of fine particulate matter (PM2.5) in µg/m3. In column 1, we focus on measurements within a 5 kilometer radius
circle around the centroid of the industrial cluster while in column 2, we focus on measurements within a 500 meter
radius circle. Post is an indicator variable taking the value of 1 for all years including 2009 the year in which reform
was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above
70, and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or
equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the
CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. All specifications include
cluster-address fixed effects and State × year-month fixed effects. The table also reports the p-value from the joint
test of the coefficients and the mean of the dependent variable in levels in the pre-reform year of 2008. The standard
errors are clustered at the cluster-address level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the
1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: Van Donkelaar,
Martin, Spurr, and Burnett (2015).

Dependent variable: Fine PM2.5 (µ g/m3)

Radii of circle: 5 kilometers 500 meters
(1) (2)

Post ×CEPI[70,100] (β2) -2.311∗∗∗ -1.893∗∗

(0.775) (0.743)

Post ×CEPI[60,70) (β1) -1.018 -0.560
(0.756) (0.673)

2008 Dependent Variable Mean (Control) 84.0 84.0
Fixed effects:

Cluster Yes Yes
State × year-month Yes Yes

Bandwidth Yes Yes
Adjusted-R2 0.959 0.954
Observations 17,952 18,216
p-value [β1 − β2 = 0] 0.005 0.069
ATE -1.962 -1.516
t-statistic value [2.596] [2.152]
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TABLE IAA3: CHANGES IN ENERGY EMISSIONS BY POLLUTANT

This table reports the impact of CEPI reform on the power generation sector using data from EDGAR. The unit of
analysis is at the cluster-year-month level. The dependent variable is the measurement of emissions from the database
within a 5 kilometer radius circle around the centroid of the industrial cluster. In column 1, we focus on all pollutants
whereas we break them down: PM2.5 (column 2), PM10 (column 3) and NOx (column 4). Post is an indicator variable
taking the value of 1 for all years including 2009 the year in which reform was implemented and after. CEPI[70,100]

takes the value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes
the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise.
The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including
clusters with a CEPI value below 60. All specifications include cluster-address fixed effects and State × year-month
fixed effects. The table also reports the p-value from the joint test of the coefficients and the mean of the dependent
variable in levels in the pre-reform year of 2008. The standard errors are clustered at the cluster-address level and are
robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are
defined in Appendix Table IAA8. Data source: The Emissions Database for Global Atmospheric Research (EDGAR).

Dependent variable: Pollution Measurement (mg per month)

Pollutant(s): All PM2.5 PM10 NOx

(1) (2) (3) (4)

Post ×CEPI[60,70) (β1) -0.229 -0.112 -0.170 -0.405
(0.715) (0.274) (0.542) (1.415)

Post ×CEPI[70,100] (β2) -0.169 -0.181 -0.184 -0.143
(0.755) (0.304) (0.549) (1.520)

2008 Dependent Variable Mean (Control) 8.18 1.78 3.34 19.43
Fixed effects:

Cluster × Pollutant Yes Yes Yes Yes
State × year-month × Pollutant Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.756 0.795 0.823 0.734
Observations 29,808 9,936 9,936 9,936
p-value [β1 − β2 = 0] 0.915 0.765 0.975 0.792
ATE -0.186 -0.161 -0.180 -0.217
t-statistic value [0.266] [0.579] [0.357] [0.153]
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TABLE IAA4: RESPONSE OF FIRM PORTFOLIO WEIGHTS

This table reports the changes to firm-level product portfolios around the 2009 CEPI emissions regulation. The unit
of analysis is firm-year. The dependent variable in column 1 is the weight on the highest emission product in the
firm’s overall product portfolio. In column 2 the dependent variable is the weight of the highest margin product in
the firm’s overall product portfolio, measured in percentage points. Post is an indicator variable taking the value of 1
for all years including 2009 the year in which reform was implemented and after. CEPI[60,100] takes the value of one if
the industrial cluster has a CEPI value at or above 60, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The
table also reports the mean of the dependent variable in levels in the pre-reform year 2008. All specifications include
firm and State × two-digit industry × year fixed effects. The standard errors are clustered at the city level and are
robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are
defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Product with Highest Highest Margin
Emissions Weight2008 Product Weight2008

(1) (2)

Post ×CEPI[60,100] -0.174 0.140∗∗∗

(0.128) (0.038)

2008 Dependent Variable Mean (Control) 0.65 0.59
Fixed effects:

Firm Yes Yes
State × Industry × Year Yes Yes

Adjusted-R2 0.889 0.889
Observations 2,629 25,204

Panel B: Industries Split by High Polluting vs. Others

Dependent variable: Product with Highest Highest Margin
Emissions Weight2008 Product Weight2008

(1) (2)

Post ×CEPI[60,100] -0.030 0.146∗∗∗

(0.113) (0.040)

Post ×CEPI[60,100] × High-Polluting -0.231∗∗ -0.017
(0.083) (0.020)

Fixed effects:
Firm Yes Yes
State × industry × year Yes Yes

Adjusted-R2 0.912 0.899
Observations 2,629 25,204
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TABLE IAA5: CHANGES IN FIRM-LEVEL FACTORS OF PRODUCTION

This table reports the changes in factors of productin around the 2009 CEPI emissions regulation. The unit of analysis
is firm-year. Panel A reports the average effect across all industries whereas Panel B reports treatment effects split
by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1 is the total wage
bill as a fraction of net sales while in column 2 it is the ratio of raw material expenses to firm-level net sales. In
column 3, the dependent variable is investment, defined as the ratio of gross fixed assets to total assets. Post is an
indicator variable taking the value of 1 for all years including 2009 the year in which reform was implemented and
after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise.
CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below
70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the
omitted category including clusters with a CEPI value below 60. The table also reports the p-value from the joint test
of the coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. All specifications
include firm and State × two-digit industry × year fixed effects. The standard errors are clustered at the city level and
are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables
are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: Wage Bill Raw Material Exp. Investment
(1) (2) (3)

Post ×CEPI[60,70) (β1) -0.005 -0.030 0.019
(0.005) (0.029) (0.031)

Post ×CEPI[70,100] (β2) -0.002 -0.035 0.020
(0.003) (0.027) (0.024)

p-value [β1 − β2 = 0] 0.326 0.222 0.429
2008 Dependent Variable Mean (Control) 0.05 0.54 0.89
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

R2 0.806 0.793 0.826
Observations 10,752 10,752 9,643

69



TABLE IAA6: SHIFTING PRODUCTION: NO IMPACT ON MERGERS AND
ACQUISITIONS

This table reports changes in mergers and acquiisitions around the 2009 CEPI emissions regulation. The unit of
analysis is firm-year. The dependent variable in column 1 is an indicator for whether the firm in a given cluster was
a target in a merger and acquisition in that year while in column 2 it is an indicator for whether the firm in a given
cluster was acquired in a merger and acquisition in that year. Post is an indicator variable taking the value of 1 for
all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the value of one
if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if
the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is
restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters with
a CEPI value below 60. The table also reports the p-value from the joint test of the coefficients and the mean of the
dependent variable in levels in the pre-reform year 2008. All specifications include firm and State × two-digit Industry
× year fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗,
∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8.
Data source: CMIE Prowess.

