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Abstract

This paper investigates the intended and unintended consequences of the Preser-

vation of Subsoil Water Acts, enacted in 2009 in the Indian states of Punjab and

Haryana. The Acts aimed to preserve groundwater by delaying the sowing and

transplanting of paddy until the arrival of monsoon, thereby reducing the reliance

on irrigation. Employing difference-in-differences and triple difference strategies,

this paper demonstrates that while the policy had a small effect on groundwater

preservation, it also had unintended adverse effects on air quality. By shorten-

ing the time available between the rice harvest and the sowing of wheat, the Acts

prompted farmers to increasingly resort to crop residue burning as a quick means

of clearing fields. This practice, in turn, contributed to a rise in particulate matter

in the atmosphere, with significant implications for air quality in the region. The

findings highlight a trade-off for policy makers: gains in groundwater preservation

may come at the cost of worsening air quality.
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1 Introduction

In 2009, the Preservation of Subsoil Water Acts (henceforth, the Water Acts) were introduced

in the agricultural powerhouse states of Punjab and Haryana in India, as a bold response

to an escalating environmental problem: the steady decline of the groundwater table. These

states, once heralded as the cradle of India’s Green Revolution, had become heavily dependent

on groundwater for their agricultural output, particularly in the cultivation of water-intensive

paddy (rice). Groundwater extraction had reached unsustainable levels, with more than 70% of

irrigation water being sourced from rapidly depleting aquifers (Rodell et al., 2009). To address

this, the Water Acts aimed to shift the agricultural calendar, delaying paddy sowing to coincide

with the monsoon and thereby reducing the need for early-season irrigation.

In recent years, an opinion has formed that the Water Acts may also have had significant,

continuing, unintended consequences. By delaying the sowing of paddy, the policy inadvertently

compressed the time available for harvesting and field preparation for the subsequent Rabi

season crop (typically wheat) (McDonald et al., 2019). This led to a surge in crop residue

burning, a quick and inexpensive method of clearing fields. Crop residue burning, concentrated

in the months of late October and November, compounded the region’s pollution problems as

it coincided with cooler weather and more stable atmospheric conditions. This worsened air

quality, contributing to severe public health risks due to increased particulate matter in the

atmosphere (Chakrabarti et al., 2019).

In this paper, we attempt to provide a comprehensive, causal assessment of the unintended

and intended impacts of the Water Acts: air pollution and groundwater conservation1. We em-

ploy difference-in-differences (DiD) and triple difference techniques, using Punjab and Haryana

as treatment groups and other Indian states that grow one paddy crop a year as the control

group.2 We utilize comprehensive panel data from Punjab and Haryana to isolate the policy’s

effects by comparing pre- and post-policy periods across treatment and control districts.

Our research reveals that the Water Acts successfully delayed the sowing of paddy. Their

effect on groundwater preservation was small, however (about slightly more than half a meter in

water depth for Haryana, and insignificant for Punjab3), while its unintended consequences were

fairly severe. The delayed sowing pushed the harvesting period into late October and November,

a time when the air is cooler and more stable, conditions that are conducive to the accumulation

of pollutants. This shift in the agricultural calendar has been linked to an increase in crop

residue burning, as farmers faced a compressed window to clear their fields for the next crop.

Using multiple data sources, we find that the Water Acts led to a substantial increase in crop

residue burning, contributing to a significant increase in particulate matter in the atmosphere.

This worsened air quality in Punjab and Haryana, and also spilled over to neighboring states.

Furthermore, the effects on air pollution spiked in the month of November, coinciding with

the delayed harvest of rice, highlighting the impact of the compressed agricultural calendar on

environmental outcomes. The trade-off of a slight gain in groundwater conservation (in a causal,

DiD sense) at the expense of significant health costs from added air pollution underscores the

need for policymakers to consider the full range of potential consequences when implementing

environmental policies, recognizing that gains in one area can come at the cost of losses in

1More broadly, crop residue burning has potentially serious consequences in terms of releasing carbon
into the atmosphere. Our analysis focuses on the consequences on air quality and PM2.5.

2Figure 1 plots these states.
3These preliminary results measure impact using observation well depths of the Central Groundwater

Board (CGWB).
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another.

Our estimates indicate that the implementation of the Water Acts led to an average increase

of 8 units in thermal anomalies in the districts of Punjab and 6 units in those of Haryana.

Compared to pre-legislation averages, this corresponds to increases of 11.78% in Punjab and

57.91% in Haryana. Similarly, the burned area expanded by 7.22 km2 (22.96%) in Punjab

and 3.92 km2 (47.72%) in Haryana. In terms of PM2.5 concentrations, the Water Acts were

associated with increases of 4.51 µg/m3 (7.89%) in Punjab, 8.59 µg/m3 (12.82%) in Haryana,

and 4.13 µg/m3 (6.5%) in the neighboring states of Delhi, Uttar Pradesh, Rajasthan, and

Himachal Pradesh. These effects were most pronounced in the month of November. Typically,

a negative effect is observed in September and October, followed by a substantial positive effect

in November. This pattern suggests an increase in the intensity of crop residue burning in

Punjab and Haryana, with the peak shifting towards November, reflecting a delayed harvest.

Importantly, in models that control for crop residue burning in Punjab, the estimated effect on

PM2.5 concentrations in the neighboring states diminishes or disappears entirely, but only for

the month of November. This indicates that a portion of the increased pollution in these states

during November can be attributed to burning in Punjab. These findings formally trace the

increase in PM2.5 levels to crop residue burning in Punjab.

There is a growing literature that attempts to separately measure the impacts of the Water

Acts on conservation of groundwater and on air pollution. Tripathi et al. (2016) is an early

paper that uses panel data on 12 districts of Punjab to measure a first difference impact of the

Act on groundwater (pre- versus post-2009). While they find that the Punjab Act resulted in

significant groundwater savings, the restriction to a small number of districts and to only a first

difference also restricts the ability to address confounds. A more recent study (Kishore et al.)

studies the impact of the Punjab Act on groundwater, using a synthetic control method: it

finds the perverse impact of further groundwater depletion.

Agarwala et al. (2022) finds, using a DiD framework, that the Water Acts had a significant

impact in delaying the paddy season and increasing crop residue burning. McDonald et al.

(2019) is a short study of the impact of the Acts on pollution.

The present paper is related to all the above studies, but makes the following contributions.

First, it studies both the intended effect on groundwater and the unintended effect on air

pollution, using a common set of controls to the extent possible. The caveat here is that the

spillover of air pollution to downstream states is dealt with by a suitable adjustment in this

estimation strategy. Second, it uses multiple data sources for robustness. Thus, we use both

data on market arrival of paddy as well as satellite data on vegetation to estimate the impact of

the Water Acts on delayed sowing and harvesting; and we estimate groundwater impact using

data both on observation wells, as well as satellite data that estimates groundwater volumes
4. Third, for air pollution, we establish formally that the impact pathway is via increased

crop residue burning. Fourth, we are able to quantify the magnitude of contributions from

Punjab and from Haryana, in the matter of downstream air pollution; they are qualitatively

different, with Punjab being a significantly larger contributor. Finally, in ongoing work, we are

measuring the impact on the Water Acts on groundwater pumping by farmers, and whether

this is a potential channel to explain the impact on groundwater.

The remainder of this paper is organized as follows. Section 2 provides a detailed background

on the historical context of irrigation-intensive cultivation in Punjab and Haryana, the role of

key government policies in promoting paddy cultivation, and the subsequent environmental

4This latter is preliminary and available with the authors on request
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challenges. Section 3 and Section 4 describe the data sources and outlines the methodology

used in this study, while Section 5 presents the empirical findings. We discuss the robustness of

the results in Section 6. Finally, Section 7 discusses the broader implications of these findings

for agricultural policy and environmental sustainability and concludes.

2 Background

The Green Revolution, which began in the mid-1960s, transformed Indian agriculture, and

Punjab and Haryana were at its core. Alluvial soils, well-developed canal systems and other

support infrastructure were key to subsequent agricultural growth (Swaminathan, 2006), even

though the states had only moderate rainfall at best (400mm-700mm per year) (Hira and Khera,

2000). A package of Government-led initiatives, particularly the promotion of high-yield variety

(HYV) seeds, fertilizers, and pesticides, coupled with support for irrigation infrastructure, and

public procurement of grain at pre-announced Minimum Support Prices (MSP) allowed for the

large-scale cultivation of crops such as wheat and even water-intensive paddy (Sidhu et al.,

2011).

