THE MACRODYNAMICS OF INDIA'S GREEN TRANSITION: AN RBC PERSPECTIVE

19TH ANNUAL CONFERENCE ON ECONOMIC GROWTH AND DEVELOPMENT INDIAN STATISTICAL INSTITUTE, NEW DELHI

Saurav Kumar and Taniya Ghosh

Indira Gandhi Institute of Development Research

December 19, 2024

OBJECTIVES

- Investigate India's environmental policy to understand macrodynamics of a green transition
 - Environmental policy based on incentivizing economic agents
 - Focus on energy sector
- Environment policy:
 - Carbon Credit Trading Scheme (CCTS)
 - Subsidy on cost of green resources
 - Indian Carbon Market (ICM)

RESEARCH QUESTION

- Macroeconomic dynamics of transition in the presence of a CCTS guidelines
- Evolution of Indian Carbon Market
- The interplay between CCTS and the environmental protection attitude of the government and the economic agents producers
- Role of subsidy in transition
- Is it feasible not to have an explicit carbon tax in the economy to curb impact of climate change?

LITERATURE REVIEW

- Fischer and Springborn 2011, Heutel 2012, Angelopoulos et al. 2010; Angelopoulos et al. 2013, Annicchiarico and Di Dio 2015: Explored effectiveness of various climate policy instruments
- Heutel 2012 and Angelopoulos et al. 2013 focus on cyclical properties of optimal emission taxes in response to economic fluctuations
- Annicchiarico and Di Dio 2015; Annicchiarico and Di Dio 2017 and Economides and Xepapadeas 2018: Environmental and monetary policies simultaneously considered then economic stability improves.

LITERATURE REVIEW (CONT...)

- Our place: Energy sector in DSGE framework
- Tumen et al. 2016; Atalla et al. 2017; Argentiero et al. 2018: Substitution effect between energy sources and their impacts on economic dynamics and emissions.
- Dissou and Karnizova 2016: Considering an energy mix is crucial to demonstrate the dynamics of environmental regulations and welfare.
- Silva and Silva 2024: Access to renewable energy leads to substitution in presence of productivity shocks.

LITERATURE REVIEW: INDIA

Methodology	Papers
CGE	Weitzel et al. (2014)
	Pradhan and Ghosh (2019)
	Ojha et al. (2020)
	Pradhan and Ghosh (2022)
NK-DSGE	RBI Monetary Policy Report (2024)

RESEARCH GAP

- A CCTS framework DSGE model for India
- No carbon tax structure
 - Carbon tax: Emissions, GDP, and welfare \downarrow
 - If carbon pricing is permanently missing, the mitigation costs increase (Kalkuhl et al. 2013)
 - A deviation from optimal level of subsidy can lead to increased emissions (Kalkuhl et al. 2013)
- Model with thermal power plant and green electricity sector (E2-DSGE model)
 - Give a better understanding of impact of energy prices and dynamics (Silva and Silva 2024)
- Interaction between environmental policies and environmental awareness of industries

Model

- ► An RBC-based E-DSGE framework
 - Similar to E2-DSGE model by Silva and Silva 2024.

Government purchases fossil fuel from domestic and international market

SHOCKS

- Intensity Target announcement shock (θ_t)
- Productivity shock in Green electricity sector (A_t^G)
- Fossil fuel price shock (p_t^o)

CALIBRATION

▶ Parameters can be divided into three categories:

- Standard RBC parameters (Carattini et al. 2023; Banerjee and Behera 2023)
- Parameters related to environment externalities (Annicchiarico and Di Dio 2015; Carattini et al. 2023)

SIMULATIONS

► We simulate for different cases:

- an ambitious government and producer ($\nu = 10\%$ of 2005 level, $\omega_2 = 0.75$)
- current ambition ($\nu = 50\%$ of 2005 level, $\omega_2 = 0.5$)
- an unambitious government and producer ($\nu = 75\%$ of 2005 level, $\omega_2 = 0.25$)
- an ambitious government but non-ambitious producer
- Subsidies

SIMULATIONS: TARGET ANNOUNCEMENT SHOCK

SIMULATIONS: TARGET ANNOUNCEMENT SHOCK (CONT...)

SUBSIDY

Assess the role of subsidies in transition

- ► 3 different subsidies:
 - No subsidy
 - 50%
 - 75%

SIMULATIONS: TARGET ANNOUNCEMENT SHOCK

SIMULATIONS: TARGET ANNOUNCEMENT SHOCK (CONT...)

CONCLUSION

- CCTS would not immediately show results
- ▶ It will take around 7-10 years for emissions to stop increasing
- Ambitious government complemented by ambitious industry is better for emissions but only marginally
- Higher subsidy leads to more production of green energy
- ▶ It leads to an initial spike in emissions but then it starts reducing

FUTURE WORK

- Simulate for
 - Carbon tax
 - Intensity target similar to European countries
 - Cap-and-trade
 - Welfare analysis
- Include more Indian features
- Improve calibration for Indian context

Thank You !