Dependent variable: 1Target 1Acquired

(1) (2)

Post ×CEPI[60,70) (β1) 0.018 -0.000
(0.012) (0.008)

Post ×CEPI[70,100] (β2) 0.009 0.005
(0.009) (0.007)

2008 Dependent Variable Mean (Control) 0.00 0.00
Fixed effects:

Firm Yes Yes
State × Industry × Year Yes Yes

Bandwidth Yes Yes
Adjusted-R2 -0.060 -0.118
Observations 10,752 10,752
p-value [β1 − β2 = 0] 0.345 0.430
ATE 0.007 0.003
t-statistic value [0.740] [0.534]
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TABLE IAA7: SHIFTING PRODUCTION: PLANT ANNOUNCEMENTS

This table reports changes in the probabilities of plant announcements around the 2009 CEPI emissions regulation.
The unit of analysis is firm-year. The dependent variable in column 1 is an indicator for whether the firm announced a
new plant in the year while in column 2 it is an indicator for whether the firm announced that it is abandoning a new
plant that it had announced in the past years. Post is an indicator variable taking the value of 1 for all years including
2009 the year in which reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster
has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a
CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The
table also reports the p-value from the joint test of the coefficients and the mean of the dependent variable in levels
in the pre-reform year 2008. All specifications include firm and State × two-digit industry × year fixed effects. The
standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the
1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data sources: CMIE Prowess
and CapEx.

Dependent variable: 1New Plant 1Abandon Plant

(1) (2)

Post ×CEPI[60,70) (β2) 0.008 0.003
(0.013) (0.011)

Post ×CEPI[70,100] (β1) -0.010 -0.004
(0.011) (0.010)

2008 Dependent Variable Mean (Control) 0.00 0.00
Fixed effects:

Firm Yes Yes
State × industry × year Yes Yes

Bandwidth Yes Yes
R2 0.350 0.284
Observations 10,752 10,752
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TABLE IAA8: VARIABLE DEFINITIONS

This table presents definitions to variables used in the paper. EDGAR refers to the ’Emissions Database for Global Atmospheric Research’ data, available at
https://edgar.jrc.ec.europa.eu/dataset_htap_v3. PROWESS refers to the ’Performance and Ownership with Excellence’ available at https://prowessdx.cmie.com/.
CBCB refers to the ’Central Pollution Control Board’, with supporting data available at https://cpcb.nic.in/. Note, all normalized variables at the firm-level are
winsorized at the 1% tails, except for leverage, productivity, and profitability which are winsorized at the 5% tails. All product-level variables are winsorized at
the 1% tails except for emissions, which is winsorized at the 2.5% tails.

Variable Description Data Source

Panel A: Pollution
All Pollution Summation of pollution measures for a given area EDGAR
PM2.5 Particulate Matter with a diameter of 2.5 micrometers or less, measured in Mg/month EDGAR
PM10 Particulate Matter with a diameter of 10 micrometers or less, measured in Mg/month EDGAR
NOx Nitrous oxides, measured in Mg/month EDGAR
PM2.5 Fine Particulate Matter with a diameter of 2.5 micrometers or less, measured in Mg/month Van Donkelaar et al. (2015)

Panel B: Firm Characteristics
Assets (million INR) Total assets of firm operations in INR PROWESS
Sales (million INR) Total revenue from goods and services sold in missions of INR PROWESS
Leverage The sum of short- and long-term debt obligations scaled by contemporaneously reported Total Assets. PROWESS
Exporting intensity Firm earnings from exports of goods plus services scaled by contemporaneous total sales PROWESS
Ln(Productivity) The natural log of firm productivity, calculated following Levinsohn and Petrin (2003) and controls for firm size PROWESS
Profitability Earnings Before Interest, Taxes, Depreciation, and Amortization as a ratio of the prior year sales PROWESS
Investments/Assets Gross fixed assets as a ratio of the prior year total assets PROWESS
Raw Materials/Sales Raw material inputs scaled by contemporaneously reported net sales PROWESS
Wages/Sales Total wages scaled by contemporaneously reported net sales PROWESS
Market-to-book The total number of listed shares multiplied by the share price at the end of the fiscal year, scaled by contemporaneously reported

total assets. Reported for listed firms
PROWESS

Number of Products Number of unique products for a given firm in a given year PROWESS
1File Energy Inputs Indicator for whether the firm reports inputs PROWESS
1New Plant Indicator for whether the firm announced a new plant in the year CapEx
1Abandon Plant Indicator for whether the firm announced that it abandoned the plant in the year CapEx

Panel C: Product Characteristics
Ln(Product Sales) The natural logarithm of the per-product sales PROWESS
Ln(Product COGS) The natural logarithm of the per-product cost of goods sold (COGS) PROWESS
Unit Price The natural logarithm of the per-unit price, where unit is unique within but not across firm PROWESS
Margin Is measured as (unit price - unit cost)/unit price PROWESS
Ln(Per Unit CO2 Emissions) Author-calculated CO2 emissions per reported unit of production PROWESS
TFPQ Natural logarithm of quantity-based total factor productivity estimated following De Loecker, Goldberg, Khandelwal, and Pavcnik

(2016)
PROWESS

TFPR Natural logarithm of total factor productivity estimated following Levinsohn and Petrin (2003) that controls for firm size PROWESS

Panel D: Cluster Characteristics

CEPI[70,100] CEPI equal or greater than 70, and less or equal to 100 PROWESS and CPCB
CEPI[60,70) CEPI equal or greater than 60, and less than 70 PROWESS and CPCB
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Appendix B Additional background on the regulation

By 2009, India was an acknowledged industrial powerhouse. However, significant environmental degradation accom-
panied impressive growth. This pollution concentrated in industrial clusters, which shared infrastructure, administra-
tive structures, and proximity to major population centers made desirable locations for manufacturing and industrial
production. District and state authorities have regulated industrial cluster emissions since environmental regulation
began in the 1980s. However, enforcement has been uneven, emissions measurements and regulatory thresholds were
not standardized, and firms were often allowed to self-monitor, rather than be subjected to independent auditors.
Moreover, the government lacked even basic information on industrial environmental impact for most locations.