By the 1980s, paddy had firmly established itself as the Kharif crop of choice in these states,

and the paddy-wheat annual cycle had become the norm. Since paddy requires far more irriga-

tion than rainfall could provide, there was an accompanying rise in the role of irrigation, and

groundwater irrigation in particular, which became the backbone of this agricultural expansion.

Over the decades from 1970 to 2010, the area under rice cultivation increased, respectively

for Punjab and Haryana, from 0.5 and 0.2 million hectares to 2.8 and 1.2 million hectares

(Singh, 2009; Bhalla and Singh, 1997). The growth of tube wells ran in parallel; in Punjab

alone, the number of tube wells increased from about 190,000 in 1970 to over 1.2 million by

2010 (Shah, 2007). This growth was mirrored in Haryana, where groundwater extraction also

reached unsustainable levels. By the early 2000s, over 80% of the agricultural land in Punjab

and Haryana was irrigated using groundwater (Gandhi and Bhamoriya, 2011).

Central to the rise of paddy cultivation was the Minimum Support Price (MSP) regime

referred to earlier, introduced in the 1960s to ensure that farmers received a guaranteed price

for their produce, particularly for staple crops like wheat and rice (Ganesh-Kumar et al., 2007).

The MSP made paddy an economically attractive option, leading to its widespread adoption in

a region traditionally unsuited for such water-intensive crops.

In addition to the MSP, input subsidies played a crucial role. The government provided

significant subsidies on fertilizers, seeds, and, notably, electricity. The latter was particularly

impactful because electricity for agricultural use was either heavily subsidized or not metered

at all, making the cost of running tube wells negligible for farmers. This policy encouraged the

over-extraction of groundwater; farmers faced little to no marginal cost for irrigation, which

tended to increase irrigation volumes from existing tubewells, as well as the incentive to bore

additional wells (Gupta, 2023).

The combination of these factors created a system where the cultivation of paddy became

highly profitable and relatively low-risk, driving its expansion across Punjab and Haryana de-

spite the unsuitability of the region’s water resources to sustain such practices. As a result, the

water table in these states began to decline rapidly, leading to widespread concerns about the

sustainability of groundwater resources.

The shift to groundwater-dependent paddy cultivation had severe environmental repercus-

sions. Numerous academic studies have documented the adverse impacts of this shift. For
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instance, a study by Rodell et al. (2009) using satellite-based estimates highlighted that Punjab

and Haryana were among the regions with the highest rates of groundwater depletion globally.

The annual rate of groundwater decline in these states was estimated to be between 0.33 and

0.75 meters per year during the 2000s. Another study by Fishman et al. (2015) found that the

continued cultivation of paddy at such an intensive scale was unsustainable and projected that

the region could face a critical water shortage within the next few decades if current practices

continued.

In response to the alarming rate of groundwater depletion, the Punjab government enacted

the Preservation of Subsoil Water Act in 2009, with Haryana implementing a similar law shortly

thereafter. The Act prohibited the sowing and transplanting of paddy before a specified date in

June5, aligning the paddy-growing season with the arrival of monsoon6. The objective was to

reduce the reliance on groundwater for irrigation during the early stages of paddy cultivation

by taking advantage of the natural rainfall provided by the monsoon (Kishore et al.). The Act

was expected to arrest the falling water table by 30 cm and save electricity to the tune of 276

million kWh (Singh, 2009).

3 Data

We collate data from multiple sources to assess the impact of the Water Acts on crop residue

burning, air pollution, and groundwater levels in Punjab and Haryana. Our analysis primarily

uses aggregated monthly data at the district level. To ensure consistency across datasets, we

aggregate them in accordance with the district boundaries defined in the Census of India, 2011.

This approach allows us to merge information from multiple sources effectively, eliminating the

distortions arising from the formation of new districts over time. Table 1 summarizes the main

variables used in our analysis.

3.1 Crop Arrivals

The Ministry of Agriculture and Farmers Welfare in India has been gathering data on the daily

arrivals of agricultural commodities and their prices across government-regulated agricultural

markets, commonly referred to as “mandis”, since 2001. These data consist of information

on 344 agricultural commodities from approximately 4,000 mandis spanning 650 districts, and

constitute one of the most comprehensive sources of wholesale price and quantity information in

India.7 We compile data on crop arrivals for Punjab, Haryana, and the control states, covering

the period from 2000 to 2024. We use this information to assess whether the Water Acts were

effectively implemented in Punjab and Haryana by analysing the change in the distribution of

rice/paddy arrivals over the rice-harvesting season in these two states.

5Non-compliance with this regulation attracts a penalty of Rs. 10,000 per hectare of paddy-cropped
area or disconnecting supply of electricity or destroying paddy nurseries at farmer’s expense or all of
these.

6Rice transplanted in early May requires a 5-inch irrigation at puddling, followed by about 3-inch
irrigation after every three days up to 15 June. During this period, the relative humidity in North India
is lowest, the wind speed is highest, and the temperature is maximum, due to which water evaporates
very fast (Singh, 2009).

7The data is available at Agmarknet and, in a simpler format, at CEDA
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3.2 Vegetation

The MOD13Q1 (Version 6.1) data, generated every 16 days at a 250 m spatial resolution,

provides two MODIS-based indices of vegetation: the Normalized Difference Vegetation Index

(NDVI) and the Enhanced Vegetation Index (EVI).8 The NDVI serves as the continuity index

to the existing NOAA-AVHRR-derived NDVI, while the EVI offers improved sensitivity over

high biomass regions.9 These indices are derived from daily, atmosphere-corrected, bidirectional

surface reflectance in the red, near-infrared, and blue wavebands. For each index, the algorithm

selects the best available pixel value from all acquisitions over the 16-day period, using criteria

such as low cloud cover, low view angle, and the highest NDVI/EVI value. We download this

data in .hdf format using the MODIS Python API and compute the monthly averages of NDVI

and EVI values, expressed on a scale from -2000 to 10000, for each 2011 Census district. This

procedure results in a panel of 641 districts, covering the period from 2000 to 2024. We use

EVI values to estimate the delay, if any, in the commencement of paddy cultivation in Punjab

and Haryana after the enactment of Water Acts. We further use yearly data on area under rice

cultivation during Kharif season collected from the Directorate of Economics and Statistics,

Ministry of Agriculture and Farmers Welfare (DESAGRI), to demonstrate that the Enhanced

Vegetation Index is a reliable proxy for rice cultivation.10

3.3 Thermal Anomalies

We construct a district-level monthly panel measuring crop residue burning based on thermal

anomalies identified by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors

aboard the Terra and Aqua satellites operated by NASA.11 Thermal anomalies indicate possible

fire activity. The anomalies flagged by the MODIS Fire and Thermal Anomalies algorithm are

geocoded to the centre of a 1 km pixel, meaning that the presence of one or more fires is sug-

gested within that pixel. Detection of these anomalies involves several intermediate algorithms

that mask out cloud and water cover, ensuring only land-based heat sources are analyzed. The

algorithm distinguishes between various types of anomalies, including vegetation fires, active

volcanoes, fires from static land, and offshore sources. Our analysis focuses specifically on vege-

tation fires. The data also provide confidence estimates for each pixel prediction, ranging from

0 to 100, which indicate the reliability of the detected anomaly. We compute the monthly count

of detected thermal anomalies classified as vegetation fires, with varying confidence estimates,

at the level of districts. For precision, we consider only the thermal anomalies detected in arable

land, with a confidence indicator of at least 20. This process yields a balanced monthly panel

for 641 districts over 23 years, from 2000 to 2022. Panel A of Figure 2 compares the extent of

thermal anomalies before and after the enactment of the Water Acts.

3.4 Burned Area

The MCD64A1 (Version 6.1) Burned Area data product provides monthly pixel-level informa-

tion on global burned areas, with data recorded at 500 m grid cells using MODIS sensors aboard

8For data and documentation, see MODIS Vegetation Data
9NOAA-AVHRR stands for National Oceanic and Atmospheric Administration-Advanced Very High

Resolution Radiometer.
10Data is available at DESAGRI
11The data is available at MODIS Thermal Anomalies
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the Terra and Aqua satellites.12 Burned areas are identified by an algorithm that analyzes daily

surface reflectance dynamics, detecting rapid changes to approximate the date of burning. A

GeoTIFF subset of this data corresponding to the region of South Asia is available from the

University of Maryland server.13 We download these files and compute the number of burned

pixels, belonging to arable land, in each district for each month. To measure the total area

burned in a district, we multiplying the proportion of burned pixels in that district by its total

area. This process yields a monthly panel of 602 districts, spanning 2000–2022.14 Panel B of

Figure 2 compares the extent of burned area before and after the enactment of the Water Acts.

