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ABSTRACT

Most models in the existing literature on moral hazard in teams do not capture the kind of team
production settings that we often observe where the random element affecting the final team
output can also be observed ex-post. In such situations it is natural to allow the team’s sharing
rule to depend on the observed realisations of both the final output and the random element.
So we examine a team problem in which the share of each team member is a function of the
observed realisations of the final output and the random element. We provide a necessary and
sufficient condition for implementing an outcome in Nash equilibrium. This condition imposes
restrictions on those deviations from the outcome that could have been caused unilaterally by
each and every member of the team. Using this characterization we also derive a necessary and
sufficient condition for implementing an efficient outcome. When the production function has a
separable structure, namely, the output can be written as a function of the random element and
a composite action: (i) we show that efficient outcomes cannot be implemented if everyone has
quasi-linear utility functions; (ii) when the quasi-linearity assumption is dropped, we present some
examples in which there are implementable efficient outcomes and also derive some conditions
for implementing efficient outcomes. When the production function does not have a separable
structure, we present an example which shows that efficient outcomes may be implementable even
when all individuals have quasi-linear utility functions and also provide a necessary and sufficient
condition for locally implementing efficient outcomes. Finally, when validity of the first-order
approach and nondecreasing share functions are required for implementing any given outcome,
we show that it is without loss of generality to consider only the class of sharing rules that are
linear in the final output and efficient outcomes cannot be implemented in this case.

Key words: team, outcome, sharing rule, implementation, efficient outcome.

JEL Classification: D82, D2, C72, J54.

1Corresponding author. Email: ecssn@bath.ac.uk

1



1. INTRODUCTION

Moral hazard in teams can be observed within a variety of situations such as partnerships, labour-

managed firms, share cropping arrangements, non-point source pollution, etc. In all of these

situations an aggregate measure, which can be output, profits or ambient pollution is the only

observable and verifiable indicator of inputs or emission levels. Moral hazard in teams arises

because while the total welfare of the team would be higher if all team members exerted high

levels of effort, there is an incentive for each member to exert less effort because such effort is

costly. Since individual effort levels cannot be observed (at reasonable cost) but only the final

output, identification and subsequent punishment of the shirkers is not possible. The scenario

just described can apply equally well to the non-point source pollution context in which polluters

as a group must share among themselves the cost of environmental damage due to the ambient

level of pollution, where individual emissions are unobservable but aggregate or ambient pollution

level can be observed through monitoring of the receptor. The presence of uncertainty in the

relationship between inputs/emissions and output/pollution could further compound the problem

of moral hazard as individuals or firms can hide behind the veil of uncertainty concerning who

was at fault (Holmstrom (1982)).

The literature on moral hazard in teams focuses on ways to design appropriate incentive

mechanisms to mitigate the incentive to free-ride (e.g. Alchian and Demsetz (1972), Eswaran and

Kotwal (1984), Holmstrom (1982), Legros and Matsushima (1991), Legros and Matthews (1993),

Radner and Williams (1992), Rasmusen (1987)). The literature on non-point source pollution has

focused on how to apply the theory of moral hazard in teams to the environmental context (e.g.

Herriges et al. (1994), Segerson (1988), Strand (1999)).2 Perfect monitoring of individual actions

is usually impossible or prohibitively costly and instead, imperfect indicators of individual actions

such as final output or ambient pollution are used as a basis for contracting. The contract may

be improved upon if other factors which yield information about actions can be included within

the information base (e.g. Nandeibam (2003) widened the information base of the sharing rule to

include intermediate as well as final outputs).

In the traditional setting where uncertainty enters into the relationship between individual

actions and output, it is implicitly assumed that it is not possible to disentangle the random

component affecting how actions are converted into output even after the uncertainty is resolved,

so a low output cannot be taken to imply inadequate actions. An example of this is Eswaran

and Kotwal (1985) who suggest weather as a possible stochastic variable which can alter the

relationship between inputs and agricultural output. In that case, a bad harvest could be due

to adverse weather conditions and not lack of effort. Their analysis does not allow for the fact

that adverse weather conditions are often observable ex-post, information which could be taken

2Both Segerson’s and Strand’s contributions allow for budget-breaking, thereby enabling the design of incentive
mechanisms to induce polluters to act efficiently.
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into account when designing contracts. Thus, we maintain that in certain situations it may be

possible to disentangle the realisation of the random element ex-post, thereby allowing it to be

observed. In the non-point source pollution context, ambient pollution is a function of individual

emission levels and stochastic factors such as rainfall. Prior to emitting pollutants, future rainfall

in unknown but it becomes known at the time of monitoring the ambient level of pollution. We

can think of other contexts which share a similar characteristic as that just described. Consider

a team whose final revenue/profit depends on the market conditions of its observable inputs and

outputs (essentially their prices) which are uncertain at the time when the individual actions are

chosen. Once the final outputs are generated and sold, the revenue/profit as well as the realised

market conditions are observable. Eswaran and Kotwal (1985) provide examples of this within the

agrarian context, where the choice of crops is dependent on a range of factors such as expected

prices, water availability, etc. For example, in the context of share-cropping arrangements or

labour-managed cooperatives in the agrarian sector, there are anecdotal evidence of the shares

depending not only on the output but also on other factors such as monsoon conditions, occurence

or otherwise of draught, favourable or not so favourable agricultural market conditions, etc. So,

by acknowledging that there is a wide range of situations in which the realisation of the random

element is observable, we depart from the standard analysis in which the sharing rule is based

solely on the final joint output.

The model we consider closely resembles the non-deterministic team production model in

Holmstrom (1982). However, unlike Holmstrom (1982), we assume that, after the resolution of

the uncertainty, the realisation of the random element can be observed, and hence, each member’s

share of the final output could be made to depend on the observed final output itself and the

realised value of the random element. In our setting, although the realisation of the random

element is observable, because the actions are taken before the uncertainty is resolved, team

members will choose their actions noncooperatively to maximize their respective expected utilities.

In order to derive the expected utilities, team members have to consider outcomes from an ex-ante

perspective. So an outcome is defined as a combination of the actions chosen by the team members

and a distribution of the final output corresponding to each realisation of the random element

among the team members. Thus, we are interested in studying outcomes that are implementable

noncooperatively in the sense that it could be generated by a pure strategy Nash equilibrium of

the production game conditional on some sharing rule.

Our first result provides a necessary and sufficient condition for implementing a given outcome.

Roughly speaking, this condition imposes restrictions on final output levels that do not correspond

to the combination of actions in the given outcome but could be generated by each and every

member of the team deviating unilaterally from his/her given action. These restrictions allow

sufficient punishments to be incorporated into the sharing rule to deter such unilateral deviations

whilst at the same time ensuring that the team’s budget is balanced at every realisation of the
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random element.

The second set of results are on the issue of achieving efficiency. In the general case, we show

that restricting the necessary and sufficient condition for implementation to only the individual

efforts below the efficient levels is necessary and sufficient for implementing an efficient outcome. In

order to gain more insight, we then distinguish between two types of production functions, namely,

those that have a weakly separable structure between the random factor and a composite action3

and those that do not have the weakly separable structure. For weakly separable production

functions, we first prove that efficiency cannot be achieved if everyone has quasi-linear utility

function. However, when there are individuals with utility functions that are not quasi-linear,

we present examples in which some efficient outcome can be implemented and derive a necessary

and sufficient condition for implementing an efficient outcome. The intuition for these efficiency

results seem to be similar to those in the existing literature, such as Legros and Matsushima

(1991), Legros and Matthews (1993) and Rasmusen (1987), which suggests that the results in

our framework could be seen as a generalization of the existing literature when the production

functions are weakly separable. For production functions that are not weakly separable, we first

present an example in which everyone has quasi-linear utility function and efficient outcomes are

implementable. So the kind of intuitive argument used in Rasmusen (1987), which relies on risk

aversion, is not applicable here. We also use the example to show that, as in the traditional

literature, if the shares cannot be made contingent on the random factor, then efficient outcomes

are not implementable. We also derive a necessary and sufficient condition for implementing an

efficient outcome locally when everyone has quasi-linear utility function. Thus, in the case of

production functions that are not weakly separable, our framework may add something new to

what we already know from the existing literature, such as Legros and Matsushima (1991), Legros

and Matthews (1993) and Rasmusen (1987).

For our final set of results, we consider the restricted case where the first-order approach is

valid and the share functions are nondecreasing in a neighbourhood of the outcome considered

for implementation. Under these restriction, we show that any implementable outcome could

be achieved by adopting a sharing rule which is linear in the final output. This result could be

contrasted with those of Kim and Wang (1998)4 and Nandeibam (2002). In the former, Kim

and Wang show that, when there is uncertainty which is unobservable ex-post, the linear sharing

rule result holds only when the production function has the weakly separable structure and team

members have quasi-linear utility functions. On the otherhand, Nandeibam shows that the linear

sharing rule result is valid with fairly general utility functions and production technology when

there is no uncertainty. As a consequence of our linear sharing rule result, we also show that

efficient outcomes are not achievable if validity of the first-order approach is required and the

3This is the case often considered in the literature, e.g. Bhattacharyya and Lafontaine (1995), Eswaran and
Kotwal (1985), Kim and Wang (1998), Romano (1994), etc.

4See also Bhattacharyya and Lafontaine (1995) and Romano (1994).
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share functions have to be nondecreasing in a neighbourhood of the efficient outcome. The

contrast between this result and some of the earlier positive efficiency results mentioned above

hints at a possible trade off between the desire for some degree of simplicity in the sharing rule

to be adopted on the one hand and the desire for achieving efficiency on the otherhand.

In the next section we describe our model and define the notion of implementability of an

outcome. In the third section we present a necessary and sufficient condition for implementing a

given outcome. In section 4 we consider the issue of implementability of efficient outcomes. In

the fifth section we examine what happens if validity of the first-order approach is imposed and

the share functions are required to be nondecreasing in a neighbourhood of the given outcome.

We conclude in the final section.

2. THE MODEL

We consider a team comprising of N ≥ 2 individuals in which each individual i’s unobservable

and unverifiable action is denoted by ai ∈ [0, ξ], where we allow for the possibility of ξ =∞ with

a slight abuse of notation. The vector of actions a = (a1, ..., aN ) of the N individuals together

with a random variable θ ∈ Θ determine a joint monetary output according to the production

function f : [0, ξ]N × Θ → <+. We endow the state space Θ with a Borel field F and represent

the distribution of the random variable θ by a probability measure µ on F . Each individual i’s

utility over money and action pairs is given by

Ui(si, ai) = ui(si)− ci(ai),

where si ∈ [m,∞) is i’s income.5 Since an individual may be permitted to receive negative shares

in certain situations, which in the extreme case could take the form of unlimited liability, by

abusing notation, we allow for the possibility of m = −∞. Throughout this paper we maintain

the following assumptions:

A1. f is continuously differentiable in the actions and fi denotes the derivative of f with respect

to the action of individual i; f is strictly increasing in the actions whenever everyone’s action

is positive; f is concave in the actions.

A2. f is measurable with respect to the probability measure µ.

A3. For each i, ui and ci are continuously differentiable; u′i and c′i respectively denote the

derivatives of ui and ci; ui and ci are strictly increasing; ui is concave and ci is convex.

Assumptions A1 and A3 are quite standard and need no further explanation. Assumption

A2 is a technical assumption.6

5The additively separable form we have adopted for the individual utility functions is purely for simplicity.
6Our framework could be adapted in a straightforward manner to the context of non-point source pollution
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The realisation of the random variable takes place after the actions have been chosen. However,

at the end of the production process, both the monetary output and the realised value of the

random variable are observable.