Against this background, the Central Pollution Control Board (CPCB) of the Ministry of Environment, Forest
and Climate Change conducted a comprehensive environmental assessment of industrial clusters. The aims were
to enhance, standardize and centralize pollution monitoring. The first step was to design a measure of pollution:
The Comprehensive Environmental Pollution Index (CEPI hereafter). Figure 1 describes its construction. The CEPI
combines proxies for (1) the amount and toxicity of pollutants, (2) the potential impact of that pollution on humans and
ecosystems, and (3) an assessment of the quality of actions already taken by cluster firms to capture or adequately
dispose of emissions. We include a complete discussion of each component and its construction as of the 2009
regulation in Central Pollution Control Board of India (2009).

Of the over two thousand industrial clusters in 2009, the CPCB reported CEPI values for the 88 worst-polluting
clusters. The CPCB classified those clusters with a CEPI above 60 as Severely Polluted Areas (SPA). These became
subject to central monitoring at the national level rather than the relatively weak local control. Moreover, the CPCB
classified industrial clusters with a CEPI of at least 70 as Critically Polluted Areas (CPA), which were additionally
mandated to submit a remedial action plan for approval detailing the actions and timelines at the cluster and firm
levels.

If a firm within a Critically Polluted Area failed to comply with the directives of the action plan, then they would
lose their Environmental Clearance and Consent to Operate permits that allow firms to function within the formal
economy. Moreover, Consent to Establish permits could not be issued to new operations if they do not fully comply
with the cluster regulations and action plans.

Consider the example of the action plan for the CPA Patancheru-Bollaram Cluster in Andhra Pradesh (Pollution
Control Board of Andhra Pradesh (2010)), which contains the operations of 106 establishments and whose CEPI, at
70.07, was just over the cutoff between being classified as a Severely or Critically Polluted Area. The Action Plan
specifies a lengthy list of specific actions and deadlines agreed to by the firms of the cluster. For example, the cluster
agreed to build a common effluent treatment plant, a treatment storage and disposal facility, and alternative drainage
systems so no firm would outlet emissions into significant water bodies. In addition, firms operating in specific high-
polluting industries would no longer be allowed to expand, and new firms in these industries could not be established
in the cluster. The plan also listed self-policing mechanisms the cluster agreed to in order to prevent illegal dumping.
In addition, the cluster agreed to pay compensation to local farmers affected by pollution and to supply drinking
water to affected villages. The action plan then details a long list of agreed investments and recorded progress for
each of the 106 individual establishments in the cluster.

The CPCB also installed continuous remote pollution sensors for air, water, and land pollution, video cameras
(including night cameras) on the premises of factories at the point of their process emissions, and instigated tri-annual
CPCB audits (January-February, May-June, and September-October) and quarterly audits from district and state level
monitoring committees. These reports were released to the public annually via the CPCB website. Each report specifies
the longitude and latitude of the air and water sampling locations, the laboratories used to carry out sampling and
analyze the samples, and the date of the sampling. Then for each of air, groundwater and surface water samples the
report specifies a particular pollutant (e.g., lead) or parameter (e.g., color (Hazen units)), the measurements of that
pollutant and the test method used. Finally, the report includes photographs of the measurements. To give readers
an idea, Figure IAB1 provides an example of the monitoring documentation for the Patancheru-Bollaram Cluster in
Andhra Pradesh. Panel (a) reports the locations of water sampling locations superimposed over a map of the cluster.
Panel (b) reproduces a few of the sampling documentation photographs of air, surface and groundwater sampling in
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the Patancheru-Bollaram Cluster.

 

 

 

 

(a) Water sampling locations
 

Ambient Air Monitoring Station.                                  Surface Water Sampling Point. Isukavagu 
Sujana Metals Unit-IV

 

 

 

 

 

      Ground Water Sample Point. Bollaram Village       Ground Water Sample Point. Krishnareddypet                                            

(b) Sampling documentation photos

FIGURE IAB1: PANTANCHERU-BOLLARAM CLUSTER POLLUTION MONITORING

This figure illustrates monitoring around the Pantancheru-Bollaram cluster. Panel (a) illustrates water sampling
locations with the blue dots signifying water collection sites. Panel (b) documents sampling at these sites. Source:
CPCB annual reports, “Sampling and Analysis of Ambient Air Quality and Water Quality in Industrial/Cluster
Areas.”

Finally, we complement the analysis presented in Figure 3 testing for manipulation of the original, 2009 CEPI with
complementary McCrary (2008) density tests for the re-calculated CEPI values in 2011 and 2013. Note that in 2011
and 2013 only the CEPI values for those firms that had been ranked CPA in 2009 were published, so we are testing
for manipulation in these updated values among the 2009 CPA sub-population. In summary, in India, as elsewhere,
holding firms accountable for their environmental impact was difficult with unreliable data and weak enforcement.
Accordingly, the CPCB centralized control and broadened its scrutiny of emissions. It automated monitoring to the
extent possible, increased auditor independence, and instigated overlapping monitoring regimes. Moreover, the CPCB
increased engagement specific cutoffs defined escalating severity of regulatory scrutiny.
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FIGURE IAB2: TEST FOR MANIPULATION OF THE CEPI IN 2011 AND 2013

This figure studies potential manipulation of CEPI. Panel (a) reports the fitted distribution of the 2011 CEPI update
around the cutoff at 70 (normalized to zero) for clusters with a 2009 CEPI of at least 70 (Critically Polluted Areas).
Panel (b) reports the fitted distribution of the 2013 CEPI update around the (updated) cutoff at 60 (normalized to zero)
for the same sample. Source: CPCB.
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Following the success of the regulation, the CPCB and Central government devised a color-coding system to
classify pollution levels for industrial clusters based on a numerical pollution score that varies between 21 and 100.
Under this system, industries are categorized based on their pollution potential into a color-coded system, which
subsequently dictates the regulatory obligations of the firms within these industries. This system classifies firms
into three categories: Green, Orange, and Red. Firms falling under the ’Green’ category are identified as the least
polluting, thus bearing the lowest regulatory burden. Conversely, ’Red’ firms are recognized as the most polluting
entities, subjected to the most stringent regulatory requirements. Those in the ’Orange’ category fall in between,
indicating a moderate level of pollution and corresponding regulatory obligations. Lastly, firms with low scores are
classified as ’White.’