3.5 Air Pollution

We compile a satellite-derived estimate of monthly ground-level PM2.5 provided by the Atmo-

spheric Composition Analysis Group at Washington University in St. Louis (Van Donkelaar

et al., 2021).15 These estimates are generated by combining Aerosol Optical Depth retrievals

from various satellites (MODIS, MISR, SeaWiFS, and VIIRS) with the GEOS-Chem chem-

ical transport model, calibrated to global ground-based observations using a Geographically

Weighted Regression. We use the high-resolution (0.01◦ × 0.01◦) monthly average predicted

PM2.5 measures to compute district-level monthly averagess. This process resulted in a bal-

anced monthly panel for 641 districts spanning 25 years, from 1998 to 2022. Figure 3 compares

the satellite-derived measures of PM2.5 before and after the enactment of the Water Acts.

To validate the satellite-derived measures of PM2.5, we use ambient air quality data reported

by 746 monitoring stations operated by the Central Pollution Control Board (CPCB) between

1987 and 2015.16 This dataset encompasses measurements of several air pollutants, expressed

as micrograms per cubic meter of air (µg/m3). These pollutants include sulfur dioxide (SO2),

nitrogen dioxide (NO2), respirable suspended particulate matter (RSPM), suspended particulate

matter (SPM), and particulate matter (PM2.5). It is important to note that not all stations

consistently provided data throughout the entire period due to noncompliance with the National

Ambient Monitoring Program (NAMP) guidelines. Some of the non-compliant stations were

relocated or closed. Furthermore, from 2014 onwards, the collection of SPM data ceased and

was replaced by PM2.5 measurements. Consequently, PM2.5 data are only available for the years

2014 and 2015.This data helps us to demonstrate the correlation between ambient PM2.5 and

satellite-derived PM2.5 data.

To estimate the correlation between satellite-derived estimates of PM2.5 and CPCB moni-

toring station data, we geocoded the location of monitoring stations using Google’s Geocoding

API and matched the resultant coordinates to corresponding pixels of satellite data. A geocoder

matches a provided address to an address in their database and provides the corresponding lat-

itude and longitude coordinates. The addresses of the monitoring stations available in CPCB

data vary in completeness and accuracy, and the API provides coordinates of partial matches

when it fails to obtain an exact match for a given address. We then constructed a combined

dataset with CPCB and satellite-derived data for available measurements from CPCB. The

correlation estimates are reported in Table A.1, with stronger correlations reported for exact

address matches.

12For data and documentation, see MODIS Burned Area
13See the User Guide
14The GeoTIFF files do not cover 39 districts in Northeast India.
15The data is available at Satellite-Derived PM2.5
16The data is available at CPCB
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3.6 Groundwater

The Indian Central Ground Water Board (CGWB) monitors groundwater levels throughout the

country four times yearly, in January, May, August, and November, through a network of dug

wells and bore/tube wells, called piezometers, built specifically for water level monitoring.17 The

unit of measurement is meters below ground level (mbgl). Groundwater data from monitoring

stations exhibit non-random missingness due to the presence of dry wells, which occur when the

groundwater level falls below the monitoring well’s maximum floor depth. Therefore, deleting

missing values from the sample would lead to a biased estimate of the population mean of

groundwater level over a spatial domain, such as a district (Ali and Arora, 2021). Despite

recognizing this bias, we proceed with our estimates after deleting missing values for the time

being, acknowledging the need for future methodological improvements.

The monitoring wells are distributed throughout the country and not concentrated in any

specific area. Notably, wells have not been placed in regions experiencing the most severe

groundwater depletion. This widespread distribution minimizes concerns about endogenous

well placement affecting the analysis. Additionally, the dataset provides coordinates for each

well, which we use to map each well to districts as defined in 2011, creating a district-level panel

of monthly groundwater levels. These district-level groundwater depth measurements constitute

a key outcome variable in this paper.

3.7 Cropland

To ensure that MODIS-detected thermal anomalies and burned area are reliable proxies of

crop residue burning, we restrict out analysis to the thermal anomalies and burning incidents

detected within arable area. Arable areas are identified using a unified cropland layer at 250

m resolution, with 2014 as the reference year, provided by Waldner et al. (2016).18 Each pixel

of this layer is assigned a value that ranges from 0 to 100, with higher values for relatively

more arable areas. We consider areas with a value of at least five as arable, and construct our

measures of thermal anomalies and burned area exclusively from this region. This procedure

essentially excludes deserts, forests and urban spaces from the analysis of crop residue burning,

improving precision.

3.8 Crop Area

The International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) publishes a

District Level Database (DLD) for 20 major states in India, covering a comprehensive set of

variables in agriculture and allied sectors. These variables include crop area and production,

irrigated area, operational holdings, population census data, and selected agroecological vari-

ables, all available annually. The data are collated from several government offices, including

the Directorates of Agriculture and state Bureaus of Economics and Statistics.

The database comprises an apportioned dataset of 313 districts (consistent with the 1966

district boundaries) covering the period 1966 to 2016, and an unapportioned dataset (following

the current district boundaries) spanning 1990 to 2016.19 For our econometric specification,

we use several variables from the ICRISAT unapportioned database, such as the area under

17Data is available at CGWB
18Available at Unified Cropland Layer
19The data are available at ICRISAT
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different crops. The primary variables of interest include the net cropped area, the area under

rice, and the area under wheat (measured in 1000 hectares). To ensure a consistent frame of

analysis, we transform the data on these variables for the period between 2001 and 2022 into

a panel of the 2011 Census districts. This is achieved by overlaying the bounding polygons of

districts at three different points in time: 2001, 2011 and 2022.20 Through this procedure, we

are able to identify the districts formed in the interim, map them to their parent districts, and

assign weights to the parent districts based on the proportion of their area that joined the new

district. These weights, combined with hand-collected information on the dates of formation

of the new districts, allow us to make necessary interpolations to the variable values so as to

simulate a static configuration of districts with 2011 boundaries.

3.9 Climate Variables

To construct district-level estimates of climate variables, we use the open-source TerraClimate

dataset21, which offers climate data at a monthly temporal resolution and a spatial resolution

of 1/24th degree (approximately 4 km) from 1958 to 2020. TerraClimate uses climatically aided

interpolation, combining high-spatial-resolution climatological normals from WorldClim with

time-varying data from the University of East Anglia’s Climatic Research Unit Time series (CRU

Ts4.0) and the Japanese 55-year Reanalysis (JRA55). The monthly dataset, which includes

precipitation, maximum and minimum temperature, and wind speed among other variables, is

produced by applying interpolated time-varying anomalies from CRU Ts4.0/JRA55 to the high-

spatial-resolution climatology of WorldClim. We extract our variables of interest—maximum

temperature, minimum temperature, precipitation accumulation, and wind speed—from the

yearly NetCDF (Network Common Data Form) files and computed the monthly averages at the

district level using the 2011 Census district boundaries. This process yields a monthly panel

for each climate variable of interest for 641 districts spanning 23 years, from 2000 to 2022.

The International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) also pub-

lishes a monthly district-level panel computed using data from TerraClimate, but with incon-

sistent district boundaries. Figure A.1 shows the comparison of our calculation of district-level

aggregates for the climate variables of interest against those of ICRISAT, both using the Terr-

aClimate dataset.

4 Estimation

As discussed earlier, our data is restricted to eight states that cultivate a single paddy crop

annually during the Kharif season. The district-wise ratio of the area under paddy to the

net-cropped area in these states is illustrated in Figure 1. The geographic contiguity of these

states also ensures that their agroclimatic conditions are relatively homogeneous. Additionally,

most of these states are grappling with the challenge of groundwater depletion. Among these

eight states, Punjab and Haryana implemented the Water Acts in 2009. The primary objective

of the legislation was to discourage the sowing of paddy before the onset of the Monsoon rains,

reducing their dependency on groundwater irrigation. However, if the policy were enforced,

it would reduce the gap between the harvesting of paddy and the sowing of the next crop.

Consequently, farmers might adjust their agricultural practices to accommodate the shorter

20The required shapefiles were downloaded from Community Created Maps of India
21The data is available at TerraClimate
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duration between crops. Many recent studies (Kant et al. (2022); McDonald et al. (2019);

Agarwala et al. (2022)) have highlighted the increase in paddy residue burning by farmers in

Punjab and Haryana as a means to quickly prepare their fields for the next crop. In this section,

we outline the estimation strategy to explore the effects of the policy change on the delay in

paddy harvesting, crop residue burning, air pollution, and groundwater levels.