In our framework, because the actions are chosen before the realisation of the random factor, at

the time of taking their actions, each team member would take into consideration the prospective

possible outcomes, i.e. outcomes from an ex-ante perspective. So an outcome would comprise of

a single action vector and one share/payment vector for each realisation of the random variable

which allocates amongst the team members the final output corresponding to the action vector

and this random variable. However, because of the problem of enforcing sharing rules that do not

distribute the entire final output within the team (see Eswaran and Kotwal (1984)), we need the

shares to add up to the final output in each state of the world. Thus, an outcome is (a, (pθ)θ∈Θ),

where pθ = (pθ1, ..., p
θ
N ) ∈ [m,∞)N for each θ is such that

∑N
i=1 p

θ
i = f(a, θ).7

Since actions are unobservable, each individual’s share of the final output can only be a

function of the observable final output and the observed realisation of the random variable. So a

share function of individual i is a function si : <+×Θ→ [m,∞), where si(q, θ) is the amount/share

individual i receives when q is the final output and θ is the realisation of the random variable. An

individual’s share function can be seen as a menu of contracts in which each contract corresponds

to a realisation of the random variable and specifies the relationship between the final output

and the individual’s share at that realisation of the random variable. Because of the reasons

mentioned above, we will require the team to balance its budget at each realisation of the random

variable. Thus, a sharing rule is a collection of N share functions s = (s1, ..., sN ) such that the

following budget balancing condition holds:

∑N
i=1 si(q, θ) = q for all (q, θ).

Each sharing rule s in the class of admissible sharing rules we consider is such that, for each

individual i and for each action vector a, si(f(a, .), .) is measurable with respect to the probability

measure µ.

Once the team adopts a sharing rule s, the members of the team play a noncooperative game

in choosing their actions in the production process. In this game conditional on s, the payoff of

each individual i is given by∫
Θ
ui(si(f(a, θ), θ))dµ− ci(ai), (1)

problem where the unobservable action chosen by each polluter is its individual emission level. By invoking the
polluter pays principle, the monetary transfers/shares would refer to the fee that polluters are charged to cover the
cost of environmental damages. The utility function for polluter i could be written as U i(ti, ei) = Bi(ei) −Di(ti),
where ti and ei respectively refer to i’s transfer payment/share and emission level. In this case f becomes the cost
function of environmental damage caused by pollution. Since the generation of emissions in the production process
produces benefits whilst the transfer payment is a cost for the individual polluter, we have B′i > 0 and D′i > 0.

7In the non-point source pollution case an outcome would consist of an emissions vector and a charge on each
polluter for each realisation of the random variable such that the sum of the charges paid by all polluters covers
the total cost of environmental damages arising from pollution in each state.
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when the actions in a are chosen. Clearly, given a sharing rule s, a is a Nash equilibrium condi-

tional on s if, for each i and for all a′i,∫
Θ
ui(si(f(a, θ), θ))dµ− ci(ai) ≥

∫
Θ
ui(si(f(a−i, a

′
i, θ), θ))dµ− ci(a′i)

We implicitly assume that the noncooperative production game mentioned above is the second

stage of a two stage process where in the first stage, before production takes place, the team uses

some procedure to select a sharing rule. For example, this could be a bargaining process or a

welfare maximization problem for the team. This will ultimately generate an outcome which is

realized in a Nash equilibrium of the second stage game conditional on the sharing rule adopted

in the first stage. Thus, we are interested in the class of outcomes that could be implemented in

the following sense:

Implementation: An outcome (a, (pθ)θ∈Θ) is implementable if there exists a sharing rule s

such that:

(i) a is a Nash equilibrium conditional on s;

(ii) pθi = si(f(a, θ), θ) for each i and each θ.

For obvious reasons, we are only interested in implementing outcomes that involve positive

actions from every team member. Thus, in the rest of this paper we assume that every team

member takes positive action in any outcome we consider for implementation.

In our framework an efficient outcome is simply an outcome which cannot be dominated in

the Pareto sense ex-ante.

Efficiency: An outcome (a, (pθ)θ∈Θ) is an efficient outcome if there does not exists another

outcome (a′, (p′θ)θ∈Θ) such that
∫

Θ ui(p
′θ
i )dµ − ci(a′i) ≥

∫
Θ ui(p

θ
i )dµ − ci(ai) for all i, with strict

inequality holding for some i.

3. IMPLEMENTABLE OUTCOMES

In this section, for completeness, we will examine the requirements that have to be satisfied for

implementability in the general case with no further restrictions on the production and utility

functions than those specified in the previous section. Without loss of generality, let us fix an

outcome (â, (p̂θ)θ∈Θ) to be implemented and let Ûi be the expected utility of individual i at

this outcome, i.e. Ûi =
∫
Θ ui(p̂

θ
i )dµ − ci(âi) for each i. Discouraging each team member from

unilaterally deviating from his/her action in the outcome is crucial for implementing it. The most

problematic deviations in the final outputs from the levels corresponding to the given outcome are

those for which no team member could be excluded from causing it with a unilaterally deviation,

and such deviations would have to satisfy some restrictions for implementation.
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For each θ, let

Q̂(θ) = {q ∈ <+ : there exists ai with f(â−i, ai, θ) = q for all i}.

When a state θ is realised and an output level from Q̂(θ) is observed, we cannot rule out any team

member i from generating it by unilaterally deviating from âi. So Q̂(θ) is the most problematic

set of deviations where we would need to specify some restrictions.

For each i and each ai, let

Wi(ai, Ûi) =
{

(wθ)θ∈Θ : wθ ∈ [m,∞) for each θ;
∫

Θ ui(w
θ)dµ− ci(ai) = Ûi

}
Whenever an individual i deviates unilaterally and an output and random variable combination

(q, θ) is observed, using assumption A1, it can be verified that there is a unique action to which i

could have deviated unilaterally to generate the output q in state θ. We denote this unique action

by aqθi , i.e. f(â−i, a
qθ
i , θ) = q.

It is clear from the definition of Wi(ai, Ûi) that, if we could make one of the menu of payments

in Wi(ai, Ûi) act as an upper bound (state by state) on individual i’s shares when he/she deviates

unilaterally to ai, then individual i could be discouraged from deviating to ai. We have to be

able to do this simultaneously for the entire team at every possible deviation in Q̂(θ) for all θ.

However, satisfying these restrictions whilst ensuring that the team’s budget is always balanced

may not be possible. This leads us to the following condition for implementability of the given

outcome, which requires both the restrictions we have just discussed and the budget-balancing

condition.

(I) For each i and each ai, there exists (wθi (ai))θ∈Θ ∈ Wi(ai, Ûi) such that, for every θ:∑N
i=1w

θ
i (a

qθ
i ) ≥ q for all q ∈ Q̂(θ).

Using the above intuition, we will construct a sharing rule which will be used to show that

condition (I) is sufficient for implementing the given outcome. In fact, our first result shows that

condition (I) is also necessary for implementation.

Suppose condition (I) is satisfied. Given any (q, θ) with q ∈ Q̂(θ), let wi(q, θ) for each i be

such that:

(i) wi(q, θ) ≤ wθi (a
qθ
i );

(ii)
∑N
i=1wi(q, θ) = q.

Also, for each (q, θ), let ηqθ = {i : f(â−i, ξ, θ) ≥ q ≥ f(â−i, 0, θ)}. So |ηqθ| = N (where |ηqθ| is the

number of individuals in ηqθ) if and only if q ∈ Q̂(θ).

Let us define ŝ = (ŝ1, ..., ŝN ) to be the sharing rule which satisfies the following for each i and

each (q, θ):

(A) if q = f(â, θ), then ŝi(q, θ) = p̂θi ;
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(B) if q ∈ Q̂(θ) but q 6= f(â, θ), then ŝi(q, θ) = wi(q, θ);

(C) if q /∈ Q̂(θ) but i ∈ ηqθ, then ŝi(q, θ) = wθi (a
qθ
i );

(D) if i /∈ ηqθ, then ŝi(q, θ) = [q −
∑
j∈ηqθ w

θ
j (a

qθ
j )]/[N − |ηqθ|].

It can be checked that ŝ is a sharing rule, because it ensures that the team’s budget is always

balanced. In the above construction, condition (A) is self-explanatory, whilst conditions (B) and

(C) are sufficient to deter anyone from deviating unilaterally.

Proposition 1: The outcome (â, (p̂θ)θ∈Θ) can be implemented if and only if it satisfies

condition (I).

Proof: See the appendix.

4. EFFICIENCY

In order to address the issue of implementability of efficient outcomes, as in the previous sec-

tion, without loss of generality, pick an arbitrary efficient outcome (â, (p̂θ)θ∈Θ) and let Ûi =∫
Θ ui(p̂

θ
i )dµ− ci(âi) for each i. As mentioned in section 3, we assume that âi > 0 for all i. It can

be verified that (â, (p̂θ)θ∈Θ) is efficient if and only if it is a solution of the following problem:

(EP) max
(a,(pθ−1)θ∈Θ)

∫
Θ
u1(f(a, θ)−

N∑
i=2

pθi )dµ− c1(a1)

subject to:∫
Θ ui(p

θ
i )dµ− ci(ai) ≥ Ûi for all i ≥ 2.

Given the concavity assumptions for the production function and the utility functions in A1 and

A3 respectively, the following first-order conditions are necessary and sufficient for an interior

solution of this problem:∫
Θ
u′1(f(a, θ)−

N∑
i=2

pθi )f1(a, θ)dµ− c′1(a1) = 0 (2)

∫
Θ
u′1(f(a, θ)−

N∑
i=2

pθi )fi(a, θ)dµ− λic′i(ai) = 0 ∀i ≥ 2 (3)

−u′1(f(a, θ)−
N∑
i=2

pθi ) + λiu
′
i(p

θ
i ) = 0 ∀ i ≥ 2 and ∀ θ (4)∫

Θ
ui(pθi )dµ− ci(ai) = Ûi ∀i ≥ 2 (5)

where the λis are the Lagrange multipliers.

Since actions are costly to individuals, our intuition would suggest that controlling unilateral

deviations by anyone above his/her efficient action should not be problematic. This suggests
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that the reasoning we used to derive the implementability condition (I) might not be needed for

unilateral deviations above the efficient levels. For the more problematic unilateral deviations

below the efficient levels, our reasoning for condition (I) seems to be tight.

Proposition 2: The efficient outcome (â, (p̂θ)θ∈Θ) can be implemented if and only if it

satisfies the restriction of condition (I) to ai < âi for all i.

Proof: See the appendix.

The result in the literature that is closest to Propositions 1 and 2 is that of Legros and

Matthews (1993) even though they only consider the case of non-stochastic production. In fact

it can be seen from the following reasoning that our result is a generalization of theirs. Suppose

Θ contains a single state, say θ̂, i.e. production is non-stochastic. Given any q ∈ Q̂(θ̂), for each i,

let ŵi(q, θ̂) be the unique number such that ui(ŵi(q, θ̂)) − ci(aqθ̂i ) = ui(p̂
θ̂
i ) − ci(âi). In this case,

the condition in Legros and Matthew (1993) is equivalent to requiring
∑N
i=1 ŵi(q, θ̂) ≥ q for all

q ∈ Q̂(θ̂). When we generalize to the stochastic production case, for the problematic unilateral

deviations, equality of utility state by state is replaced by equality of utility in expected terms.