B.1 Remedial Action Plans

In January 2010, Industrial clusters with CEPI values above 70 were designated as “critically polluted areas” and
required to formulate an action plan. There were 43 such clusters spread across India. These plans include targeted
measures to tackle specific sources of pollution, such as stricter effluent and emission norms, upgrading pollution con-
trol facilities, and adopting cleaner technologies. The content of the action plans varied significantly across different
states and clusters, depending on local environmental priorities and industrial activities. For example, the Howrah
industrial cluster in West Bengal concentrated on enhancing air quality monitoring and controlling emissions from
small-scale industries.

The action plans were implemented by the industries with oversight from state pollution control boards and
other regulators. Regular monitoring and assessment were conducted to evaluate the effectiveness of these measures
in reducing pollution. The action plan for Howrah, excerpted in Figure IAB3, included upgrading treatment plant
technology, promoting the adoption of cleaner production techniques, and improving solid waste management prac-
tices to mitigate the impact of hazardous waste on the environment. The Howrah action plan includes the installation
of a Common Effluent Treatment Plant (CETP), an Ambient Air Quality Monitoring system (AAAQM), and the devel-
opment of a proper drainage facility. The plan includes specific deadlines, for these points, all are to be completed by
June 2012. The Plan is specific about who bears implementation responsibility. In these examples, it is shared between
industry associations, individual industries, the West Bengal Pollution Control Board (WBPCB), and the Ministry of
Environment and Forests (MOEF). Finally, the action plan includes a projected cost. For example, installation of the
treatment plant is projected at approximately 1.5 Crore INR (around 309,917 USD). The cost is expected to be shared
between the industry association and the WBPCB. This example is from the Long Term Action points (to be completed
in a year or later from agreement) in the category of water emissions. More generally, the action plans typically divide
actions into short-term (less than one year) and long-term and between air, water, and land category emissions.
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FIGURE IAB3: ANECDOTAL EVIDENCE ON ACTION PLANS

This figure reports anecdotal evidence collected from the action plan of the Howrah industrial cluster in West Bengal

on specific abatement actions to be taken in the long-term (deadline more than one year) for industrial water emissions.

Source: CPCB.

Action plans also included actions for specific firms. Figure IAB4 is an example from the action plan for the
action plan for Haldia in West Bengal. Here we observe specific actions to reduce air, water and land-category impact,
including the technology to be adopted.

We also observe evidence from the annual reports of listed firms of the types of actions treated firms undertook
to reduce their emissions. Annual reports are mandated by the Companies Act, 1956 and include comprehensive
details about firm financial performance, corporate governance practices, and strategic initiatives. In particular, we
examine the sections on corporate social responsibility activities, management discussion and analysis (MD&A), and
disclosures on risks and opportunities. In Figure IAB5 we include an example excerpt for JK Lakshmi Cement
Limited in the Ankleshwar industrial cluster in Gujarat for fiscal year 2012 (calendar year 2011), the year following
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FIGURE IAB4: ANECDOTAL EVIDENCE ON ABATEMENT INVESTMENTS

This figure reports anecdotal evidence collected from the action plan of the Haldia industrial cluster in West Bengal
on specific abatement actions to be taken by Tata Chemicals Limited for the fiscal year 2011 Source: CPCB.
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the implementation of the action plan in Ankleshwar. We see that the firm specifically mentions that they reduced
their energy inputs overall and that they switched to greener energy sources. This is anecdotal evidence consistent
with the robust finding in Table 4 that the average treated firm took these exact actions.

FIGURE IAB5: ANECDOTAL EVIDENCE FROM AUDITED ANNUAL REPORT

This figure reports anecdotal evidence collected from firm annual reports. It illustrates specific abatement actions

taken JK Lakshmi Cement Limited, located in the Ankleshwar industrial cluster in Gujarat, for the fiscal year 2012.

If the cluster’s CEPI values failed to improve, then the industries that did not implement action were barred from
expanding, either existing businesses or new entrants. We observe emissions significantly decrease for treated relative
to control firms (see Section 4), which is consistent with credible enforcement, on average. We also observe media
reports of both successful and unsuccessful enforcement. For example, Figure IAB6 blames the CEPI regulation for
missed production targets at Coal India Limited, an important state-owned enterprise and the largest government-
owned-coal-producer in the world. Specifically, Coal India was not allowed to expand production in clusters with a
2009 CEPI of at least 70.
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FIGURE IAB6: EXAMPLE ENFORCEMENT EVIDENCE FROM MEDIA

This figure reports anecdotal evidence collected from media reports of compliance with the action plans for industrial

clusters with CEPI of 70 or greater. The article discusses the adverse impact of the regulation on coal production of

Coal India Limited. Source: Factiva, Platts International Coal Report.

If instead the CEPI values improved and pollution levels decreased significantly, then the clusters would continue
to be subject to regular pollution audits and continuous monitoring stations but would otherwise not be prevented
from expanding. From Figure 2a, we can see that compliance with these action plans varied, with some clusters that
had a CEPI of 70 or over improving their follow-on CEPI in 2011 and 2013 significantly and others only marginally.
We have also gathered regulatory documents assessing compliance with action plans at the cluster level. Figure IAB7
is from a follow-up assessment of the Howrah action plan in September 2014 of the items excerpted in Figure IAB3.
We can see that progress is recorded in all three areas, but only one (drainage) was completed by September 2014,
despite the original plan calling for compliance by June 2012. In general, we observe that regulator capacity and strong
industry groups played a key role in achieving the action plan directives. States like Gujarat and Maharashtra, with
well-established industrial bases and stronger regulatory frameworks, saw more rigorous enforcement and regular
monitoring. However, in states with less regulatory capacity, such as Uttar Pradesh or West Bengal, enforcement was
less consistent, leading to varied levels of compliance and effectiveness.
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FIGURE IAB7: EXAMPLE ACTION PLAN AT CLUSTER LEVEL: HOWRAH, WEST
BENGAL

This figure reports anecdotal evidence collected from regulatory assessments of compliance with the action plans for

industrial clusters with CEPI of 70 or greater. It illustrates follow up on long-term (deadline more than one year)

action points to reduce industrial water emissions in the Howrah industrial cluster in West Bengal. Source: CPCB.
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Appendix C Measuring cluster-level pollution

The appendix provides a comprehensive overview of the methodology employed to compile the pollution data panel
for each industrial site. We first discuss the Emission Database for Global Atmospheric Research (EDGAR) data,
followed dataset by Van Donkelaar, Hammer, Bindle, Brauer, Brook, Garay, Hsu, Kalashnikova, Kahn, Lee, et al.
(2021) (henceforth, Van Donkellaar). Finally, we detail the steps undertaken to construct the data panel.