Our main outcome variable of interest is crop residue burning, air pollution, and groundwater

in response to the Water Acts. To this end, we estimate the following difference-in-difference

specification:

ysdtm = β0+βpτPunjabd×Postt+βhτHaryanad×Postt+βsd+βt+βm+βst+βXX ′
sdtm+ϵsdtm (1)

where the indices s, d, t, and m represent state, district, year, and month, respectively. Punjabd
and Haryanad are binary variables that take the value one if district d belongs to the states

of Punjab and Haryana, respectively. Postt is a binary indicator that takes the value one if

year t is 2009, the year of implementation of the Water Acts, or later, and zero otherwise.

Our main parameters of interest are the coefficients βpτ and βhτ measuring the average dif-

ference in the outcome variable ysdtm for the treatment states of Punjab and Haryana before

and after the implementation of the Water Acts in comparison to the same difference in the

control states. District fixed effects (βsd) control for time-invariant unobserved characteristics

of districts that might have affected the implementation of the Water Acts and the outcome

variables of interest simultaneously. The year fixed effects (βt) control for events that might

have affected the implementation of the Water Acts and the outcome variables simultaneously.

As agricultural activities and environmental outcomes are weather-dependent and cyclical, we

control for month-fixed effects (βm) in all our specifications. State-specific linear time trends

(βst) capture the trends in agricultural practices that affect the environment due to changes in

input requirements or cropping patterns. The district and time-varying characteristics (X ′
sdt)

include factors that could simultaneously influence agricultural practices and environmental

outcomes, such as air pollution and groundwater levels. These factors include average monthly

precipitation, minimum and maximum temperatures, and wind speed. The errors are clustered

at the state level.

Given the seasonal variation in most of our outcome variables and agricultural activities,

we also estimate the Act’s effects by month in a triple-difference setup outlined below,

ysdtm = β0 +

12∑
m=1

βpτmPunjabd × Postt ×Monthm +

12∑
m=1

βhτmHaryanad × Postt ×Monthm+

12∑
m=1

βpmPunjabd ×Monthm +

12∑
m=1

βhmHaryanad ×Monthm +

12∑
m=1

βτmPostt ×Monthm+

βpτPunjabd × Postt + βhτHaryanad × Postt + βsd + βt + βm + βst+ βXX ′
sdtm + ϵsdtm

(2)

where Monthm is an indicator variable that takes the value one for the mth month of a year.

The definition of the rest of the variables continues to be the same as in Equation (1). Our

main parameters of interest are the coefficients βpτm and βhτm measuring the average difference

in the outcome variable ysdtm for the treatment states of Punjab and Haryana before and after

the implementation of the Water Acts in comparison to the same difference in the control states

for month m. We have excluded the interaction for the month of April.
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We assess the assumption of parallel trends in the period 2003–2008 in the double interaction

model, Equation (1), and reject the null of parallel trends for the outcomes of thermal anomalies

and burned area (see Section 6). However, the null hypothesis of parallel trend is not rejected

for PM2.5 with the coefficient on the interaction being close to zero (Table 8). Considering

the existing time trends in the outcome variables, we control for state-specific time trends in

all our specifications. Additionally, we estimate a synthetic difference-in-differences approach

to evaluate the policy, following the methodology outlined by Arkhangelsky et al. (2021). A

detailed discussion of this approach is provided in Section 6.

In addition to examining changes in paddy cultivation patterns, we investigate the effects

of the Water Acts on air pollution and groundwater depth. The errors associated with these

outcomes may be correlated across contiguous districts. For instance, air pollution is likely

influenced by wind speed and direction, while groundwater depth in districts that share the

same aquifer is probably correlated. Making inferences from spatially dependent data may

introduce bias in the estimated standard errors. Therefore, we report the results of our main

regressions after correcting for spatial correlation in errors, as outlined by Colella et al. (2019),

in Section 6.

5 Results

5.1 Delay in Puddling

The main objective of the Water Acts was to induce farmers to delay paddy transplantation

and reduce their dependence on groundwater. To assess the effect of the policy on the delay

in paddy transplantation, the ideal outcome variable would be the monthly area under paddy

cultivation. Unfortunately, this specific data is unavailable. The area under crop data published

by the Department of Agriculture only provides aggregated information for the entire Kharif

season. Instead, we estimate the impact of the policy on the change in the distribution of the

Enhanced Vegetation Index (EVI) over months and the arrival of paddy in the Agriculture

Produce Marketing Committee Mandis.

Enhanced Vegetation Index is a widely used remote sensing index to assess crop health and

productivity, and land use. First, we establish the correlations between EVI and area under

paddy cultivation. Table A.2 presents the regression results for rice-cropped area (in hectares)

during the Kharif season against monthly EVI for districts where paddy is cultivated on more

than 50% of the net cropped area. Columns (1)–(5) reports the estimated coefficients for the

EVI index from May–September. The magnitude of these estimates increases, with May having

the lowest value at 10.9 (p < 0.01) during the sowing period, and September the highest at 40.0

(p < 0.01) as the rice crop reaches maturity. The R2 values of these regressions are also highest

for September, indicating that EVI is highly positively correlated with the area under paddy

cultivation and that this correlation strengthens as the crop matures.

We use the EVI as a proxy for the area under paddy and estimate the triple-interaction

model outlined in Equation (2) for districts cultivating paddy on more than 50% of the net

cropped area. This model evaluates the differential impact of the Water Acts in Punjab and

Haryana on a monthly basis after 2009, compared to other Kharif rice-growing states. Figure 6

plots the estimated coefficients with their 95% confidence intervals. For Punjab (left-panel),

the triple-interaction estimates for months January to May are statistically indistinguishable

from zero. The estimates turn negative for the months of June and July, become positive
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for the months of August to October, and revert to negative for the months November and

December. These estimates suggest that the vegetation index for predominantly rice-growing

districts in Punjab declined in June and July, the period by which paddy transplantation is

typically complete, compared to rice-growing districts in other states after 2009. Conversely,

the index difference was positive for districts in Punjab in the later months, when the crop

matures. We observe a similar but muted effect for the state of Haryana.22

The regression results on EVI suggest that the Water Acts delayed the sowing of rice in

Punjab and, to a lesser extent, in Haryana. This delay in sowing would subsequently result in

a delayed harvest. We then analyze the effects of the policy on the arrivals of rice compared to

other major Kharif crops across government-regulated agricultural markets, commonly referred

to as mandis, using the following triple interaction specification:

Arrival Daysdtnc = β0 + βpτpPunjabd × Postt × Paddyc + βhτpHaryanad × Postt × Paddyc+

βpτPunjabd × Postt + βhτHaryanad × Postt + βτpPostt × Paddyc+

βppPunjabd × Paddyc + βhpHaryanad × Paddyc+

βsd + βt + βn + βst+ βqqsdtnc + ϵsdtm

(3)

where the indices s, d, t, and n represent state, district, year, and mandi, respectively. Punjabd,

Haryanad, and Postt are binary indicators as defined earlier in Equation (1). Paddyc is an

indicator taking the value one for the arrivals of paddy and zeros otherwise.23 Since arrival

of crops depend on storage technology, crop cycles, etc., we continue to control for the fixed

effects and trends defined earlier in Equation (1), with the exception of month fixed effects. In

addition, we control for qsdtnc, the quantity of crop sold for each arrivals, and include mandi

fixed effects (βn). The outcome variable Arrival Daysdtnc is defined as the day of the year for

each arrival of crop c in mandi n in district d in state s in year t.24

The results from this regression are presented in Table 2. In Column (1), we report the

estimated coefficients without any fixed effects and trends. The point estimates suggest that

the arrival of rice in Punjab and Haryana mandis was delayed by 13.1 days (p < 0.01) and 22.7

days (p < 0.01), respectively, compared to other major Kharif crops and other single rice crop

states following the enactment of the Water Acts. In the subsequent columns, we additionally

control for district, year, and mandi fixed effects, as well as state-specific time trends; however,

the point estimates on the triple interaction remain statistically significant. Our most preferred

specification, in Column (4), indicates that the enactment of the Ware Acts led to an average

delay of about two weeks in the arrival of harvested rice.