This allows us to translate the above condition in a fairly natural way to condition (I) or its

restriction as in Proposition 2. So, at the incomes that appear in the efficiency condition for each

of the problematic deviations, in contrast to the non-stochastic case where the actual/ex-post

utilities have to be equal to those at the efficient outcome, in our stochastic set up the actual/ex-

post utilities may be lower or higher than those at the efficient outcome. Thus, it is intuitively

possible to see that our set up might provide more freedom to incorporate sufficient punishments

into the sharing rule to deter the problematic deviations. We will examine whether this is the

case or not under two broad classes of production functions that differ from each other according

to a particular form of separability.

4.1: Separable Production Function

In this sub-section we will consider the class of production functions with a weakly separable

structure between the actions and the random factor, i.e. the production function is of the form

f(a, θ) = F (A(a), θ) for all (a, θ) ∈ [0, ξ]N ×Θ,

where the functions A : [0, ξ]N → <+ and F : <+ × Θ → <+ are consistent with assumptions

(A1) and (A2).

Given the weakly separable production function, let us first look at the case where all team

members have quasi-linear utility functions, i.e. every team member is risk neutral in income. So

each individual i’s utility function is given by:

Ui(si, ai) = si − ci(ai)
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Consider the following expected total surplus maximization problem:

max
a

[∫
Θ
F (A(a), θ)dµ−

N∑
i=1

ci(ai)

]

For expositional convenience, we will assume that â is the unique interior solution of the above

problem. So it is clear from the transferrable utility setup implied by the quasi-linear utility

functions that an outcome is efficient if and only if the actions in it are â.

When the production function is weakly separable and the utility functions are quasi-linear,

the smoothness of the production and utility functions make it impossible to incorporate sufficient

incentives in a sharing rule to deter everyone from unilaterally deviating marginally below their

respective efficient actions, whilst at the same time ensuring that the team’s budget is balanced.

Proposition 3: Efficient outcomes are not implementable if the production function is

weakly separable and every team member has a quasi-linear utility function.

Proof: See the appendix.

Using some examples, we will now demonstrate that Proposition 3 may no longer be valid if

the assumption of quasi-linear utility functions is dropped.

Example 1

Consider a team of 2 individuals in which the utility function of each individual i is given

by U i(si, ai) = (1 − e−si) − (a2
i /8) for all (si, ai) ∈ < × <+. The production function is given

by f(a1, a2, θ) = θ(a1 + a2), where the productivity parameter θ ∈ <+ is a random variable

whose realization can only be observed after the individual actions are taken and is distributed

according to the cumulative distribution function G(θ) = (1− e−θ). Using equations (2) - (5), it

can be verified that (a∗, (pθ∗)θ∈<+), where a∗1 = a∗2 = 1 and pθ∗1 = pθ∗2 = θ for all θ, is an efficient

outcome. The expected utilities at this efficient outcome are u∗1 = u∗2 = 3/8.

Let Θ1 = [0, ln(8/3)) and Θ2 = [ln(8/3),∞). Also, let s∗ = (s∗1, s
∗
2) be the sharing rule such

that, for each i and every (q, θ) ∈ <2
+,

s∗i (q, θ) =


q/2 if q ≥ 2θ
q if q < 2θ and θ ∈ Θi

0 if q < 2θ and θ /∈ Θi

In the appendix we show that the sharing rule s∗ implements the efficient outcome (a∗, (pθ∗)θ∈<+).

Example 2

Consider a team of 2 individuals in which the utility functions are given by U1(s1, a1) =

s1 − (3/4)a2
1 for all (s1, a1) ∈ < × <+ and U2(s2, a2) = (1 − e−s2) − (1/4)(ea2 − a2 − 1) for

all (s2, a2) ∈ < × <+. The production function is given by f(a1, a2, θ) = θ(a1 + a2), where the

productivity parameter θ ∈ {1, 2} is a random variable whose realization can only be observed after

11



the individual actions are taken and is such that θ = 1 and θ = 2 are equally likely. Using equations

(2) - (5), it can be verified that (a∗, (pθ∗)θ∈{1,2}), where a∗1 = a∗2 = 1, p1∗
1 = 2 − ln(6/(e − 1)),

p2∗
1 = 4− ln(6/(e− 1)), p1∗

2 = ln(6/(e− 1)) and p2∗
2 = ln(6/(e− 1)), is an efficient outcome. The

expected utilities at this efficient outcome are u∗1 = (9/4)− ln(6/(e−1)) and u∗2 = (5/3)−(5e/12).

Let s̃ = (s̃1, s̃2) be the sharing rule such that, for each q ∈ <+,

s̃1(q, 1) =

{
4− ln(3/(e− 1))− q if q < 2
1− ln(6/(e− 1)) + (q/2) if q ≥ 2

s̃1(q, 2) =

{
2q − 4− ln(12/(e− 1)) if q < 4
2− ln(6/(e− 1)) + (q/2) if q ≥ 4

s̃2(q, θ) = q − s̃1(q, θ) for each θ.

In the appendix we show that s̃ implements the efficient outcome (a∗, (pθ∗)θ∈{1,2}).

The non-linearity or risk aversion in income of the utility functions of some individuals is

crucial in the above examples for showing that the sharing rules we have constructed can achieve

the given efficient outcomes. In these examples, we were able to assign punishment states and

reward states to each individual (when the output is below the efficient level, for each individual

i, his/her punishment and reward states are respectively Θj and Θi in example 1, and θ = i

and θ = j in example 2, where i, j = 1, 2 and j 6= i) and incorporate sufficient punishments and

rewards appropriately into the sharing rules to deter everyone from unilateral deviations from

their respective efficient actions.

Thus, the contrast between the examples and the negative efficiency result in Proposition 3

suggest the following observation regarding our earlier intuition that our framework might pro-

vide more freedom for incorporating punishments into the sharing rules to deter the problematic

unilateral deviations compared to the non-stochastic set up. In the case of weakly separable

production functions, the additional freedom could be enough in some situations to incorporate

sufficient punishments into the sharing rules to deter all unilateral deviations from the efficient

actions if there are individuals with utility functions that are not quasi-linear, but is not enough

if everyone has quasi-linear utility functions.

It may be noted that our framework reduces to that of Rasmusen (1987) if the output is

invariant to the state, i.e. for each a, f(a, θ′) = f(a, θ′′) for all θ′, θ′′ ∈ Θ, except Θ and µ are part

of the design of the randomized sharing rule in his set up but are exogeneously fixed here. So, de-

pending on the exogeneous Θ and µ, the intuitive reasoning used by Rasmusen could work in our

framework when there are risk averse team members. This is confirmed by the intuitive similarity

of the reasoning behind our examples and that of Rasmusen (1987). As in Rasmusen, our exam-

ples rely on assigning punishment states and reward states appropriately to each individual for

undesirable unilateral deviations in such a way that his/her degree of risk aversion may make the

undesirable risk of facing the punishments sufficiently stronger than the attraction of the rewards

when deviating unilaterally. In fact, the examples show that the intuition is applicable more gen-

12



erally because, unlike Rasmusen (1987): (i) the output varies with the state in all examples; (ii) as

shown by examples 2, we do not have to require every individual to be risk averse. Inspite of the

intuitive similarity, there are crucial differences in the formal structure and motivation of the two

frameworks. Firstly, Rasmusen considers a deterministic production process, which means that

he is looking at ex-post efficient outcomes. However, in order to implement the ex-post efficient

outcome, he allows randomization of the sharing rule, because of which the individuals have to

maximize ex-ante expected utility in choosing their respective actions. In contrast, we can only

consider ex-ante efficient outcomes for implementation, because our production process is nonde-

terministic and the individuals have to choose their respective actions before the uncertainty is

resolved. Furthermore, because the uncertainty is an integral part of our model albiet observable

ex-post, our sharing rule should be viewed as a menu of deterministic contracts rather than as

allowing randomization by choosing an appropriate randomization device. Secondly, Rasmusen’s

motivation for allowing randomization in a risk-free (deterministic) environment is to introduce

risk and exploit the risk aversion of the individuals to achieve the efficient outcome. This may

raise serious issues about the acceptability of such randomized sharing rules to the individual par-

ticipants. On the otherhand, our motivation for allowing state dependent sharing rules when the

state is observable ex-post is just the opposite, namely, to reduce the risk faced by the individuals

from the uncertainties that are beyond their control. Therefore, our sharing rules are more likely

to be acceptable to the individual participants.

Given the possibility of achieving some efficient outcomes as demonstrated by examples 1 and

2, it seems both interesting and natural to ask whether we could derive efficiency conditions that

are more transparent than those in Proposition 2 for the case of weakly separable production

functions. We will make a modest attempt to provide some answers to this question by first

considering the weaker notion of local implementation and then the more general notion of imple-

mentation as we have defined. The reason we think it is worthwhile to pursue the issue of local

implementation follows from our earlier observation in the context of Proposition 3 that one of

the main difficulty in achieving an efficient outcome was the impossibility of deterring everyone

from unilaterally deviating marginally below their respective efficient actions.

When considering local implementation, we will only allow sharing rules in which the share

function of each individual is piecewise continuous and piecewise continuously differentiable in the

output and denote this class of sharing rules by S. Although this is a restrictive class, we think

that the restriction is fairly natural and almost all sharing rules one could realistically adopt would

satisfy it. The notion of local implementation we use is the following straightforward modification

of our definition of implementation.

Local Implementation: The efficient outcome (â, (p̂θ)θ∈Θ) is locally implementable if there

exist a sharing rule s ∈ S and ε > 0 such that, for each i:

(i) p̂θi = si(f(â, θ), θ) for all θ;
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(ii)
∫

Θ ui(si(f(â−i, ai, θ), θ))dµ − ci(ai) ≤ Ûi for all ai ∈ (âi − ε, ξ).

Proposition 4: Suppose the production function is weakly separable. Then the efficient out-

come (â, (p̂θ)θ∈Θ) is locally implementable if and only if there exists another outcome (â, (p̄θ)θ∈Θ)

such that
∫

Θ ui(p̄
θ
i )dµ − ci(âi) < Ûi for every i.

Proof: See the appendix.

Given Proposition 3, it is obvious that the condition given in Proposition 4 would not be

satisfied if all team members are risk neutral. When there are risk averse team members, the

following observation is key to proving the proposition. Whenever a sharing rule s ∈ S imple-

ments the given efficient outcome, there would be an individual i whose expected utility from

unilateral deviations based on s is discontinuous at his/her efficient action âi. This discontinuity

provides enough freedom to construct the payment schedule (p̄θ)θ∈Θ which satisfies the condition

given in the proposition. Conversely, it seems intuitively straightforward that the condition in

the proposition would allow us to construct a sharing rule in S which will deter any unilateral

deviations in a neighbourhood of the efficient actions.

In order to derive a condition for full implementation, we will introduce two auxiliary func-

tions. For each x ≤ A(â) and each i, let ρ̂i(x) be the unique action of individual i such that

A(â−i, ρ̂i(x)) = x, where the uniqueness follows from the requirement that the function A is

consistent with the monotonicity assumption in A1. For each x < A(â), define V̂ (x) as follows:

V̂ (x) ≡ min
(pθ−1)θ∈Θ

∫
Θ
u1(F (x, θ)−

N∑
i=2

pθi )dµ

subject to:

∫
Θ
ui(p

θ
i )dµ ≤ Ûi + ci(ρ̂i(x)) for all i ≥ 2

Using the function V̂ , we can provide the following characterization for implementability of

the efficient outcome.