C.1 Emission Database or Global Atmospheric Research (EDGAR)

Our primary pollution data comes from the Emission Database or Global Atmospheric Research (EDGAR), with par-
ticular emphasis on the Hemispheric Transport of Air Pollution (HTAPv3) mosaic. This mosaic is designed to enhance
the temporal range, sectoral breakdown, and geographical coverage of existing official data.37 We use pollution data
for nitrous oxide (NOx), particles less than 2.5 µm in diameter (PM2.5), and particles less than 10 µm in diameter
(PM10), are available, and each is processed distinctly. The monthly data with the highest resolution (0.1°x 0.1°) is
downloaded. Upon reading this raster file, we keep only the industrial pollution layer, given its relevance to our
study.

C.2 Fine Particulate Matter (PM2.5) from Van Donkelaar et al. (2021)

We also use data from Van Donkelaar et al. (2021), as it offers monthly high-resolution (0.01° x 0.01° grid) estimates of
ground-level fine particulate matter (PM2.5). These pollution estimates are calculated by merging aerosol optical depth
(AOD) data from NASA’s MODIS, MISR, and SeaWiFS instruments with outputs from the GEOS-Chem chemical
transport model. The dataset is refined through calibration with global ground-based observations via geographically
weighted regression (GWR).

C.3 Measurement Procedure

The process of measuring pollution data at the industrial cluster level is broken down into four steps.

1. Extract the cluster location from the PDF titled “Assessment of the Need from Common Effluent Treatment
Plants.”

2. Geocode each identified location and construct corresponding circles around industrial areas/estate locations.

3. Using the location and pollution data from the previous step, we compute the weighted overlap between the
designated circular region and the pollution raster layer.

(1) Extraction of Industrial Clusters: We use the document “Assessment of the Need from Common Effluent Treat-
ment Plants,” which is published by the CPCB under the Ministry of Environmental & Forest, Govt. of India. Starting
from page 22 in Annexure II, it presents a list of industrial areas and estates of new locations categorized by state.
Using this document, we extract these addresses into Excel using PDF converters. Given the document’s inconsisten-
cies, research assistants meticulously review the output by hand to guarantee accurate extraction.

(2) Geocoding and Shape Construction: Next, we pinpoint the latitude and longitude of industrial clusters.
We send each address to the Google Maps API, and retrieve their geocodes. This helps exclude duplicate locations,
proposals that weren’t realized, and entries with incomplete information. After this step, we are left with 2914 lo-
cations. Using this refined list, a geometry, specifically a circle with a 500m radius, is constructed around each location.

(3) Weight Pollution Data: The final step involves calculating the pollution at each industrial location. For
this purpose, we utilize raster files from EDGAR and Van Donkelaar, as discussed above, to assess pollution levels
surrounding these sites.

37See https://edgar.jrc.ec.europa.eu/dataset_htap_v3 for more information.
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A critical aspect to consider is that the vicinity of an industrial location can span multiple grid cells. To account
for this, we calculate a weighted average of the pollution values. This involves determining the proportion of the
industrial area’s footprint overlapping each grid cell, which then serves as the weight for that cell. By summing these
weighted values across the industrial area, we obtain a comprehensive dataset detailing pollution levels by industrial
area, month, and pollutant type.

FIGURE IAC8: SAMPLE FROM THE ASSESSMENT OF THE NEED FROM COMMON
EFFLUENT TREATMENT PLANTS

This figure presents an excerpt from the Assessment of the Need from Common Effluent Treatment Plants document.
It presents the first 5 observations from page 22.

FIGURE IAC9: VADODARA, GUJARAT

This figure presents a shape drawn for a given industrial area/estate using a 500m radius.
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FIGURE IAC10: EXAMPLE OF INTERSECTION

This figure illustrates pollution calculations from December 2012, depicted as a circle divided into two segments: the
top segment represents 27%, and the bottom segment represents 73%, indicating the proportional weight calculations
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Appendix D Product-Level CO2 Emissions

This appendix describes how we clean the product-level energy inputs from the Prowess database and transform them
into product-level CO2 emissions. The Prowess product-wise energy consumption data are from company disclosures
in their annual reports. Clause (e) of sub-section (1) of section 217 of the Companies Act of 1956 mandates that
every company disclose total energy consumption in a prescribed format. However, there is no legal obligation to
disclose the product-level energy consumption per unit of production. Thus, a limitation of this data is that firms
choose whether or not to disclose it, and not every firm chooses to do so. However, once a firm starts reporting
product-level energy inputs, however, it tends to continue to do so throughout the entire period. Note that this
changes the interpretation of our results to be most directly applicable to these types of firms but is unlikely to
violate the identification assumption that there is no discontinuity in the probability of reporting product-level energy
assumption at CEPI treatment thresholds. Figure IAD11 provides evidence supporting this identification assumption.

TABLE IAD9: PROBABILITY OF FILING ENERGY INPUTS

This table reports the effect of the 2009 CEPI emissions regulation on the probability of reporting product-level energy inputs in
firm annual reports. The unit of analysis is firm-product-year. Model (1) is on all firms in the Prowess database. Models (2) and (3)
are on the regression dataset comprising manufacturing firms in clusters with CEPI within a bandwidth of 10 pollution index units
around the cutoffs at 70 and 60. Post is an indicator variable taking the value of 1 for all years including 2009 the year in which
reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70, and
zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below 70,
and zero otherwise. In specifications (2) and (3), the sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009
with the omitted category including clusters with a CEPI value below 60 and includes firm and State × two-digit Industry × year
fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at
the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: 1File Energy Inputs

Sample: All Regression

(1) (2) (3)

Post -0.007∗∗∗

(0.001)

Post ×CEPI[60,100] -0.010
(0.010)

Post ×CEPI[70,100] -0.011
(0.010)

Post ×CEPI[60,70) -0.008
(0.013)

Fixed effects:
Firm Yes Yes Yes
State × industry × year No Yes Yes

Bandwidth Yes Yes Yes
R2 0.408 0.417 0.417
Observations 119,943 32,299 32,299
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FIGURE IAD11: DISCONTINUITY IN THE PROBABILITY OF FILING PRODUCT
ENERGY INPUTS AT BASELINE

This figure presents the average probability that a firm reports product-level energy inputs in its annual statement in 2008 around the

CEPI treatment thresholds. We pool across a 10 CEPI-index value window around the two thresholds at CEPI 60 and 70, normalized

in the figure to zero. A linear fit is generated separately for each side of 0, with the 95% confidence intervals displayed.