We observe similar patterns when we plot the distribution of arrivals of rice and cotton,

one of the other most important Kharif crops in Figure 4. The figures in Panel A, plot the

distribution of rice arrivals over the days of a year for the states of Punjab, Haryana, and all

other single paddy crop states. The distribution of arrivals in the pre- and post-legislation

periods are marked by dashed and solid lines, respectively. The distribution of rice arrivals

22Perhaps the difference in the area under paddy cultivation can explain the variation in the point
estimates. According to the DESAGRI data described in Section 3, the area under paddy cultivation
was 14,4525 and 57,450 hectares in Punjab and Haryana in 2009, respectively.

23Besides rice, other Kharif crops include maize, cotton, and soyabean.
24Since Kharif crops are typically harvested at the end of the year, their mandi arrivals can spill over

to the following year. To accommodate this, we define the beginning of the year on the first of April and
the end of the year on the 30th of April.
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in Punjab and Haryana has clearly shifted to the right in the post-legislation period, while

there is only a marginal change for the control states. In Panel B, we plot the distribution of

cotton arrivals in the mandis. There are no discernible changes in the distributions before and

after the policy change between the treatment and control states. The results from the earlier

regressions and the observed shifts in the distribution of crop arrivals strongly suggest that the

policy change substantially delayed the transplantation of paddy in the states of Punjab and

Haryana.

5.2 Crop Residue Burning

The delay in paddy harvesting in Punjab and Haryana due to the policy change has compressed

the time available to prepare the land for the winter or, Rabi, crop. The most prevalent Rabi crop

in these two states is wheat, and delay in winter wheat sowing could reduce yield substantially.

This situation has resulted in an increase in crop residue burning, a rapid and cost-effective

method of clearing fields. Although crop residue burning is illegal and subject to penalties, it

is not uncommon to observe extensive areas of burned crop residue following the rice harvest.

In Panel A of Figure 5, we plot the geographic distribution of thermal anomalies for the month

of November in the states that cultivate rice during the Kharif season, both before and after

the policy change. The maps in the bottom panel illustrate the district-wise measure of burned

area. The maps suggest that crop residue burning was practiced even before the implementation

of the law; however, its intensity has increased substantially following the legislations. These

changes are noticeably more pronounced in Punjab and Haryana compared to the control states.

We estimate the effects of the Punjab and Haryana sub-soil water preservation acts on

thermal anomalies and satellite measured burned area using a difference-in-difference framework

outlined in Equation (1) and report the results in Table 3 and Table 4, respectively.

Column (1) in Table 3 reports the estimates of the coefficients of βpτ and βhτ from Equa-

tion (1) without any additional fixed effects or other controls for the outcome of count of thermal

anomalies in a district in a month. The point estimate for Punjab is 3.76 (0.01 < p < 0.05)

suggesting an increase of 5.84% from the baseline average. The point estimate for Haryana is

-0.89, but it is statistically indistinguishable from zero. In Column (2) we additionally control

for state-specific time trends and district fixed effects. The points estimates for Punjab and

Haryana increase to 7.05 and 5.18, both significant at one percent level. In Columns (3) and (4)

we introduce year and month fixed and effects, and the point estimates marginally increase to

7.6 and 5.9 (p < 0.01), respectively. These results support the pattern we observed in Figure 5.

To investigate whether the effects of the policy on thermal anomalies varied by the agriculture

calendar, we estimate the triple difference specification in Equation (2) and plot the estimates

of the coefficients βpτm and βhτm, in Figure 7. Panel A plots the estimates for βhτm for all

months.25 Even though all the point estimates are statistically significantly different from zero,

except for October and November, the point estimates are remarkably similar. For October

the estimated coefficient plummets to -114.9 and ascends to 250.4 in the next month. Perhaps

these results suggest that the practice of crop residue burning in October to prepare the field

for winter wheat was prevalent in the Punjab before the acts was implemented. However, the

delay in rice harvesting after 2009, shifted the process with increased intensity to the month

of November. The estimates for Haryana, in Panel B, are much smaller in magnitude, but the

point estimate for November is the largest among all months.

25The month of April is the baseline category.

12



Table 4 presents the estimates of βpτ and βhτ from Equation (1) for the outcome of burned

area in a district in a month. Column (1) reports a specification without any additional fixed

effects or other controls. The point estimate for Punjab is 4.04 (p < 0.01) suggesting an increase

of 12.83 % from the baseline average. The point estimate for Haryana is -0.10, but statistically

indistinguishable from zero. In Column (2) we additionally control for state-specific time trends

and district fixed effects. The points estimates for Punjab and Haryana increase to 7.12 and

3.72, both significant at one percent level. In Columns (3) and (4) we introduce year and month

fixed and effects, and the point estimates marginally increase to 7.22 for Punjab and 3.92 for

Haryana, retaining statistical significance at one percent level. We then estimate Equation (2)

and plot the estimates of the coefficients βpτm and βhτm, in Figure 8. Panel A plots the

estimates for βhτm for all months.26 All the point estimates except for September, October

and November are statistically indistinguishable from zero. For September and October, the

estimated coefficient plummets to -38.4 and -34.7, respectively, and ascends to 186.0 in the next

month. The estimates for Haryana in Panel B, although smaller in magnitude, shows that the

effect in November is positive and the highest. Overall, the results from burned area mirror

those from thermal anomalies.

5.3 Air Pollution (PM2.5)

In Section 5.2, we demonstrate that the implementation of the Water Acts contributed to a

rise in crop residue burning in Punjab and Haryana, with the peak shifting towards November.

Stubble burning significantly increases the amount of particulate matter in the atmosphere,

which, under suitable atmospheric conditions, can disperse into neighboring states. The wors-

ening of air quality across North India during winter is frequently linked to crop residue burning

in Punjab. This section presents our empirical findings that substantiate this hypothesis.

To estimate the effect of Water Acts on PM2.5 in Punjab, Haryana and neighboring states27,

we modify Equation (1) as follows:

ysdtm = β0 + βpτPunjabd × Postt + βhτHaryanad × Postt + βnτNeighboringd × Postt+

βsd + βt + βm + βst+ βXX ′
sdtm + ϵsdtm

(4)

Table 5 presents the estimates of βpτ , βhτ , and βnτ from Equation (4), with PM2.5 levels in

a district-month as the outcome variable. Column (1) reports results without fixed effects or

additional control variables. The point estimate for Punjab is 3.13, statistically significant at

one percent level, indicating an increase of 5.48% from the baseline average. The estimate for

Haryana is 4.40, also significant at the one percent level. The estimate for neighboring states

is 1.96, but it is not statistically distinguishable from zero. In Column (2), the specification

includes controls for state-specific time trends and district fixed effects. The point estimates for

Punjab and Haryana rise to 4.66 and 8.9, respectively, both retaining statistical significance at

one percent level. The estimate for neighboring states increases to 4.55 and attains statistical

significance at five percent level. Columns (3) and (4) introduce year and month fixed effects.

While the point estimates marginally decrease to 4.51 for Punjab, 8.59 for Haryana, and 4.13

for neighboring states, statistical significance remains robust across all estimates.

To estimate the differential impact for each month, we modify Equation (2) to include the

neighboring states, taken together, as an additional treatment group. Figure 9 plots the esti-

26The month of April is the baseline category.
27Himachal Pradesh, Delhi, Rajasthan and Uttar Pradesh
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mates of the month-specific effects.28 The dashed lines join estimates from a specification that

does not control for burned area, whereas the solid lines join estimates from a specification that

controls for the average burned area in Punjab for the respective year-month. Two key patterns

emerge. First, without controlling for average burned area in Punjab, the effect for November

is positive across all states. For most states, except Himachal Pradesh and Rajasthan, this pos-

itive effect persists until March. The effect tends to be larger in December and January than in

November, before declining in February and March, possibly indicating temporal autocorrela-

tion. Notably, the magnitude of the effect in neighboring states, especially Delhi, is comparable

to that in Punjab and Haryana, indicating strong spillover effects. Second, when controlling for

the average burned area in Punjab, the differential effect for November diminishes in magnitude

for other states and becomes statistically indistinguishable from zero for Himachal Pradesh and

Rajasthan. This decline in magnitude is not observed in other months. This pattern implies

that crop residue burning in Punjab likely explains the rise in PM2.5 levels observed in neigh-

boring states. In summary, the results indicate that the Water Acts led to increased PM2.5

levels in Punjab, Haryana, and neighboring states due to heightened crop residue burning in

Punjab, with effects persisting from November through March.