Proposition 5: Suppose the production function is weakly separable. Then the efficient

outcome (â, (p̂θ)θ∈Θ) is implementable if and only if V̂ (x) ≤ Û1 + c1(ρ̂1(x)) for every x < A(â).

Proof: See the appendix.

Because of Proposition 3, it is again obvious that the condition given in Proposition 5 would

not be satisfied if all team members are risk neutral. When there are risk averse team members, the

intuition for the condition in Proposition 5 is quite simple. The structure imposed by the weakly

separable production function allows us to concentrate only on the deviations that are roughly

at an aggregate level, namely, the composite action A(a) rather than dealing with deviations in

each individual action. This in turn makes it possible to derive an efficiency condition based on

the single variable x < A(â).
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4.2: Non-separable Production Function

In this sub-section we will consider the class of production functions that do not have the

weakly separable structure between the actions and the random factor. To highlight the main

contrast with the case of weakly separable production function, we will first present an example

which shows that, when the production function is not weakly separable, we might be able to

escape the negative efficiency result in Proposition 3.

Example 3

Consider a team of 2 individuals in which the utility function of each individual i is given

by U i(si, ai) = si − (3/16)a2
i for all (si, ai) ∈ < × [0, 2]. The production function is such that,

for each pair of actions (a1, a2) and each θ = (θ1, θ2) ∈ {1/4, 1/2}2, f(a1, a2, θ) = aθ11 a
θ2
2 . For

each individual i, the productivity parameter θi is a random variable whose realization is only

observable after the actions have been taken. It is also assumed that the productivity parameters of

the two individuals are independently distributed with θi = 1/4 and θi = 1/2 equally likely for each

i. Clearly, the production function in this example is not weakly separable. Let θ1 = (θ1
1, θ

1
2) =

(1/4, 1/4), θ2 = (θ2
1, θ

2
2) = (1/4, 1/2), θ3 = (θ3

1, θ
3
2) = (1/2, 1/4) and θ4 = (θ4

1, θ
4
2) = (1/2, 1/2),

which implies that the probability of θ = θj is 1/4 for each j = 1, 2, 3, 4. Consider the following

expected total surplus maximization problem:

max
(a1,a2)

(1/4)
4∑
j=1

a
θj1
1 a

θj2
2 − (3/16)a2

1 − (3/16)a2
2


It can be checked that (a∗1, a

∗
2) = (1, 1) is the unique solution of this problem. So it follows

from the quasi-linear utility functions that any (a, (pθ)θ∈Θ) is an efficient outcome if and only if

a = (1, 1) and pθ
j

1 + pθ
j

2 = 1 for each j = 1, 2, 3, 4. Pick any efficient outcome (a∗, (p̂θ)θ∈Θ) and

let α̂1 = p̂θ
1

1 − 1/2, α̂2 = p̂θ
2

1 + 5/2, α̂3 = p̂θ
3

1 − 7/2 and α̂4 = p̂θ
4

1 − 1/2. Define the sharing rule

ŝ = (ŝ1, ŝ2) as follows:

ŝ1(q, θj) =


(1/2)q + α̂j if j = 1 or 4
−(5/2)q + α̂2 if j = 2
(7/2)q + α̂3 if j = 3

ŝ2(q, θj) = q − ŝ1(q, θj)

It can be easily verified that ŝi(f(a∗, θj), θj) = p̂θ
j

i for each i and each j. In the appendix we show

that the sharing rule ŝ implements the efficient outcome (a∗, (p̂θ)θ∈Θ). Thus, in this example

every efficient outcome is implementable. However, some might argue that the sharing rule ŝ has

an undesirable property, namely, ŝ1 is decreasing in the output for θ = θ2 and ŝ2 is decreasing in

the output for θ = θ3.

In this example, because both individuals are risk neutral, a similar intuitive reasoning as

in Rasmusen (1987) is not likely to be behind the positive result. When the random variable is

observable ex-post and can be contracted upon, it enriches the information structure that could be
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used in constructing sharing rules. It is most likely that this enhanced degree of informativeness

would depend crucially on the structure of the production function. We will provide a line of

reasoning which hints at the possibility that, although the enhanced information structure is not

rich enough to implement efficient outcomes in the set up of Proposition 3, when the production

function is not weakly separable, such as in example 3, the enhanced information structure could

be rich enough to implement efficient outcomes even if all team members are risk neutral.

In example 3, as in the existing literature, suppose the state θ is not observable/verifiable

ex-post. So the enhanced information structure discussed above is no longer available. In this

case the sharing rule can only depend on the final output, i.e. a sharing rule s is such that

si : [0, 2]→ < for each i and s1(q) + s2(q) = q for all q. In this case, we show in the appendix that

there is no sharing rule which can support the efficient actions a∗ = (1, 1) as a Nash equilibrium.

Thus, there seems to be some support for our intuition.

Suppose in example 3 the action space is discretised to

Ei = {x/(64)2 : x is any non-negative integer not exceeding 2(64)2} for each i.

Then it is straightforward to reformulate the utility functions in a way to make example 3, with

the discrete action space and unobservable/nonverifiable state, an example of the framework used

by Legros and Matsushima (1991). Clearly, when the state can be contracted upon, the sharing

rule ŝ we constructed above, with the obvious modification of the output space implied by the

discretisation, would still implement the efficient outcome. However, using the same argument as

in the continuous case, we show in the appendix that the efficient actions a∗ = (1, 1) cannot be

supported as a Nash equilibrium when the state can no longer be contracted upon. Thus, although

Proposition 3 also seems to suggest that our efficiency condition could be seen as a generalisation

of Legros and Matsushima (1991), we could argue that this suggestion may no longer be true if

the production function is not weakly separable.

When there are individuals with risk averse utility functions, the line of intuitive reasoning

we applied in the case of weakly separable production funtions would still be valid here. As in

examples 1 and 2, it would be relatively straightforward to construct examples that exploit the

risk aversion to assign punishment states and reward states to each individual and incorporate

sufficient punishments and rewards appropriately into the sharing rules to deter every one from

unilateral deviations from their respective efficient actions. Thus, in the rest of this section we

will only consider the case in which all team members have quasi-linear utility functions.

In what follows we will only look at the case with a finite number of possible states. Let

Θ = {θ1, ..., θM}, where M is finite, and πh is the probability of state θh being realised for

h = 1, ...,M . Furthermore, we assume that all team members have quasi-linear utility functions,

i.e. U i(si, ai) = si − ci(ai) for all i. Consider the following expected total surplus maximization
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problem:

max
a

[
M∑
h=1

πhf(a, θh)−
N∑
i=1

ci(ai)

]

For expositional convenience, we will assume that the above problem has an interior solution â

and is unique. So it is clear from the transferrable utility setup implied by the quasi-linear utility

functions that an outcome is efficient if and only if the actions in it are â.

Without loss of generality, pick an arbitrary efficient outcome (â, (p̂θ)θ∈Θ) and let Ûi =∑M
h=1 π

hp̂θ
h

i − ci(âi) for each i. When considering implementation of (â, (p̂θ)θ∈Θ), we will re-

strict ourselves to S, which is the class of sharing rules with piecewise continuous and piecewise

continuously differentiable share functions for each state. As noted earlier, this seems a fairly

natural and reasonable restriction.

The class of production functions that are not weakly separable between the actions and the

random factor is far more general than the class that is weakly separable. This means that looking

at implementation of efficient outcomes would require us to consider restrictions on the structure

of the production function away from a neighbourhood of the efficient actions â. However, it is

likely that such restrictions could turn out to be quite ad hoc. Furthermore, we noted earlier in

the context of Proposition 3 that, when all individuals are risk neutral, one of the main dificulty

in implementing efficient outcomes has to do with the inability to mitigate the incentive to deviate

unilaterally in a neighbourhood of the efficient action. Therefore, we will only examine the issue

of local implementation of the efficient outcome (â, (p̂θ)θ∈Θ), where local implementation is as

defined earlier with the obvious understanding that the production function is no longer weakly

separable and the utility functions are all quasi-linear.

In order to motivate the intuition for the efficiency result presented below, let us first consider

the general case in which the utility functions may or may not be quasi-linear. According to

equation (4), for all individuals i, j and for all states θh, θl, we have

u′i(p̂
θh
i )

u′j(p̂
θh
j )

=
u′i(p̂

θl
i )

u′j(p̂
θl
j )

Notice that the above equation is still valid for any redistribution of the total outputs at â if

everyone has quasi-linear utility functions. However, when there are risk averse individuals, it

may be possible to redistribute the total outputs at â in such a way that the equation does not

hold. Furthermore, in the case of weakly separable production functions we know that

fi(â, θ
h)

fj(â, θh)
=
fi(â, θ

l)

fj(â, θl)
for all i, j and for all h, l.

From these observations we can conclude the following distinction in the case of weakly separable

productions:
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(i) If all individuals have quasi-linear utility function, then there is no other outcome (â, (pθ)θ∈Θ)

such that

u′i(p
θh
i )fi(â, θ

h)

u′j(p
θh
j )fj(â, θh)

6= u′i(p
θl
i )fi(â, θ

l)

u′j(p
θl
j )fj(â, θl)

for some i, j and some h, l.

(ii) If there are risk averse individuals, then it may be possible to find other outcomes

(â, (pθ)θ∈Θ) such that

u′i(p
θh
i )fi(â, θ

h)

u′j(p
θh
j )fj(â, θh)

6= u′i(p
θl
i )fi(â, θ

l)

u′j(p
θl
j )fj(â, θl)

for some i, j and some h, l.

This distinction is the key to the difference in the efficiency results in Proposition 3 on the one

hand and examples 1 and 2 and Propositions 4 and 5 on the other hand.

Let us now apply a similar intuitive line of reasoning to the present case in which all team

members have quasi-linear utility functions and the production function is not weakly separable.

For any outcome (â, (pθ)θ∈Θ), we have u′i(p
θh
i )/u′j(p

θh
j ) = 1 for all i, j and for all h. However,

because the production function is not weakly separable, it is possible to have

fi(â, θ
h)

fj(â, θh)
6= fi(â, θ

l)

fj(â, θl)
for some i, j and some h, l.

Thus, even if all team members have quasi-linear utility functions, unlike in the case of weakly

separable production function, it might be possible that

u′i(p̂
θh
i )fi(â, θ

h)

u′j(p̂
θh
j )fj(â, θh)

6= u′i(p̂
θl
i )fi(â, θ

l)

u′j(p̂
θl
j )fj(â, θl)

for some i, j and some h, l.

This observation is the key to example 3 and also the characterization of local implementation of

efficient outcomes.

Proposition 6: If the production fuction is not weakly separable, every team member

has a quasi-linear utility function and Θ = {θ1, ..., θM}, then the efficient outcome (â, (p̂θ)θ∈Θ)

is locally implementable if and only if there exist i, j and h, l such that fi(â, θ
h)/fj(â, θ

h) 6=
fi(â, θ

l)/fj(â, θ
l).

Proof: See the appendix.

The examples and propositions presented in this section have shown that, although the results

in our framework could be seen as a generalization of the existing literature (such as Legros

and Matsushima (1991), Legros and Matthews (1993) and Rasmusen (1987)) if the production

function is weakly separable, our framework may add something new if the production function

is not weakly separable.

5. LINEAR SHARING RULES
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In this section we will concentrate on a restricted class of implementable outcomes. In particular,

we will only consider those outcomes that are implementable by using sharing rules for which the

first-order approach is valid.