To our knowledge, this dataset offers unique access product-level energy inputs for such a large cross-section of
firms. We exploit this unique data to bring new insight into how emission-capping regulations impact production
decisions along the input dimension.

The data are at the firm-product-year-energy source level and are expressed in energy input units per reported
production unit. For example, A.B.G. Cement Ltd. reported using 70.28 kWh of purchased electricity, 0.14 tonnes
of coal, and 3.3 KWh of firm-produced electricity from a diesel generator per tonne of cement produced in 2014.
Since regulators do not mandate a particular reporting standard, there exists variation in reporting units in the raw
data. Therefore, we first separate the energy and production units and then standardize them. For example, we
transform all production units reported in “lakh liters” into “liters” by using the fact that one lakh liter is 100,000
liters. Ultimately, we express all energy inputs in kcal per production unit. This conversion allows us to test for shifts
in energy use across energy sources as a proportion of the total energy input in kcal.

Second, we transform energy input into CO2 output. This exercise requires assumptions about each energy
source’s energy content and CO2 output. We use the conversion factors and unit assumptions from the Central
Electricity Authority (CEA) of India for 2008 (Central Electricity Authority, 2008), the year before the regulation.
This choice fixes the energy technology just before the regulation. We assume that in the five-year window around
the regulation, there are no drastic changes to technology that would change the CO2 emissions of each fuel type
significantly. Importantly, they are unlikely to change discontinuously around the thresholds set by CPCB.

Specifically, we use the CEA’s assumptions on gross calorific value and CO2 emission factors per fuel source
that this regulator mandated that electricity plants use to quantify their CO2 emissions in 2008 (Central Electricity
Authority, 2008). We supplement this source from the 2008 Commercial Energy Balance Tables and Conversion Factors
from the Energy and Resources Institute (Energy and Resources Institute, 2008). The latter gives us fuel-specific
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conversions between, e.g., mass units and volume units for the type of fuel used in Indian manufacturing firms. Table
IAD10 reproduces the calculation inputs. Note that energy input from hydro, solar or wind sources are assumed to
have zero CO2 emissions.

TABLE IAD10: PRODUCT-LEVEL ENERGY INPUTS TO CO2 EMISSIONS

This table reports the assumptions we used when transforming product-level energy inputs into product CO2 emissions. Note that
we assume that CO2 emissions from burning bio-waste are based on the idea of a closed carbon cycle —the carbon dioxide emitted
when bio-waste is burned is offset by the carbon dioxide absorbed during the growth of the plants that produced the waste so that
the amount of CO2 released is approximately equal to the amount of CO2 absorbed. Data source: Central Electricity Authority CO2
Baseline Database 2008 (Central Electricity Authority, 2008) and the Commercial Energy Balance Tables and Conversion Factors from
the Energy and Resources Institute (Energy and Resources Institute, 2008).

Fuel Gross Calorific Density Fuel CO2
Value (kcal/kg) (t/kls) Emission Factor

Electricity from Fuel
Fuel (tCO2/mWh) (gCO2/MJ)

Coal 3,755 0.95 1.04 90.6

Diesel 10,350 0.83 0.78 69.1

Oil 9,850 0.95 0.66 71.9

Gas 11,300 0.86 0.55 49.4

Lignite 3,000 0.83 1.28 100.5

Naptha 10,750 0.70 0.61 66.0

Bio∗ 3,625 N/A 0.00 0.0

Hydro N/A N/A 0.00 0.0

Solar N/A N/A 0.00 0.0

Wind N/A N/A 0.00 0.0

Nuclear N/A N/A 0.00 0.0

Finally, we calculate tonnes of CO2 emitted per reported production unit for each firm-product-year-energy
source. Once all energy sources have the same units on the energy input side (kcal/production unit) and the CO2

emissions side (tonnes of CO2/production unit), we collapse the data to the firm-product-year level across energy
sources.

Using the unique firm and product codes, we merge with our regression dataset of manufacturing firms, which
contains the quantity produced of each product by each firm per reporting year. We next calculate the total CO2

emissions per firm-product-year. So, in the end, we have a dataset at the firm-year-product level for the fiscal years
2005 to 2015 that tells us the total energy input per product reporting unit, the total CO2 emissions and the CO2

emissions per product reporting unit, and the proportion of the total energy from each fuel source. These data are
summarized below for our regression sample in Table IAD11.
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TABLE IAD11: SUMMARY STATISTICS: ENERGY INPUTS AND CO2 EMISSIONS

This table presents descriptive statistics of the product energy inputs and CO2 emissions for our baseline sample. Ln(Total product
energy input) is defined as the natural logarithm of total product-level energy inputs for the firm-year. Ln(Total product CO2) is defined
as the natural logarithm of total product-level CO2 emissions for the firm-year. CO2 per production unit is defined as the ratio of total
product in tonnes and the units the product is quoted in on the firm’s annual statement. Proportion purchased electricity is defined as
the ratio of the total product-level energy from purchased electricity and total product energy input.

Obs Mean Std. dev. Min Median Max.

(1) (2) (3) (4) (5) (6)

Ln(Total product energy input) 1,151 13.81 2.96 5.29 14.39 21.48
Ln(Total product CO2 emissions) 1,151 4.37 4.45 -6.54 4.50 14.79
Tons of CO2 per production unit 1,151 2.72 17.28 0.00 0.16 168.34
Proportion purchased electricity 1,151 0.56 0.47 0.00 0.99 1.00

Appendix E Quantity Productivity estimation

Measuring productivity is challenging. In many settings, firms are capital constrained, subject to power blackouts
and other infrastructure constraints, regulations limit labor adjustment, firms, among others. The workhorse model,
Levinsohn and Petrin (2003) assumes that firms readily adjust their intermediate inputs when faced with a produc-
tivity shock. This methodology then calculates revenue-based total factor productivity (TFPR) that reflect changes in
productivity however these might also reflect changes in markups, the product mix, and product quality. However, it
is reasonable to expect all three to respond to the emissions regulation. On the other hand, if consumers value quality,
TFPR may be preferable to TFPQ-based measures since higher prices and revenues may capture the ability to produce
high quality (Atkin et al., 2019). Indeed, we confirm that in our data that input prices are an increasing function of
product quality.