5.4 Groundwater

The primary objective of the Water Acts was to conserve groundwater resources by prohibiting

the sowing and transplanting of paddy before the arrival of monsoon. The rationale behind this

measure was that delaying paddy cultivation until monsoon would reduce the need for irrigation,

thereby mitigating the pressure on groundwater resources. However, the intended outcome is

not guaranteed, as various factors such as farmer adaptation and shifts in water usage patterns

may influence groundwater levels in ways that the lawmakers did not anticipates. In this section,

we present our empirical findings on the impact of Water Acts on groundwater levels in Punjab

and Haryana.

Table 7 presents the estimates from Equation (1) with grundwater depth, measured in meters

below ground level (mbgl), as the outcome variable. Column (1) corresponds to a specification

without any fixed effects. The estimates suggest that the Water Acts deepened groundwater

level in Punjab by 3.38 mbgl (p < 0). The effect on Haryana is positive, but statistically

indistinguishable from zero (0.05 < p < 0.1). In the subsequent columns, we incrementally

include district, year and month fixed effects, along with state-specific linear time trend, and

the coefficients turn negative. The effect on groundwater in Punjab, however, is statistically

insignificant. In Haryana, it is small (-0.63), and significant at five percent level. Notably, the

magnitudes of both point estimates are negative, meaning a saving of water, though insignificant

for Punjab.

6 Robustness

6.1 Synthetic Difference-in-Differences

The empirical strategy outlined in Section 4 relies on the standard assumption that the outcome

variable for the treated and control units follows parallel trajectories during the pre-treatment

28The baseline category is April
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period. We test this assumption by estimating the following specification:

ysdtm = β0 + βpτPunjabd × t+ βhτHaryanad × t+ βsd + βt + βm + βXX ′
sdtm + ϵsdtm, (5)

where t < 2009. βpτ ̸= 0 and βhτ ̸= 0 suggest the presence of differential pretrends in Punjab

and Haryana, respectively.

The coefficients from Equation (5) presented in Columns (1) and (2) of Table 8 suggest

the presence of differential pre-trends in burned area and thermal anomalies. While no such

pre-trends are observed for PM2.5 (see Column (3)), our identifying assumptions may still be

misplaced, as a specification like Equation (5) is insufficiently powered to reject the null of “no

pre-trends” (Rambachan and Roth, 2023). Further, the month-specific estimates of differential

pre-trends presented in Figure 11 do not support this assumption.

To address this concern, we replicate our main results in a synthetic difference-in-differences

(SDID) framework, developed in Arkhangelsky et al. (2021). This approach integrates the

main elements of synthetic control and difference-in-differences methods. It assigns unit-specific

weights to control units and time-specific weights to pre-treatment periods, thereby construct-

ing a synthetic counterfactual that emphasizes comparability. The unit weights are optimized

to ensure that the average outcome of treated units approximately parallels the weighted av-

erage of control units during the pre-treatment period. Likewise, the time-specific weights are

optimized to maintain a constant difference between the average post-treatment outcome and

the weighted average of pre-treatment outcomes for each of the control units. In contrast to

the canonical model which applies equal weights to all units and time periods, the synthetic

difference-in-differences model produces estimates of the average treatment effect with improved

bias properties.

We employ the simplest form of the SDID framework which assumes a single adoption period

for all treated units. Let Wit represent a binary variable equal to one if unit i is treated at time

t. Our objective is to estimate the average causal effect of the treatment on the outcome variable

Yit by utilizing optimally selected unit and time weights. Formally, this entails estimating the

following expression:

(
τ̂ sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Xitγ −Witτ)
2ω̂sdid

i λ̂sdid
t

}
, (6)

where Xit represents a vector of covariates, and ω̂sdid
i and λ̂sdid

t denote the weights assigned

to unit i and time t, respectively. Note that the weights for control units sum to one, while

the weights for treated units are set to 1
Ntr

, where Ntr represents the number of treated units.

Similarly, the weights for pre-treatment periods sum to one, and the weights for post-treatment

periods are set to 1
Tpost

, where Tpost is the number of post-treatment periods. τ̂ sdid captures the

average treatment effect.

The variance of τ̂ sdid is estimated using the placebo-based inference procedure proposed

in Arkhangelsky et al. (2021).29 This method involves randomly selecting Ntr units from the

Nco units without replacement, computing the placebo effect for this group, and repeating

the process over B iterations.30 In each iteration b, the placebo effect is denoted as τ̂ b. The

29We prefer the placebo method to alternative approaches, such as bootstrap and jackknife, to mitigate
the limitations associated with the small number of treated units.

30We fix B = 50.
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computed placebo-based variance of τ̂ sdid is then calculated as:

V̂ placebo
τ =

1

B

B∑
b=1

(
τ̂ b − 1

B

B∑
b=1

τ̂ b

)2

. (7)

We generate SDID estimates of the average effect of the Water Acts on thermal anomalies,

burned area, and PM2.5, separately for each of the twelve months. To isolate the effect on

each treated state, we conduct the analysis using subsamples that exclude other treated states.

For example, the subsample used to estimate the effect on thermal anomalies in Punjab during

November includes all November observations from Punjab and the control states but excludes

Haryana, the other treated state. Accordingly, for each outcome variable and each treated state,

we estimate a series of twelve regressions.

The results of this estimation for thermal anomalies are presented in Figure 12. Panel

A plots the effect on thermal anomalies in Punjab across months, while Panel B shows the

corresponding estimates for Haryana. The findings closely align with the patterns observed in

our baseline triple difference model. Specifically, in Punjab, the negative effect in October and a

more pronounced positive effect in November remain evident. The estimates from Haryana are

similar in direction but smaller in magnitude. The effects on burned area, shown in Figure 13,

present a similar pattern. In Punjab, we observe a negative effect in September, its moderation

in October, and a starker positive effect in November. In Haryana, both the magnitude and

direction of the effects are largely unchanged. Taken together, the evidence from thermal

anomalies and burned area supports our central claim regarding crop residue burning: the

Water Acts led to increased burning in Punjab and Haryana, with the peak shifting towards

November.

In Figure 14, we replicate the results for PM2.5. Consistent with our baseline findings, we

observe a positive effect in November that extends through December and into January for the

treated states as well as their neighboring states. Among the neighbors, the magnitude of the

effect is largest for Delhi and smallest for the hilly state of Himachal Pradesh. These results

confirm our claim that the consequences of crop residue burning on air quality extend beyond

the states where the burning occurs.

The results from the SDID procedure are qualitatively similar to those from the difference-

in-differences models but are obtained under less restrictive assumptions. While the difference-

in-differences method assumes that, on average, control units follow parallel trends with treated

units, SDID only requires that some control units resemble the treated units during the pre-

treatment period, and that their post-treatment periods are comparable to their pre-treatment

periods. The SDID method assigns greater weights to such control units while estimating the

average treatment effect on the treated. This approach enables a more flexible estimation

procedure that accommodates potential violations of the parallel trends assumption.

6.2 Spatial Autocorrelation

The error terms associated with our outcome variables could be spatially correlated across

neighboring districts. Particularly, air pollution might be affected by regional wind patterns,

and groundwater levels could be correlated within the same aquifer system. Ignoring such

spatial dependencies may lead to biased standard error estimates. To address this concern,

we reproduce our results from Equation (1) with arbitrary clustering correction of standard

errors proposed in Colella et al. (2019). This procedure allows any observation to be correlated
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with any other, where the strength of this correlation is a function of distance and time. It

also assumed a distance cutoff beyond which the error terms are uncorrelated. We fix this

cut off at 50 km. Table 9 reports the results from these estimations. Despite the change

in standard errors, our main results remain robust to correction for spatial autocorrelation,

retaining statistical significance.

7 Conclusions

This paper investigates the causal impacts of the Water Acts enacted by Punjab and Haryana

in 2009, designed to mitigate groundwater depletion by regulating the sowing and transplanting

timings of paddy crops. Employing difference-in-differences and triple difference techniques, we

estimate the effect of Water Acts on various outcomes of interest, including groundwater levels,

crop residue burning, and atmospheric PM2.5 concentrations, and identify underlying causal

mechanisms.

The Water Acts were introduced against the backdrop of growing concerns over the rapid

depletion of groundwater resources, driven largely by the water-intensive cultivation of rice in

these states. By delaying rice sowing and transplanting to the monsoon season, the policy sought

to align the irrigation requirements of paddy cultivation with natural rainfall, thus reducing

reliance on groundwater. Our findings suggest that the legislations achieved this objective to a

minor extent, at least in Haryana.