In the literature, the random variable θ is often suppressed by viewing the output q as a random

variable with a distribution function G(q|a) parametrised by the actions (e.g. see Holmstrom

(1982), Kim and Wang (1998)) and conditions are often imposed on G to generate contracts that

are nondecreasing in output. We do not want to suppress the random variable θ in our context as

it has an essential role to play in the analysis, but we could explore conditions on the production

function f and the probability measure µ to avoid a negative relationship between payments and

output. However, instead of this approarch, we will rely on the fairly usual casual empiricism that

individual payments are often related non-negatively to the final output level. Thus, throughout

this section we will also consider only the class of outcomes that are implementable by using

sharing rules in which the share functions are nondecreasing in the output in a neighbourhood of

the Nash equilibrium outputs.

Consider an implementable outcome (ā, (p̄θ)θ∈Θ) and let the sharing rule s̄ implement this

outcome. So we have

s̄i(f(ā, θ), θ) = p̄θi for each i and for all θ.

In the appendix we derive the following equation for each i:∫
Θ

[u′i(p̄
θ
i )s̄
′−
i (f(ā, θ), θ)fi(ā, θ)]dµ− c′i(āi) =∫

Θ
[u′i(p̄

θ
i )s̄
′+
i (f(ā, θ), θ)fi(ā, θ)]dµ− c′i(āi) =

d

dai

∫
Θ
ui(s̄i(f(ā, θ), θ))dµ− c′i(āi) = 0 (6)

where s̄′+i (f(ā, θ), θ) and s̄′−i (f(ā, θ), θ) are respectively the upper and lower derivatives of s̄i(q, θ)

at q = f(ā, θ). As s̄i is nondecreasing in a neighbourhood of f(ā, θ) for each i and each θ, we have

s̄′+i (f(ā, θ), θ) ≥ 0. Furthermore, the budget balancing condition implies that
∑N
i=1 s̄

′+
i (f(ā, θ), θ) =

1 for all θ.

For each i and each θ, let γ̃θi and α̃θi be defined as follows:

γ̃θi = s̄′+i (f(ā, θ), θ) (7)

α̃θi = p̄θi − γ̃θi f(ā, θ) (8)

So we know that γ̃θi ≥ 0 for all i and for all θ and

N∑
i=1

γ̃θi = 1 for each θ. (9)

It can also be verified that

N∑
i=1

α̃θi = 0 for each θ. (10)
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Using the above derivations, we will now construct a sharing rule which is linear in the output

for each realisation of the random variable and show that this sharing rule also implements the

given outcome (ā, (p̄θ)θ∈Θ). Let s̃ = (s̃1, ..., s̃N ) be the sharing rule such that, for each i,

s̃i(q, θ) = α̃θi + γ̃θi q for all (q, θ). (11)

It can be verified by using equations (9) and (10) that the above definition does satisfy the budget

balancing condition.

Proposition 7: The outcome (ā, (p̄θ)θ∈Θ) can be implemented by using the sharing rule s̃.

Proof: See the appendix.

In order to look at the efficiency issue for the restricted class of implementable outcomes

considered here, let us now pick an efficient outcome (aE , (pEθ)θ∈Θ) and suppose that it could be

implemented. Using equations (2) - (4), it is straightforward to see that the following is satisfied

for each i:∫
Θ

[u′i(p
Eθ
i )fi(a

E , θ)]dµ− c′i(aEi ) = 0. (12)

According to Proposition 7, (aE , (pEθ)θ∈Θ) must be implementable by a linear sharing rule sE

such that, for each i, sEi (q, θ) = αEθi + γEθi q for all (q, θ), with γEθi ≥ 0,
∑N
j=1 γ

Eθ
j = 1 and∑N

j=1 α
Eθ
j = 0. Then from the first-order condition for expected utility maximization at a Nash

equilibrium, we can derive the following for each i:∫
Θ

[u′i(p
Eθ
i )γEθi fi(a

E , θ)]dµ− c′i(aEi ) = 0. (13)

However, it can be seen clearly that equations (12) and (13) cannot hold simultaneously for some

i. Therefore, we have established the following negative efficiency result.

Proposition 8: There are no efficient outcomes in the restricted class of implementable

outcomes.

Note that, although in example 3 the efficient outcomes were implementable by using linear

sharing rules, this does not contradict Proposition 8. The linear sharing rules in the example do

not satisfy one of the condition required in Proposition 8, because some of the individual share

functions were negatively sloped. This is not so surprising once we realise that, if the individual

share functions are no longer required to be nondecreasing in a neighbourhood of the efficient

output levels, i.e. the γEθi s are not restricted to be nonnegative, equations (12) and (13) could

hold simultaneously for all i.

Imposing validity of the first-order approach requires the share functions to be smooth in a

neighbourhood of the Nash equilibrium output levels. So, although this is a technical regularity

condition, it could in some sense be viewed as a requirement on the sharing rule to be simple to a

certain extent. One could also argue that sharing rules with share functions that are decreasing
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in output are not reasonable and could face difficulty in making the team accept such sharing

rules. These interpretations provide an important motivation for imposing validity of the first-

order approach and requiring the share functions to be locally nondecreasing around the desired

output levels in some situations, namely, they could be seen as requiring the team to only adopt

sharing rules with a certain degree of simplicity and reasonableness/acceptability. In the context

of such situations, Proposition 7 is important as it implies that the team does not have to look

for anything more complicated than linear sharing rules.

Our Proposition 7 could be contrasted to the linear sharing rule result of Kim and Wang (1998)

that was derived under the setting in which the production technology exhibited weak separability

between the actions and the random variable and the random variable was not observable ex-post

or could not be contracted upon.8 Kim and Wang were able to derive their linear sharing rule result

only under the assumption of quasi-linear utility functions. However, even under the assumption

of validity of the first-order approach, they showed that the optimal contract is not linear when

there is risk aversion. They argued that this was because risk sharing must be taken into account

in addition to incentive provision in designing a contract. When state contingent contracts are

not permissible, the risk element is still present ex-post but this dissipates once state contingent

contracts are allowed. This suggests that, as argued by Kim and Wang, risk sharing will not

be taken into account in our framework even if there is risk aversion. However, following this

intuition for our linear sharing rule result is not so straightforward, because individuals still face

risk at the time of choosing their actions as these are done ex-ante. This suggests the possibility

of taking risk sharing into consideration in designing the sharing rule if individuals are risk averse.

Thus, it follows from examples 1 and 2 with efficient implementable outcomes and the negative

efficiency result of Proposition 8 that, apart from the absence of the risk element ex-post, the

assumption of validity of the first-order approach itself and the requirement of the share functions

to be nondecreasing locally around the desired output levels have some role to play in our linear

sharing rule result in Proposition 7.

Our linear sharing rule result could also be compared to that of Nandeibam (2002) derived in

a framework with no uncertainty. Although there are similarities in the line of reasoning used in

both results, there are two crucial differences. Firstly, Nandeibam (2002) did not impose validity

of the first-order approach, instead the validity of the first-order approach itself was derived.

Secondly, the share functions were not required to be nondecreasing in a neighbourhood of the

Nash equilibrium output, instead this was also derived. These differences are significant because,

if we relax the restrictions imposed in this section, then Proposition 8 and examples 1 and 2 imply

that the team may have to adopt a sharing rule that is more complex than one that is linear in

the output with nonnegative slopes. This suggests that Proposition 7 is not a straightforward

generalisation of the linear sharing rule result of Nandeibam (2002).

8See also Bhattacharyya and Lafontaine (1995) and Romano (1994).
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If we accept the interpretation that a possible motivation for the two key restrictions imposed

in this section could be the desire for some degree of simplicity and reasonableness in the sharing

rule, then the contrast between Proposition 8 and the efficiency results of the previous section

suggest the possibility of a trade off between this desire and efficiency in the sense that, in some

situations where efficiency is achievable, the desire for simplicity and reasonableness may prevent

it. In fact, using a similar line of reasoning, it would be interesting to explore whether every

outcome that is implementable by adopting a sharing rule for which the two key restrictions are

valid might be ex-ante Pareto dominated by another outcome that is also implementable (but not

necessarily efficient), possibly by adopting a sharing rule for which the restrictions do not hold.

It may be noted that such a trade off is not implied by the linear sharing rule results of Kim

and Wang (1998) in the non-deterministic case and Nandeibam (2002) in the deterministic case,

because neither of them required validity of the first-order approach and share functions that are

nondecreasing in a neighbourhood of the Nash equilibrium output.

A straightforward corollary of Proposition 7 is the following characterization of the restricted

class of implementable outcomes considered in this section.

Proposition 9: An outcome (a, (pθ)θ∈Θ) belongs to the restricted class of implementable

outcomes if and only if there exist γθi ≥ 0 for each i and each θ such that

(i)
∑N
i=1 γ

θ
i = 1;

(ii)
∫

Θ u
′
i(p

θ
i )γ

θ
i fi(a, θ)dµ = c′i(ai).

Proof: See the appendix.

6. SUMMARY AND CONCLUSION

In a moral hazard in team setting, apart from the final output, any additional information that

allows better inference of the actions may bring us closer to the first-best outcome. We argue

that there are many situations where, although uncertainty enters into the relationship between

the actions and the final output, this uncertainty is resolved and more crucially, the realised

value of the randon factor is observable. For example, we can think of the case of non-point

source pollution problem where a random element like rainfall combines with individual emissions

to produce an ambient level of pollution. Prior to pollution discharge, future rainfall is not

known with certainty. However, at the time when the ambient level of pollution is observed, the

rainfall that preceded this point in time is also known and observable. There are other situations,

some of which we have already mentioned, that are similar to the non-point source pollution

problem. Thus, the potential to observe the realised value of the random factor ex-post seems

quite prevalent in problems characterised by moral hazard in teams. This observation suggests

that it makes sense to include this knowledge in the construction of a sharing rule aimed at
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reducing free-riding incentives and may improve on current schemes suggested in the literature.9

Accordingly, we considered a set up in which the team’s sharing rule took the form of a menu of

contracts by incorporating the random factor as an additional variable that could be contracted

upon.

We first provided a general characterization of outcomes that could be implemented in our

framework. Intuitively, this condition imposed restrictions on the set of unilateral deviations for

which no one could be ruled out and this allowed sufficient punishments to be incorporated into

the sharing rule to deter such deviations, whilst ensuring that the team’s budget is balanced at

the same time. We also showed that, for implementing an efficient outcome without imposing any

additional restrictions on the utility functions and the production function, it is necessary and

sufficient to require the implementability condition only on actions that are below the efficient

levels. To explore further the issue of implementing efficient outcomes, we considered separately

the case of production functions that are weakly separable between the actions and the random

factor and those that are not. In the former case, we first proved that efficient outcomes could not

be implemented when everyone has quasi-linear utility function and then presented two examples

to show that we might be able to escape the negative result if there are team members who

do not have quasi-linear utility funcyions. For weakly separable production functions with some

individual utility functions that are not quasi-linear, in addition to providing a more transparent

necessary and sufficient condition for implementing an efficient outcome, we also derived a con-

dition that is necessary and sufficient for local implementation of an efficient outcome. For the

latter case with production functions which are not weakly separable between the actions and the

random factor, using an example we first showed that efficient outcomes might be implementable

even if everyone has a quasi-linear utility function. We also presented a necessary and sufficient

condition for local implementation of an efficient outcome. It is worth pointing out that, although

the results for weakly separable production functions could be seen as generalizations of analogous

results in the existing literature, there does not seem to be any existing result that is analogous

to ours in the case of production functions which are not weakly separable.