To circumvent such issues, we adopt the approach proposed by De Loecker, Goldberg, Khandelwal, and Pavcnik
(2016), allowing us to flexibly control for quality differences to be consistent with a large class of demand models
and any degree of passthrough between input and output prices. Further, it allows us to recover firm-product-
year estimates of markups and marginal costs. Estimates are corrected for product quality, as proxied by input price
variation, and for sample selection. In this Appendix, we describe the construction of quantity total factor productivity
(TFPQ), following De Loecker, Goldberg, Khandelwal, and Pavcnik (2016). We control for input price variation across
firms using differences in output quality, which we model as an increasing function of output price, product market
share, and product dummies.38 using the methodology of De Loecker, Goldberg, Khandelwal, and Pavcnik (2016).

E.1 Estimation assumptions

Following De Loecker, Goldberg, Khandelwal, and Pavcnik (2016), our estimation of firm quantity productivity, and
firm-product-level marginal cost and markups rely on several key simplifying assumptions, as described below.

1. All producers of the same product use the same production technology, though productivity in producing the
product can differ;

38Intuitively, output prices are highly correlated with input prices since producers of more expensive products also
use more expensive inputs, on average (for example, Kugler and Verhoogen (2012)) Following De Loecker, Goldberg,
Khandelwal, and Pavcnik (2016), we also assume that input quality is correlated across the factors of production.
Intuitively, manufacturing high-quality products requires combining high-quality materials with labor and capital.
This assumption allows us to model input prices as a function of a single index of product quality at the firm-product
level.
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2. Firms are equally productive at producing all its products;

3. Firms can only change output in the short term by adjusting material inputs, but not capital and labor, which
are sticky;

4. We model firms as minimizing short-turn costs, taking concurrent (time-t) quantity and input prices as given;

5. The production function coefficients are assumed to be constant over the sample period;

6. The number of products manufactured by firms increases with the firm’s productivity.

Assumption 2 is not likely to hold but is standard in the literature because it allows estimates of markups for
multi-product firms. Assumption 3 allows us to ignore cross-elasticities, which we cannot estimate because we only
observe labor and capital at the firm-year level. Note that this does not impose that firms cannot substitute between
capital and labor in such a way that output remains constant. If assumption 3, that the only variable input is materials,
and assumption 4, that firms minimize costs, hold, then markups are computed as the deviation between the elasticity
of output with respect to inputs and that input’s share of total revenue. Assumption 4 also implies that input prices,
our main proxy for product quality, do not depend on input quantities. Note that this is unrealistic in the sense
that it rules out static sources of market power in input markets, i.e., monopsony power. As a result, this approach
understates the level of markups and is therefore most useful in explaining changes in markups. The intuition is that
if market power is static or if contemporaneous changes in market power are not correlated with the 2009 emissions
regulation shock then the changes in markups will be estimated without bias. Assumption 5 is necessary because we
do not have enough data to estimate production functions for different time periods.

E.2 Addressing empirical bias

There are two main sources of bias in estimating TFPQ: (1) the unobserved allocation of inputs across products for
firms that produce more than one product and (2) the unobserved quality of products. To address the first, we
estimate the production function on single-product firms only. Of course, firms choose if they will produce one or
multiple products, introducing selection bias into our estimates. Assuming that the number of products manufactured
by firms is an increasing function of firm productivity (assumption 6 above) allows us to control for selection into
being a multi-product firm by estimating the probability that a firm continues to produce one product as a function
of the firm’s productivity forecast and the state variables (number of products, material inputs, and exogenous factors
like firm location). The assumption that multi-product firms use the same production technology as single-product
firms producing the same product (assumption 1 above) allows us to extrapolate our single-product estimates to our
subsample of multi-product firms.

The second bias, that we do not observe the quality of products, is a fundamental problem of productivity
estimation. In particular, TFPQ estimations are downward biased when the econometrician does not observe product
quality differences across firms.39 To overcome this, we proxy for output quality by input quality. We do not observe
input quality directly either because we do not observe how firms that produce multiple products allocate inputs
across those products. To partially address this, we estimate the production function using the subsample of single-
product firms.40 This approach is attractive because it controls for quality differences flexibly so as to be consistent

39TFPR includes prices, which means that it captures cross-sectional quality differences between firms within
narrowly-defined product categories. However, the TFPR measure also includes markups in prices have both demand
and supply determinants, biasing estimates of productivity changes and cross-sectional comparisons. The direction
and magnitude of this bias are highly dependent on the specific empirical setting.

40We confirm that input prices are an increasing function of product quality and therefore we can control for
input price variation across firms using differences in output quality across firms, which we model as an increasing
function of output price, product market share, and product dummies. Intuitively, output prices have been found to
be highly correlated with input prices since producers of more expensive products also use more expensive inputs,
on average (for example, Kugler and Verhoogen (2012)) We also assume that input quality is correlated across the
factors of production. Intuitively, manufacturing high-quality products requires combining high-quality materials
with high-quality labor and capital. This assumption allows us to model input prices as a function of a single index
of product quality at the firm-product level.
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with a large class of demand models and with any degree of passthrough between input and output prices. The
approach also allows us to recover firm-product-year level estimates of markups and marginal costs.

The specific steps we take are to:

1. Estimate the production function parameters and recover the product-specific output elasticity with respect
to materials from a subsample of single-product firms. We model the production function using a translog
functional form;

2. Correct for selection bias from the non-random decision of how many products to produce by estimating the
productivity threshold beyond which firms move from producing one to multiple products and then controlling
for the probability that the firm will continue to be below the threshold in a given year as a function of firm
productivity and the state variables;

3. Proxy for the (unobserved in our data) product-level materials share of total revenue for each product of multi-
product firms using the estimated production function coefficients for single product firms and an input price
control function that expresses the product-specific allocation of material inputs to each product as a function
of the firm-product-year output price, market share, product and location fixed effects, and the firm’s export
status;

4. Compute firm-product-year level markups and marginal costs, where the markup is the ratio of the output
elasticity of materials to the materials share of total revenue and marginal costs are the ratio of the products
price to its markup.

Table IAE12 reports basic summary statistics of the two-digit 1887 NIC industry codes for the Indian manufac-
turing sector for the period 2005 to 2015. There are 1,840 unique products, and 6,711 unique firms in our dataset, for
whom 2,854 are single-product firms. It is on this sub-sample that we estimate the production function coefficients
(assumed constant over the period).

TABLE IAE12: SUMMARY STATISTICS BY SECTOR

This table reports summary statistics for the average year in the sample. Column (1) reports the share of the output by sector in the
average year. Column (2) reports the number of products by sector in the average year. Columns (3) and (4) report the number of
firms and the number of single-product firms manufacturing products in the average year. Data source: CMIE Prowess.