However, an important unintended outcome of this policy was a reduction in the interval

between rice harvesting and wheat planting, which left farmers with limited time to clear their

fields for the subsequent wheat cycle. In response, farmers increasingly resorted to crop residue

burning as a cost-effective method for clearing paddy residue. Satellite-derived data on thermal

anomalies and burned area indicate a marked increase in the intensity of crop residue burning in

the post-legislation period, particularly in Punjab. Our analysis further reveals a temporal shift

in the peak of crop residue burning. Prior to the enactment of the Water Acts, burning peaked in

October, coinciding with the rice harvest. Following the legislations, however, the peak shifted

to November, reflecting the compression in agricultural calendar introduced by the delayed

sowing of paddy. This shift has adverse consequences for air quality, as it coincides with a

period characterized by atmospheric conditions that exacerbate the accumulation of particulate

matter. Our results show a corresponding increase in PM2.5 levels not only in Punjab and

Haryana but also in neighboring states, highlighting the presence of spillover effects.

These findings point to a critical trade-off for policymakers. While the Water Acts addressed

the need for groundwater preservation with partial success, they inadvertently exacerbated the

problem of air pollution due to crop residue burning. This highlights the complex interde-

pendencies that exist within agricultural systems, where interventions aimed at resolving one

problem can lead to the emergence of fresh challenges.
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Figures

Figure 1: Area under Paddy Cultivation in India for Single Rice Crop (Kharif ) States

0.0
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Notes: The figure illustrates the ratio of the area under rice cultivation to the net cropped
area across districts in states where a single rice crop is cultivated (during the Kharif
season). These states – Himachal Pradesh, Punjab, Haryana, Delhi, Uttar Pradesh,
Rajasthan, Madhya Pradesh, and Gujarat – are highlighted with a thick red boundary.
The remaining states and districts with unavailable data are shaded in grey.
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Figure 2: Crop Residue Burning before and after the 2009 Sub-Soil Water Preservation
Act in Punjab and Haryana.

Panel A: Location of Thermal Anomalies
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Panel B: Average Burned Area (km2)
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Notes: The figure illustrates the change in crop residue burning in the month of Novem-
ber measured by thermal anomalies and burned area after 2009 across districts in states
where a single rice crop is cultivated (during the Kharif season). These states – Himachal
Pradesh, Punjab, Haryana, Delhi, Uttar Pradesh, Rajasthan, Madhya Pradesh, and Gu-
jarat – are highlighted with a thick red boundary.
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Figure 3: PM2.5 before and after the 2009 Sub-Soil Water Preservation Act in Punjab and Haryana.

Before 2009 Since 2009
Panel A: Pre-2009 Panel B: Post-2009

100 200

Notes: The figure illustrates the change in satellite-derived measures of PM2.5 in the month of November after 2009 across districts in
states where a single rice crop is cultivated (during the Kharif season). These states – Himachal Pradesh, Punjab, Haryana, Delhi, Uttar
Pradesh, Rajasthan, Madhya Pradesh, and Gujarat – are highlighted with a thick red boundary.
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Figure 4: Distribution of Arrival of Paddy and Cotton (major Kharif crops) by month before and after the 2009
Sub-Soil Water Preservation Act in Punjab and Haryana.

Panel A: Arrival of Paddy
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Panel B: Arrival of Cotton
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Notes: The figures plot the distribution of the day of arrival of paddy and cotton at Mandis before and after the
legislations. Panel A and B correspond to paddy and cotton, respectively.
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Figure 5: Crop Residue Burning (measured by thermal anomalies and burned area) in Punjab and Haryana, and the
Control States, by month before and after the 2009 Sub-Soil Water Preservation Act in Punjab and Haryana.

Panel A: Thermal Anomalies
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Panel B: Burned Area
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Notes: The figures plot the distribution of crop residue burning by months before and after the legislations. Panel A
and B correspond to thermal anomalies and burned area, respectively.
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Figure 6: Effects of Sub-Soil Water Preservation Acts in Punjab and Haryana (2009)
on Enhanced Vegetation Index
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Notes: The figures plot coefficients from the triple interaction model described in Equa-
tion (2), on monthly district-level enhanced vegetation index measuring vegetation green-
ness of arable areas of a district. The specifications control for precipitation, temperature,
state-specific linear time trends, and state, year and month fixed effects. The analysis is
limited to one-paddy crop states and districts where more than 50% of the net cropped
area is dedicated to rice paddy, and the period since 2003. April serves as the baseline
month. Standard errors are clustered by state.
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Figure 7: Effects of Sub-Soil Water Preservation Acts in Punjab and Haryana (2009)
on Thermal Anomalies

Panel A: Punjab

-200

-100

0

100

200

300

Pu
nj

ab
 ×

 P
os

t ×
 M

on
th

Jan Feb Mar May Jun Jul Aug Sep Oct Nov Dec
Month

Panel B: Haryana

-200

-100

0

100

200

300

H
ar

ya
na

 ×
 P

os
t ×

 M
on

th

Jan Feb Mar May Jun Jul Aug Sep Oct Nov Dec
Month

Notes: The figures plot coefficients from the triple interaction model described in Equa-
tion (2), on monthly district-level count of thermal anomalies with a confidence level
of at least 20 in arable areas of a district. The specifications control for precipitation,
temperature, state-specific linear time trends, and state, year and month fixed effects.
The analysis is limited to one-paddy crop states, and the period since 2003. April serves
as the baseline month. Standard errors are clustered by state.

Figure 8: Effects of Sub-Soil Water Preservation Acts in Punjab and Haryana (2009)
on Burned Area

Panel A: Punjab
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Notes: The figures plot coefficients from the triple interaction model described in Equa-
tion (2), on monthly district-level burned area (in square kilometers) in arable areas of
a district. The specifications control for precipitation, temperature, state-specific linear
time trends, and state, year and month fixed effects. The analysis is limited to one-paddy
crop states, and the period since 2003. April serves as the baseline month. Standard er-
rors are clustered by state.
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Figure 9: Effects of Sub-Soil Water Preservation Acts in Punjab and Haryana (2009)
on PM2.5

Panel A: Punjab & Haryana
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Notes: The figures plot coefficients from the triple interaction model described in Sec-
tion 5.3, on monthly district-level measure of PM2.5. The specifications control for pre-
cipitation, temperature, wind speed, state-specific linear time trends, and state, year and
month fixed effects. The solid lines correspond to an alternative specification that con-
trols for the average burned area in Punjab. The analysis is limited to one-paddy crop
states, and the period since 2003. April serves as the baseline month. Standard errors
are clustered by state.
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Figure 10: Pretrends in Thermal Anomalies, Burned Area and PM2.5
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Notes: This figure plots the local polynomial smooths of thermal anomalies, burned area and PM2.5 for the pre-treatment
period (2003 – 2008), with 95% confidence intervals, after partialling out district, year and state-specific month fixed
effects. The control states include Gujarat, Madhya Pradesh, Rajasthan, Uttar Pradesh, Delhi and Himachal Pradesh.
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Figure 11: Pretrends in Thermal Anomalies, Burned Area and PM2.5 by Month
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Panel B: Burned Area
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Panel C: PM2.5
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Notes: The figures plots the month-specific pretrends in thermal anomalies, burned area
and PM2.5. The specifications control for precipitation, temperature, and state, year and
state-specific month fixed effects. Regressions of PM2.5 include an additional control for
wind speed. The analysis is limited to one-paddy crop states, and the period between
2003 and 2009. April serves as the baseline month.