When we narrowed attention to the restricted class of implementable outcomes where the

first-order approach is valid and the share functions are locally nondecreasing around the desired

output levels, we found that it was possible to restrict the team’s search for a suitable sharing

rule to simple rules that are linear and nondecreasing in output. This might also provide some

explanation as to why, although contrary to predictions by theory, simple linear sharing rules

are prevalent.10 Using the linear sharing rule result, we showed that there are no efficient out-

9For example, in the non-point source pollution context, by not accounting for the random factor, polluters
may find that they have to pay a tax because the ambient level of pollution exceeded a specified target due to the
random factor and not because they over emitted pollution (Herriges et al. (1994), Horan et al. (1998), Segerson
(1988), Xepapadeas (1995)).

10Romano (1994) and Bhattacharyya and Lafontaine (1995) provide another explanation of why linear sharing
rules tend to be the norm in practice. They find that, in the presence of double moral hazard and risk neutrality
of the agent, a simple linear sharing rule implements the desired outcome.
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comes in the restricted class of implementable outcomes and provided a characterization of this

restricted class. Although we have not explored it here, the line of reasoning used in our general

characterization of implementable efficient outcomes suggests that, in some situations it might be

possible to show that the outcomes in the restricted class could be ex-ante Pareto dominated by

other implementable outcomes that are not in the restricted class. Thus, imposing validity of the

first-order approach and share functions that are nondecreasing around the desired output levels

might be seen as restrictive requirements.

It is worth pointing out that a possible weakness of our approach is the supposition that

the realisation of the random element is exactly observable. Arguably, this supposition could

be considered to be somewhat extreme. There are various situations one can think of where,

although some amount of information about the random element will be available ex-post, it is

not as precise as we have assumed in this paper. To that extent, our extreme assumption could

be seen as a first attempt at trying to understand the problem by looking at the simplest case.

An interesting possible extension would be to consider coarser information partitions to capture

situations with less precise degree of observability of the random element ex-post and see to what

extent our results could be generalized.
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APPENDIX

Proof of Proposition 1: Suppose (â, (p̂θ)θ∈Θ) can be implemented. Let š be a sharing rule

such that â is a Nash equilibrium conditional on š and ši(f(â, θ), θ) = p̂θi for all i and for all θ.

Consider (q̌, θ̌) such that q̌ ∈ Q̂(θ̌). For each i, let ǎi be such that f(â−i, ǎi, θ̌) = q̌. We need to

find (wθi (ǎi))θ∈Θ ∈Wi(ǎi, Ûi) for each i such that
∑N
i=1w

θ̌
i (ǎi) ≥ q̌. Clearly,

∑N
i=1 ši(q̌, θ̌) = q̌ and

for each i,∫
Θ
ui(ši(f(â−i, ǎi, θ), θ))dµ− ci(ǎi) ≤

∫
Θ
ui(ši(f(â, θ), θ))dµ− ci(âi)

So there exists εi ≥ 0 for each i such that∫
Θ
ui(ši(f(â−i, ǎi, θ), θ) + εi)dµ− ci(ǎi) =

∫
Θ
ui(p̂

θ
i )dµ− ci(âi)

For each i, let w̌θi = ši(f(â−i, ǎi, θ), θ) + εi for all θ. Then (w̌θi )θ∈Θ ∈Wi(ǎi, Ûi) for each i and

N∑
i=1

w̌θ̌i =
N∑
i=1

[ši(q̌i, θ̌) + εi] ≥ q̌.

We will next prove the converse by using the sharing rule ŝ constructed in section 3. Consider

any i and any ai. Because of (A) in the definition of ŝ, it is sufficient to show that∫
Θ
ui(ŝi(f(â−i, ai, θ), θ))dµ− ci(ai) ≤

∫
Θ
ui(ŝi(f(â, θ), θ))dµ− ci(âi)

From (B) and (C) in the definition of ŝ, it can be verified that ŝi(f(â−i, ai, θ), θ) ≤ wθi (ai) for every

θ. We also know that (wθi (ai))θ∈Θ ∈Wi(ai, Ûi). Thus, the monotonicity condition in assumption

A3 implies∫
Θ
ui(ŝi(f(â−i, ai, θ), θ))dµ− ci(ai) ≤

∫
Θ
ui(ŝi(f(â, θ), θ))dµ− ci(âi). ‖

Proof of Proposition 2: From Proposition 1 it is clear that the restriction of condition (I) to

ai < âi for all i is necessary for implementing the efficient outcome (â, (p̂θ)θ∈Θ).

To prove sufficiency, let us suppose that (â, (p̂θ)θ∈Θ) satisfies the restriction of condition (I) to

ai < âi for all i. We will modify the sharing rule used in the proof of Proposition 1 appropriately

to complete the proof. For each i and each θ, let α̂θi = p̂θi − f(â, θ)/N .

For each i, let ŝi be the share function which satisfies the following for each (q, θ):

(A) if q ≥ f(â, θ), then ŝi(q, θ) = α̂θi + q/N ;

(B) if q < f(â, θ) and q ∈ Q̂(θ), then ŝi(q, θ) = wi(q, θ);

(C) if q < f(â, θ), q /∈ Q̂(θ) and i ∈ ηqθ, then ŝi(q, θ) = wθi (a
qθ
i );

(D) if q < f(â, θ) and i /∈ ηqθ, then ŝi(q, θ) = [q −
∑
j∈ηqθ w

θ
j (a

qθ
j )]/[N − |ηqθ|].
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It can be checked that ŝ = (ŝ1, ..., ŝN ) is a sharing rule, because it ensures that the team’s budget

is always balanced.

It can be easily checked that, for each i and each θ, ŝi(f(â, θ), θ) = p̂θi . Using (A) in the

definition of ŝ, for each i and each ai ≥ âi, let

ûi(ai) =

∫
Θ
ui(ŝi(f(â−i, ai, θ), θ))dµ− ci(ai) =

∫
Θ
ui

(
α̂θi +

f(â−i, ai, θ)

N

)
dµ− ci(ai)

Given any i, consider a′i, a
′′
i ≥ âi, and let aλi = λa′i + (1− λ)a′′i for each λ ∈ (0, 1). For each θ,

the concavity of ui and the convexity of ci impy

ui(λ(α̂θi + f(â−i, a
′
i, θ)/N) + (1− λ)(α̂θi + f(â−i, a

′′
i , θ)/N))− ci(aλi ) ≥

λ[ui(α̂
θ
i + f(â−i, a

′
i, θ)/N)− ci(a′i)] + (1− λ)[ui(α̂

θ
i + f(â−i, a

′′
i , θ)/N)− ci(a′′i )]. (14)

For each θ, the concavity of f in the actions also implies

α̂θi + f(â−i, a
λ
i , θ)/N ≥ λ(α̂θi + f(â−i, a

′
i, θ)/N) + (1− λ)(α̂θi + f(â−i, a

′′
i , θ)/N). (15)

Using (14), (15) and the monotonicity of ui, we get

ui(α̂
θ
i + f(â−i, a

λ
i , θ)/N)− ci(aλi ) ≥

λ[ui(α̂
θ
i + f(â−i, a

′
i, θ)/N)− ci(a′i)] + (1− λ)[ui(α̂

θ
i + f(â−i, a

′′
i , θ)/N)− ci(a′′i )].

So ûi is concave. Using the first-order conditions (2) - (4) of the efficiency problem (EP), it can

also be verified that the first-order derivative of ûi is negative at âi. Hence, ûi is maximized at

âi.

Using a similar reasoning as in the proof of Proposition 1, we can also conclude from (B) and

(C) in the definition of ŝ that, for each i and every ai < âi,∫
Θ
ui(ŝi(f(â−i, ai, θ), θ))dµ− ci(ai) ≤

∫
Θ
ui(ŝi(f(â, θ), θ))dµ− ci(âi). ‖

Proof of Proposition 3: Let x̂ =
∫

Θ f(â, θ)dµ and x = maxi
∫

Θ f(â−i, 0, θ)dµ. Then for any

x ≥ x, let ai(x) be the unique action of individual i such that
∫

Θ f(â−i, ai(x), θ)dµ = x, where

the uniqueness follows from the monotonicity condition in assumption A1. Our assumptions also

imply that ai(x) is continuously differentiable. It can be verified by using the weakly separable

production function that, for any two individuals i and j and for any x ≥ x, f(â−i, ai(x), θ) =

f(â−j , aj(x), θ) for all θ ∈ Θ, and we let qxθ = f(â−i, ai(x), θ).

Suppose the proposition is false, so that, condition (I) holds. For each i and each ai, let

(wθi (ai))θ∈Θ ∈ Wi(ai, Ûi) be such that
∑N
i=1w

θ
i (a

qθ
i ) ≥ q for all (q, θ) with q ∈ Q̂(θ). So we have

the following for each x ≥ x:∫
Θ
wθi (ai(x))dµ =

∫
Θ
p̂θi dµ− ci(âi) + ci(ai(x)) ∀i
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which implies that

N∑
i=1

[∫
Θ
p̂θi dµ− ci(âi) + ci(ai(x))

]
=

N∑
i=1

∫
Θ
wθi (ai(x))dµ ≥

∫
Θ
qxθdµ = x

For each x ≥ x, define K(x) as follows:

K(x) =
N∑
i=1

[∫
Θ
p̂θi dµ− ci(âi) + ci(ai(x))

]
− x

Then we know that K(x) ≥ 0 for all x ≥ x and K(x̂) = 0. It can also be verified that

K ′(x) =
N∑
i=1

c′i(ai(x))

[∫
Θ
fi(âi, ai(x), θ)dµ

]−1

− 1

where K ′ is the derivative of K. By using equations (2) - (5) in the above expression, it can be

easily verified that K ′(x̂) = N −1 > 0. Hence, there exists x ∈ [x, x̂) such that K(x) < K(x̂) = 0,

which is a contradiction. ‖

Example 1: From the definition of s∗, we know that s∗i (f(a∗, θ), θ) = θ = pθ∗i for each i and

each θ. By a similar reasoning as in the proof of Proposition 2, we can also conclude that, for

each i and for all ai ≥ a∗i ,∫
<+

ui(s
∗
i (f(a∗, θ), θ))e−θdθ − ci(a∗i ) ≥

∫
<+

ui(s
∗
i (f(a∗−i, ai, θ), θ))e

−θdθ − ci(ai).

For a1 < 1, it can be verified that∫
<+

u1(s∗1(f(a1, a
∗
2, θ), θ))e

−θdθ − c1(a1) =

∫
Θ1

[1− e−θ(a1+1)]e−θdθ − (a2
1/8)

=

(
5− a2

1

8

)
+ (2 + a1)−1e−(2+a1) ln(8/3) − (2 + a1)−1

In the second line of the above equality, it can be checked that the first two terms are decreasing

and the last term is increasing in a1. So, for a1 < 1, we have∫
<+

u1(s∗1(f(a1, a
∗
2, θ), θ))e

−θdθ − c1(a1) <
3

8
=

∫
<+

u1(s∗1(f(a∗, θ), θ))e−θdθ − c1(a∗1).