Manufacturing sector Share of total
output

Unique
products

Unique firms Unique
single-product

firms
(1) (2) (3) (4)

10 Coal, peat, & lignite 0.6% 24 145 14

21 Food products 10.6% 180 973 457

22 Beverages & tobacco products 0.2% 12 43 16

23 Textiles & apparel 5.0% 144 634 261

27 Wood & wood products 0.3% 22 132 44

28 Paper & printing publishing 0.5% 28 78 11

29 Leather, fur & synthetic leather 1.9% 27 193 151

30 Chemicals (except petroleum & coal) 8.3% 250 813 395

31 Rubber, plastic, nuclear fuel, petroleum & coal 16.9% 285 757 306

32 Non-metallic mineral products 17.9% 65 516 211

33 Basic metal & alloys industries 9.6% 110 682 312

34 Metal products (not machinery & equipment) 4.4% 87 233 84

35 Machinery & equipment (not transport) 9.9% 373 723 276

37 Transport equipment & parts 10.6% 126 396 182

38 Other manufacturing industries 3.2% 97 393 134

100% 1,830 6,711 2,854
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We perform several sanity checks on the data to see if it conforms with our economic intuition and evidence in
the literature. Figure IAE12 reports the correlation between demeaned markups and marginal costs and the natural
logarithm of product quantity produced.

The left panel of FigureIAE12 demonstrates that quantities and markups are positively related in our sample,
indicating that firms producing more output also enjoy higher markups due to their lower marginal costs. The right-
hand panel of Figure IAE12 plots marginal costs against production quantities. Our elasticity estimates show that
many firms are characterized by increasing returns to scale, an empirical pattern also noted in De Loecker et al.
(2016). Consistent with this, we see that there is an inverse relationship between a product’s marginal cost and the
quantity produced.

FIGURE IAE12: MARGINAL COSTS, MARKUPS AND QUANTITIES

The left panel presents the correlation between the natural log of product markup and output quantity. The right
panel is between the natural log of product marginal cost and output quantity. Data are at the firm-product-year
level for the period 2005 to 2015. Data are winsorized at the 3rd and 97th percentiles. Markups, marginal costs, and
quantities are demeaned by product-year fixed effects to make them comparable across firms.

Next, we check the reasonableness of our extrapolation of the production function estimates of single-product
firms to multi-product firms. Figure IAE13 reports how our estimated firm-product-year markups (left panel) and
marginal costs (right panel) vary across products within multi-product firms. Specifically, we de-mean markups
and marginal costs using product-year and firm-year fixed effects in order to make these variables comparable across
products within firms. We then plot the de-meaned markups and marginal costs against the sales share of the product
within each firm.

In the left-hand panel of Figure IAE13, marginal costs rise as a firm moves away from the product with the
lowest within-firm marginal cost (its “core” product). For the other products, marginal costs rise with a product’s
distance from the core competency. The right panel reports that firms set their highest markups on their core product,
and markups decline as they move away from that main product. Although we do not impose any assumptions
on the market structure and demand system in our estimation, these correlations are consistent with the theoretical
predictions from the multi-product firm literature (Eckel and Neary, 2010; Mayer, Melitz, and Ottaviano, 2014; Melitz
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and Ottaviano, 2008) and the empirical findings of De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) in the
Indian manufacturing sector.

FIGURE IAE13: MARKUPS, COSTS AND PRODUCT SALES SHARE

Notes: The left panel presents the correlation between the natural log of product markup and sales share. The right panel is between

the natural log of product marginal cost and sales share. Data are at the firm-product-year level for the period 2005 to 2015. Data are

winsorized at the 3rd and 97th percentiles. Markups, marginal costs, and quantities are demeaned by product-year and firm-year

fixed effects to make them comparable across firms.

Having estimated the TFPQ measure and convinced ourselves our estimates are reasonable, we consider the
impact of the 2009 CEPI pilot on quantity productivity (TFPQ). In Table 8 we found a significant increase in TFP,
driven by firms not operating in highly polluting industries. In other words, the average treated firm became more
productive at turning input into revenue. In Table 8, we see that there is no significant effect on the efficiency with
which treated firms turn input into outputs (column 1). There is also no differential effect of treatment on the TFPQ
of firms in highly polluting firms and firms in other industries (column 2).
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TABLE IAE13: CHANGES IN QUANTITY-BASED PRODUCTIVITY

This table reports the changes in firm profitability and revenue productivity around the 2009 CEPI emissions regula-
tion. The unit of analysis is firm-year. The dependent variable in column 1 is the natural logarithm of quantity-based
total factor productivity estimated following De Loecker, Goldberg, Khandelwal, and Pavcnik (2016). Column 2
focuses on the subsample of firms operating in High-Polluting Industries (HPI) while column 3 focuses on the sub-
sample that excludes HPI. Post is an indicator variable taking the value of 1 for all years including 2009 the year in
which reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value
at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater
than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted
by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The table also reports
the p-value from the joint test of the coefficients and the mean of the dependent variable in levels in the pre-reform
year 2008. All specifications include firm and State × two-digit industry × year fixed effects. The standard errors are
clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10%
level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: Log(Quantity-based Productivity)
(1) (2)

Post ×CEPI[60,70) (β1) 0.161 0.182
(0.192) (0.178)

Post ×CEPI[70,100] (β2) 0.317∗ 0.319
(0.168) (0.190)

Post ×CEPI[70,100] × High-Polluting (β4) 0.000
(0.174)

Post ×CEPI[60,70) × High-Polluting (β3) -0.042
(0.232)

2008 Dependent Variable Mean (Control) 8.5 8.5
Fixed effects:

Firm Yes Yes
State × Industry × Year Yes Yes

Bandwidth Yes Yes
Adjusted-R2 0.688 0.687
Observations 1,858 1,858
p-value [β1 − β2 = 0] 0.269
ATE 0.094
t-statistic value [0.315]

Together with the results in Table 8, this evidence is suggestive that the main effect of treatment is on profitability,
not on operational efficiency. This is not to downplay the limitations of this analysis, mainly those highlighted in
Atkin, Khandelwal, and Osman (2019). Briefly, these authors find that TFPQ is a relatively poor measure of quantity
productivity because it shows excessive dispersion across firms and correlates negatively with quality productivity,
which they measure off of detailed product quality data in the rug manufacturing sector. The authors attribute this
to the difficulty of adjusting for product specifications and quality to make apples-to-apples comparisons. Finally,
they find that TFPR does better than TFPQ at capturing broad firm capabilities, even though TFPR suffers from being
unable to separate effects from changes in productivity, markups, the firm-product mix, and product quality. For this
reason, we use TFPR as our main measure of productivity.
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