Similarly, for a2 < 1, it can be verified that∫
<+

u2(s∗2(f(a∗1, a2, θ), θ))e
−θdθ − c2(a2) =

∫
Θ2

[1− e−θ(a2+1)]e−θdθ − (a2
2/8)

=
3

8
− (2 + a2)−1e−(2+a2) ln(8/3) − a2

2

8

<
3

8
=

∫
<+

u2(s∗2(f(a∗, θ), θ))e−θdθ − c2(a∗2).

Example 2: Suppose the team uses the sharing rule s̃ as defined in the example. It can be

checked that, when both individuals take their efficient actions, s̃ generates the shares in the given

efficient outcome. When both individuals take their efficient actions or one of them unilaterally
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deviates above it, it can be verified that s̃ is the same as the sharing rule used in the proof

of Proposition 2. Hence, we can conclude that neither individual has the incentive to deviate

unilaterally above his/her efficient action.

For each i and each ai < 1, let Yi(ai) be the expected utility of individual i when he/she

unilaterally deviates to ai. Using s̃ in the utility functions, we can derive the following for each i

and each ai < 1:

Y1(a1) =
1

2

[
3 + 3a1 − ln

(
36

(e− 1)2

)]
− 3

4
(a1)2

Y2(a2) =
1

2

[
2− e−2(1+a2)−ln(3/[e−1])+4 − e2(1+a2)−ln(12/[e−1])−4

]
− 1

4
(ea2 − a2 − 1)

It can be checked that

lim
a1→1

Y1(a1) = (9/4)− ln(6/[e− 1]) = u∗1

lim
a2→1

Y2(a2) < (3/2)− (5/12)e < u∗2

One can also easily verify that, for each i, limai→1 Y
′
i (ai) = 0 and Y ′′i (ai) < 0 for all ai < 1,

where Y ′i and Y ′′i are respectively the first and second order derivatives of Yi. Thus, for each i,

Yi(ai) ≤ u∗i for all ai < 1. Therefore, the efficient outcome given in the example is implementable.

Proof of Proposition 4: Let s̃ ∈ S locally implement (â, (p̂θ)θ∈Θ). To complete the proof of

necessity, we will first show that
∫
Θ ui(s̃i(f(â−i, ai, θ), θ))dµ is discontinuous at âi for some i.

Suppose
∫

Θ ui(s̃i(f(â−i, ai, θ), θ))dµ is continuous at âi for all i. Then

lim
ai→â−i

∫
Θ
ui(s̃i(f(â−i, ai, θ), θ))dµ = Ûi + ci(âi) for all i

which implies that
∫
Θ ui(p

θ−
i )dµ = Ûi + ci(âi) for all i, where pθ−i = limai→â−i

s̃i(f(â−i, ai, θ), θ)

for each i and each θ. From the continuity and monotonicity of f and the budget balancing

condition, it can be verified that
∑N
i=1 p

θ−
i = f(â, θ) for all θ, which implies that (â, (pθ−)θ∈Θ)

is also an efficient outcome and satisfies (2) - (5). So, for each i ≥ 2 and each θ, we have

u′i(p
θ−
i ) = u′1(pθ−1 )/λi. Also, from the weak separability of the production function, for each i ≥ 2

and each θ, we have fi(â, θ) = f1(â, θ)/τi, where τi = A1(â)/Ai(â). From the Nash equilibrium

condition we also have∫
Θ

[u′i(p
θ−
i )s̃′−i (f(â, θ), θ)fi(â, θ)]dµ− c′i(âi) ≥ 0 for all i

where s̃′−i (f(â, θ), θ) is the lower derivative of s̃i at f(â, θ). So we get∫
Θ

[u′1(pθ−1 )s̃′−i (f(â, θ), θ)f1(â, θ)]dµ− τiλic′i(âi) ≥ 0 for all i ≥ 2

From (2) -(4), we also have

−
∫

Θ
[u′1(pθ−1 )f1(â, θ)]dµ = τiλic

′
i(âi) for all i
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where we let τ1 = λ1 = 1. So we get∫
Θ

[u′1(pθ−1 )f1(â, θ)[s̃′−i (f(â, θ), θ)− 1]]dµ ≥ 0 for all i

which implies that∫
Θ

[
u′1(pθ−1 )f1(â, θ)

(
N∑
i=1

s̃′−i (f(â, θ), θ)−N
)]

dµ ≥ 0

Because of the budget balancing condition, it is straightforward to verify that
∑N
i=1 s̃

′−
i (f(â, θ), θ) =

1 for all θ. Hence, we get (1−N)
∫

Θ[u′1(pθ−1 )f1(â, θ)]dµ ≥ 0, which is a contradiction as (1−N) < 0,

u′1 > 0 and f1 > 0.

From the proof of Proposition 2 it can be verified that, without loss of generality, we can

assume∫
Θ
ui(s̃

+
i (f(â, θ), θ))dµ = Ûi + ci(âi) for all i

where s̃+
i (f(â, θ), θ) = limai→â+

i
s̃i(f(â−i, ai, θ), θ). Then the Nash equilibrium condition and the

discontinuity of
∫
Θ ui(s̃i(f(â−i, ai, θ), θ))dµ at âi for some i imply that∫

Θ
ui(p

θ−
i )dµ ≤ Ûi + ci(âi) for all i

with strict inequality holding for some i. Furthermore, we know from the budget balancing

condition that
∑N
i=1 p

θ−
i = f(â, θ) for all θ. Now, because of the monotonicity of ui, there is no

loss of generality in assuming that
∫
Θ ui(p

θ−
i )dµ < Ûi + ci(âi) for all i.

For the sufficiency, let s̃ ∈ S be a sharing rule such that it is the same as the sharing rule used

in the proof of Proposition 2 for all (q, θ) with q ≥ f(â, θ) and limq→f(â,θ)− s̃i(q, θ) = p̄θi for each

i and each θ. So, from the proof of Proposition 2 we know that, for each i,∫
Θ
ui(s̃i(f(â, θ), θ))dµ = Ûi + ci(âi)∫

Θ
ui(s̃i(f(â−i, ai, θ), θ))dµ ≤ Ûi + ci(ai) for all ai ≥ âi

We also have

lim
ai→â−i

∫
Θ
ui(s̃i(f(â−i, ai, θ), θ))dµ =

∫
Θ
ui(p̄

θ
i )dµ < Ûi + ci(âi) for all i

Thus, there exists ε > 0 such that, for each i,∫
Θ
ui(s̃i(f(â−i, ai, θ), θ))dµ− ci(ai) ≤ Ûi for all ai ∈ (âi − ε, âi). ‖

Proof of Proposition 5: To prove the necessity, suppose the given efficient outcome can be

implemented using a sharing rule ŝ. For each i ≥ 2 and each θ, let

pθxi = ŝi(F (x, θ), θ) = ŝi(f(â−i, ρ̂i(x), θ), θ) for all x < A(â)
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Then, by the budget balancing condition, for each θ,

ŝ1(F (x, θ), θ) = F (x, θ)−
N∑
i=2

ŝi(F (x, θ), θ)

= F (x, θ)−
N∑
i=2

pθxi for all x < A(â)

For each i ≥ 2 and each x < A(â), we have∫
Θ
ui(p

θx
i )dµ =

∫
Θ
ui(ŝi(f(â−i, ρ̂i(x), θ), θ))dµ ≤ Ûi + ci(ρ̂i(x))

For each x < A(â), we also have∫
Θ
u1(F (x, θ)−

N∑
i=2

pθxi )dµ =

∫
Θ
u1(ŝ1(F (x, θ), θ))dµ ≤ Û1 + c1(ρ̂1(x))

Hence, V̂ (x) ≤ Û1 + c1(ρ̂1(x)) for every x < A(â).

To prove the sufficiency, suppose V̂ (x) ≤ Û1+c1(ρ̂1(x)) for every x < A(â). For each x < A(â),

let (p̄θx−1)θ∈Θ be a solution of the problem that defines V̂ (x). Given any (q, θ) with q < f(â, θ),

let x(q, θ) be such that F (x(q, θ), θ) = q. Define the sharing rule s̄ as follows: for each (q, θ),

(i) s̄ is the same as the sharing rule in the proof of Proposition 2 when q ≥ f(â, θ);

(ii) if q < f(â, θ), then

s̄i(q, θ) =

{
p̄
θx(q,θ)
i if i ≥ 2

F (x(q, θ), θ)−
∑N
i=2 p̄

θx(q,θ)
i if i = 1

Then from the proof of Proposition 2 we have the following for each i:∫
Θ
ui(s̄i(f(â−i, ai, θ), θ))dµ ≤ Ûi + ci(ai) for all ai ≥ âi and s̄i(f(â, θ), θ) = p̂θi for all θ.

For each i and each θ, it can be verified from the definitions that, for every ai < âi,

x(f(â−i, ai, θ), θ) = A(â−i, ai) and ρ̂i(x(f(â−i, ai, θ), θ)) = ai

So, for each i ≥ 2 and each ai < âi, we have∫
Θ
ui(s̄i(f(â−i, ai, θ), θ))dµ =

∫
Θ
ui(p̄

θA(â−i,ai)
i )dµ ≤ Ûi + ci(ai).

Furthermore, for each a1 < â1, we have∫
Θ
u1(s̄1(f(â−1, a1, θ), θ))dµ =

∫
Θ
u1(F (A(â−1, a1), θ)−

N∑
i=2

p̄
θA(â−1,a1)
i )dµ ≤ Û1 + c1(a1). ‖

Example 3: Suppose the team uses the sharing rule ŝ as defined in the example. For each i

and each ai, let Zi(ai) be i’s expected utility when he/she unilaterally deviates to ai. Then it can

be verified that, for each i and each ai,

Zi(ai) = (1/4)[4(ai)
1/2 − 2(ai)

1/4 +Ki]− (3/16)(ai)
2, where −K2 = K1 =

∑4
j=1 α̂

j .
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So we have the following for each i :

Z ′i(ai) = (1/4)[2(ai)
−1/2 − (1/2)(ai)

−3/4]− (3/8)ai for all ai

Z ′′i (ai) = (1/4)[−(ai)
−3/2 + (3/8)(ai)

−7/4]− (3/8) for all ai

which implies that Z ′i(a
∗
i ) = 0 and Z ′′i (a∗i ) < 0. For each i, although Zi(ai) is not globally concave,

it can be verified that there is a δi ∈ (0, 1) such that

Z ′i(ai)


= 0 if ai = δi or 1
< 0 if ai ∈ [0, δi) ∪ (1, 2]
> 0 if ai ∈ (δi), 1)

Also, for each i,

Zi(0) = (Ki/4) < (Ki/4) + (5/16) = Zi(a
∗
i ).

Hence, a∗ = (1, 1) is a Nash equilibrium conditional on ŝ and the efficient outcome (a∗, (p̂θ)θ∈Θ)

is implementable.

Now, suppose the state is not observable/verifiable, but there is a sharing rule s (which is a

function only of the final output and not the state) that can support a∗ as a Nash equilibrium.

Then, for each i and for all ai,

(1/4)

 4∑
j=1

si(f(a∗−1, ai, θ
j))

− (3/16)(ai)
2 ≤ (1/4)

 4∑
j=1

si(f(a∗, θj))

− (3/16) = si(1)− (3/16)

which implies that

(1/2)[si(a
1/2) + si(a

1/4)]− (3/16)a2 ≤ si(1)− (3/16) for all a ∈ [0, 2]

So we have

(1/2)
2∑
i=1

[si(a
1/2) + si(a

1/4)]− (3/8)a2 ≤
2∑
i=1

si(1)− (3/8) for all a ∈ [0, 2]

which together with the budget balancing condition imply

(1/2)[a1/2 + a1/4]− (3/8)a2 ≤ 1− (3/8) = (5/8) for all a ∈ [0, 2].

For each a ∈ [0, 2], let D(a) = (1/2)[a1/2 + a1/4] − (3/8)a2 − (5/8). So we know that D(a) ≤ 0

for all a ≤ 1 and D(1) = 0. By differentiating D(a) it can be easily checked that D′(1) < 0

and D′′(a) < 0 for all a. Hence, there exists ã < 1 such that D(a) > 0 for all a ∈ (ã, 1), a

contradiction. Thus, we have shown that, if the state is not observable/verifiable, then there is

no sharing rule which can support a∗ as a Nash equilibrium.

Now, suppose the action spaces are discretised, so that, the action space of each individual i is

Ei (as given in the example). Then it immediately follows from what we have shown above that,

if the state is observable/verifiable, then all efficient outcomes are still implementable. It can also

be readily verified that the interval (ã, 1) we derived above has a nonempty intersection with the
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discrete action space Ei for each i. Therefore, when the state is not observable/verifiable, there

is no sharing rule that can support a∗ as a Nash equilibrium.

Proof of Proposition 6: To prove the necessity, suppose the given efficient outcome can be

implemented using a sharing rule s̄. From the Nash equilibrium condition and s̄ ∈ S, we have

lim
ai→â−i

M∑
h=1

πhs̄i(f(â−i, ai, θ
h), θh)− ci(âi) ≤ Ûi for each i

which together with the assumptions in A1 imply

M∑
h=1

πh
[

lim
q→f(â,θh)−

s̄i(q, θ
h)

]
− ci(âi) ≤ Ûi for each i.

So by summing over all individuals we get

M∑
h=1

πh
[

lim
q→f(â,θh)−

N∑
i=1

s̄i(q, θ
h)

]
−

N∑
i=1

ci(âi) ≤
N∑
i=1

Ûi.

From the budget balancing condition we also have

lim
q→f(â,θh)−

N∑
i=1

s̄i(q, θ
h) = f(â, θh) for each h.

So we get
∑M
h=1 π

hf(â, θh)−
∑N
i=1 ci(âi) ≤

∑N
i=1 Ûi. Hence, it must be the case that

lim
ai→â−i

M∑
h=1

πhs̄i(f(â−i, ai, θ
h), θh)− ci(âi) = Ûi for each i

Then the Nash equilibrium condition and s̄ ∈ S imply that

M∑
h=1

πhs̄′−i (f(â, θh), θh)fi(â, θ
h)− c′i(âi) ≥ 0 for each i

where s̄′−i (f(â, θh), θh) is the lower derivative of s̄i at f(â, θh). For each i ≤ N − 1 and each

h, let γhi = s̄′−i (f(â, θh), θh). Then the budget balancing condition implies s̄′−N (f(â, θh), θh) =

1−
∑N−1
i=1 γhi for all h. So we have the following

−
M∑
h=1

πhfi(â, θ
h)γhi ≤ −c′i(âi) for all i ≤ N − 1; (16)

N−1∑
i=1

M∑
h=1

πhfN (â, θh)γhi ≤
M∑
h=1

πhfN (â, θh)− c′N (âN ) = 0 (17)

where the last equality follows from the first order conditions of the total surplus maximization

problem for deriving efficient outcomes. Now suppose fi(â, θ
h)/fj(â, θ

h) = fi(â, θ
l)/fj(â, θ

l) for

every i, j and every h, l. For each i ≤ N − 1, let τi = fN (â, θh)/fi(â, θ
h) > 0 for all h. Then we

have the following

πhfN (â, θh)− τiπhfi(â, θh) = 0 for all i ≤ N − 1 and for all h; (18)

−
N−1∑
i=1

τic
′
i(âi) < 0. (19)
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However, according to Theorem 22.1 in Rockafellar (1970), the two systems of inequalities given

by (16)-(17) and (18)-(19) cannot hold simultaneously. This completes the proof of necessity.

To prove sufficiency, suppose there exist i, j such that fi(â, θ
h)/fj(â, θ

h) 6= fi(â, θ
l)/fj(â, θ

l)

for some h, l. Then it can be checked that there are no non-negative real numbers τ̄1, ..., τ̄N−1

such that πhfN (â, θh)− τ̄iπhfi(â, θh) = 0 for all i ≤ N − 1 and for all h. Hence, Theorem 22.1 in

Rockafellar (1970) implies that there exist real numbers γ́hi for each i ≤ N − 1 and each h such

that

−
M∑
h=1

πhfi(â, θ
h)γ́hi ≤ −c′i(âi) for all i ≤ N − 1;

N−1∑
i=1

M∑
h=1

πhfN (â, θh)γ́hi ≤
M∑
h=1

πhfN (â, θh)− c′N (âN ) = 0

For each h, let γ́hN = 1−
∑N−1
i=1 γ́hi . So we have

M∑
h=1

πhfi(â, θ
h)γ́hi − c′i(âi) ≥ 0 for all i. (20)

Without loss of generality, let π1fN (â, θ1)/π2fN (â, θ2) < π1f1(â, θ1)/π2f1(â, θ2) and pick any

δ1, δ2 > 0 such that δ2/δ1 = π1fN (â, θ1)/π2fN (â, θ2). Also, for each i and each h, let γ̄hi be the

same as γ́hi except γ̄1
1 = γ́1

1 + δ1, γ̄2
1 = γ́2

1 − δ2, γ̄1
N = γ́1

N − δ1 and γ̄2
N = γ́2

N + δ2. Then it can be

verified that
∑N
i=1 γ̄

h
i = 1 for each h,

M∑
h=1

πhf1(â, θh)γ̄h1 − c′1(â1) =

M∑
h=1

πhf1(â, θh)γ́h1 + δ1π1f1(â, θ1)− δ2π2f1(â, θ2)− c′1(â1) > 0,

M∑
h=1

πhfN (â, θh)γ̄hN − c′N (âN ) =

M∑
h=1

πhfN (â, θh)γ́hN − δ1π1fN (â, θ1) + δ2π2fN (â, θ2)− c′N (âN ) ≥ 0,

M∑
h=1

πhfi(â, θ
h)γ̄hi − c′i(âi) =

M∑
h=1

πhfi(â, θ
h)γ́hi − c′i(âi) ≥ 0 for all i ∈ {2, ..., N − 1}.

Thus, because fi(â, θ
h) > 0 for all i and for all h, we can rewrite (20) as

M∑
h=1

πhfi(â, θ
h)γ́hi − c′i(âi) > 0 for all i. (21)

For each i and each h, define άhi = p̂θ
h

i − γ́hi f(â, θh). So
∑N
i=1 γ́

h
i = 1 implies

∑N
i=1 ά

h
i = 0 for

each h. Let ś be the sharing rule which is the same as the one used in the proof of Proposition
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2 for all (q, θh) with q ≥ f(â, θh), and for each (q, θh) with q < f(â, θh), śi(q, θ
h) = άhi + γ́hi q for

each i. From the construction it can be verified that śi(f(â, θh), θh) = p̂θ
h

i for each i and each h,

and no team member has the incentive to unilaterally deviate above his/her efficient action when

ś is adopted. Furthermore, when ś is adopted, (21) implies that there exists ε > 0 such that, for

each i,

M∑
h=1

śi(f(â−i, ai, θ
h), θh)− ci(ai) ≤ Ûi for all ai ∈ (âi − ε, âi). ‖

Proof of Proposition 7: Since s̄i(q, θ) is nondecreasing in a neighbourhood of f(ā, θ) for each

i and each θ, the upper and lower limits of s̄i(q, θ) exist at q = f(ā, θ). So the budget balancing

condition implies that s̄i(q, θ) is continuous at q = f(ā, θ). Because of the validity of the first-

order approach and assumptions A1, A2 and A3, we also know that, for each i and each θ, the

upper and lower derivatives of s̄i(q, θ) exist at q = f(ā, θ). Thus, (6) follows from the first-order

conditions of Nash equilibrium.

It can be checked from the definitions that

s̃i(f(ā, θ), θ) = p̄θi for each i and for all θ. (22)

Furthermore, from equations (6), (7), (11) and (22), we can derive the following first-order con-

ditions for ā to be a Nash equilibrium when s̃ is used:∫
Θ

[
u′i(s̃i(f(ā, θ), θ))s̃′i(f(ā, θ), θ)fi(ā, θ)

]
dµ− c′i(āi) = 0 for all i.

To complete the proof, it is then sufficient to show that, for each i, ui(s̃i(f(a, θ), θ)) is concave in

a for every θ.

Consider a′,a′′ and λ ∈ (0, 1). Let aλ = λa′+(1−λ)a′′. For each i, the concavity of ui implies

ui(λs̃i(f(a′, θ), θ) + (1− λ)s̃i(f(a′′, θ), θ)) ≥

λui(s̃i(f(a′, θ), θ)) + (1− λ)ui(s̃i(f(a′′, θ), θ)) for all θ. (23)

Using (11), λs̃i(f(a′, θ), θ) + (1 − λ)s̃i(f(a′′, θ), θ) = α̃θi + γ̃θi [λf(a′, θ) + (1 − λ)f(a′′, θ)] for each

i and each θ. For each i and each θ, the concavity of f and γ̃θi ≥ 0 also imply γ̃θi f(aλ, θ) ≥
γ̃θi [λf(a′, θ) + (1− λ)f(a′′, θ)]. So, for each i and each θ, we have

α̃θi + γ̃θi f(aλ, θ) ≥ λs̃i(f(a′, θ), θ) + (1− λ)s̃i(f(a′′, θ), θ) (24)

Hence, (11), (23), (24) and the monotonicity of the utility functions imply ui(s̃i(f(aλ, θ), θ)) ≥
λui(s̃i(f(a′, θ), θ))+(1−λ)ui(s̃i(f(a′′, θ), θ)) for each i and each θ. Thus, for each i, ui(s̃i(f(a, θ), θ))

is concave in a for every θ. ‖

Proof of Proposition 9: Suppose the given outcome (a, (pθ)θ∈Θ) belongs to the restricted class

of implementable outcomes. According to Proposition 7, (a, (pθ)θ∈Θ) must be implementable by
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a linear sharing rule s such that, for each i, si(q, θ) = αθi + γθi q for all (q, θ), with γθi ≥ 0 for each

i and each θ,
∑N
j=1 γ

θ
j = 1 and

∑N
j=1 α

θ
j = 0. Then from the first-order condition for expected

utility maximization at a Nash equilibrium, we have the following for each i:∫
Θ

[
u′i(p

θ
i )γ

θ
i fi(a, θ)

]
dµ− c′i(ai) = 0.

Suppose the given outcome (a, (pθ)θ∈Θ) is such that there exist γθi ≥ 0 for each i and each θ,

with
∑N
j=1 γ

θ
j = 1 and∫

Θ

[
u′i(p

θ
i )γ

θ
i fi(a, θ)

]
dµ− c′i(ai) = 0.

For each i and each θ, let αθi = pθi − γθi f(a, θ). Then
∑N
j=1 α

θ
j =

∑N
j=1 p

θ
j − f(a, θ)

∑N
j=1 γ

θ
j = 0

for all θ. So we can define a linear sharing rule s by si(q, θ) = αθi + γθi q for each i and for all

(q, θ). Therefore, using a similar reasoning as in the proof of Proposition 7, we can conclude that

s implements the outcome (a, (pθ)θ∈Θ). ‖
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