29



Figure 12: Synthetic Difference-in-Differences: Thermal Anomalies

Panel A: Punjab
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Panel B: Haryana
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Notes: The figures plot coefficients from the synthetic difference-in-differences models
described in Section 6, on monthly district-level count of thermal anomalies with a con-
fidence level of at least 20 in arable areas of a district. The specifications control for
precipitation, temperature, state-specific linear time trends, and state, year and month
fixed effects. The analysis is limited to one-paddy crop states, and the period since 2003.
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Figure 13: Synthetic Difference-in-Differences: Burned Area

Panel A: Punjab
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Notes: The figures plot coefficients from the synthetic difference-in-differences models
described in Section 6, on monthly district-level burned area in arable areas of a district.
The specifications control for precipitation, temperature, state-specific linear time trends,
and state, year and month fixed effects. The analysis is limited to one-paddy crop states,
and the period since 2003.
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Figure 14: Synthetic Difference-in-Differences: PM2.5

Panel A: Punjab & Haryana
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Notes: The figures plot coefficients from the synthetic difference-in-differences models
described in Section 6, on monthly district-level pm2.5. The specifications control for
precipitation, temperature, wind speed, state-specific linear time trends, and state, year
and month fixed effects. The analysis is limited to one-paddy crop states, and the period
since 2003.
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Tables

Table 1: Descriptive Statistics

Punjab & Haryana Other States

Pre Post Diff Pre Post Diff
(1) (2) (3) (4) (5) (6)

EVI 2,856.64 3,133.44 276.80*** 2,383.21 2,550.27 167.06***
(1,276.14) (1,427.77) (26.75) (1,071.62) (1,150.96) (5.72)

Burned Area 16.89 22.87 5.98*** 0.87 2.07 1.20***
(72.77) (93.57) (1.72) (9.67) (20.07) (0.09)

Thermal Anomalies 28.83 40.00 11.17*** 1.54 3.52 1.98***
(116.90) (134.66) (2.47) (7.90) (17.62) (0.07)

PM2.5 56.81 69.40 12.59*** 37.19 45.01 7.82***
(26.98) (33.71) (0.56) (26.14) (31.11) (0.14)

Groundwater 10.09 14.23 4.14*** 7.01 7.67 0.66***
(5.22) (7.69) (0.22) (6.16) (7.31) (0.07)

Precipitation 49.71 55.49 5.78*** 108.14 114.97 6.83***
(74.99) (81.49) (1.52) (163.46) (172.93) (0.85)

Minimum Temperature 17.89 18.10 0.22 18.90 18.99 0.09**
(7.70) (7.80) (0.15) (7.34) (7.45) (0.04)

Maximum Temperature 31.22 31.28 0.05 29.84 29.92 0.08**
(6.27) (6.37) (0.12) (6.94) (7.01) (0.04)

Windspeed 1.27 1.22 -0.05*** 1.62 1.57 -0.05***
(0.42) (0.44) (0.01) (0.73) (0.71) (0.00)

Rice-Cropped Area 91.35 104.64 13.29*** 83.59 83.75 0.16
(72.98) (75.61) (1.65) (95.06) (94.22) (0.62)

Wheat-Cropped Area 141.68 147.38 5.71*** 51.03 59.59 8.56***
(79.12) (81.97) (1.77) (58.25) (65.96) (0.43)

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 2: Estimates of Delay for Arrival for Paddy in Mandis after the 2009 Sub-Soil
Water Preservation Act in Punjab and Haryana.

Day of Arrival for Paddy

(1) (2) (3) (4)

Punjab × Post × Paddy 13.1*** 16.1*** 13.1*** 13.2***
(3.02) (3.73) (2.41) (1.69)

Haryana × Post × Paddy 22.7*** 18.5*** 14.9*** 14.2***
(3.02) (3.73) (2.06) (1.34)

Observations 1716352 1716349 1716349 1716323
R-squared 0.013 0.034 0.043 0.056
District FE No Yes Yes Yes
Year FE No No Yes Yes
Mandi FE No No No Yes

Notes: This table reports the estimated delay in the arrival of paddy in mandis, relative to other major
Kharif crops (maize, cotton, and soybean), due to the Punjab and Haryana Subsoil Water Preserva-
tion Acts. The interaction terms capture the differential impact of PSWA on the delay in the arrival of
Paddy after the implementation of the Acts in Punjab and Haryana. The estimation sample is restricted
to states that grow a single rice crop per year and covers the period after 2003. All specifications con-
trol for the quantity of crop arrivals. The specifications in columns 2, 3, and 4 additionally control for
state-specific linear time trends. Standard errors are clustered at the state level. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 3: Difference-in-Differences Estimates of the Effects of Sub-Soil Water Preserva-
tion Act in Punjab and Haryana (2009) on Thermal Anomalies.

(1) (2) (3) (4)

Punjab × Post 3.76** 7.05*** 7.07*** 7.57***
(1.42) (1.06) (1.07) (1.69)

Haryana × Post -0.89 5.18*** 5.20*** 5.93**
(1.42) (0.95) (0.96) (1.74)

Observations 58080 58080 58080 58080
R-squared 0.10 0.16 0.16 0.20
District FE No Yes Yes Yes
Year FE No No Yes Yes
Month FE No No No Yes

Notes: This table reports the effect of Punjab and Haryana Subsoil Water Preservation Acts on crop
residue burning measured by the number of thermal anomalies in arable land. Analysis is restricted to
the period since 2003 and states that grow paddy once in a year. All specifications control for minimum
temperature, maximum temperature and precipitation. Specifications in columns 2,3 and 4 control for
state-specific linear time trends. The unit of analysis is district. Standard errors are clustered at the
state level. ***, **, and * indicate statistical significance at the levels of 1, 5 and 10%, respectively.
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Table 4: Difference-in-Differences Estimates of the Effects of Sub-Soil Water Preserva-
tion Act in Punjab and Haryana (2009) on Satellite-Measured Burned Area.

(1) (2) (3) (4)

Punjab × Post 4.04*** 7.12*** 7.13*** 7.22***
(0.77) (0.72) (0.73) (0.90)

Haryana × Post -0.10 3.72*** 3.72*** 3.92***
(0.76) (0.66) (0.66) (0.91)

Observations 57596 57596 57596 57596
R-squared 0.063 0.13 0.13 0.15
District FE No Yes Yes Yes
Year FE No No Yes Yes
Month FE No No No Yes

Notes: This table reports the effect of Punjab and Haryana Subsoil Water Preservation Acts on crop
residue burning measured by burned area (in square kilometers) of arable land. Analysis is restricted to
the period since 2003 and states that grow paddy once in a year. All specifications control for minimum
temperature, maximum temperature and precipitation. Specifications in columns 2,3 and 4 control for
state-specific linear time trends. The unit of analysis is district. Standard errors are clustered at the
state level. ***, **, and * indicate statistical significance at the levels of 1, 5 and 10%, respectively.
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Table 5: Difference-in-Differences Estimates of the Effects of Sub-Soil Water Preserva-
tion Act in Punjab and Haryana (2009) on Satellite-Measured PM2.5.

(1) (2) (3) (4)

Punjab × Post 3.13*** 4.66*** 4.66*** 4.51**
(0.89) (1.12) (1.13) (1.52)

Haryana × Post 4.40*** 8.90*** 8.90*** 8.59***
(0.82) (1.12) (1.12) (1.58)

Neighboring States × Post 1.96 4.55** 4.52** 4.13**
(1.54) (1.52) (1.52) (1.52)

Observations 58080 58080 58080 58080
R-squared 0.44 0.66 0.67 0.74

Notes: This table reports the effect of Punjab and Haryana Subsoil Water Preservation Acts on satellite-
derived measures of PM2.5 expressed as micrograms per cubic meter of air (µg/m3). The interaction terms
capture the differential impact in Punjab, Haryana and their neighbouring states (Himachal Pradesh,
Rajasthan, Uttar Pradesh and Delhi). Analysis is restricted to the period since 2003 and states that
grow paddy once in a year. All specifications control for minimum temperature, maximum temperature,
precipitation and wind speed. Specifications in columns 2,3 and 4 control for state-specific linear time
trends. The unit of analysis is district. Standard errors are clustered at the state level. ***, **, and *
indicate statistical significance at the levels of 1, 5 and 10%, respectively.
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Table 6: Estimates of the Effects of Sub-Soil Water Preservation Act on PM2.5.

(1) (2) (3)

Punjab × Post × September 6.73*** 7.47*** 7.47***
(1.04) (0.77) (0.77)

Punjab × Post × October 4.77*** 5.40*** 5.41***
(0.71) (0.49) (0.49)

Punjab × Post × November 14.0*** 10.2*** 10.3***
(1.11) (1.47) (1.48)

Punjab × Post × December 18.6*** 18.8*** 18.9***
(1.24) (1.12) (1.12)

Punjab × Post × January 13.4*** 13.0*** 13.0***
(1.41) (1.35) (1.35)

Haryana × Post × September 0.85 0.57 2.00*
(1.04) (0.80) (0.87)

Haryana × Post × October -4.14*** -4.79*** -3.48***
(0.64) (0.45) (0.50)

Haryana × Post × November 18.3*** 18.5*** 13.3***
(1.07) (0.96) (1.34)

Haryana × Post × December 11.2*** 11.3*** 11.4***
(1.22) (1.08) (1.08)

Haryana × Post × January 13.5*** 13.0*** 13.1***
(1.19) (1.12) (1.12)

Neighboring States × Post × September 3.16 2.77 4.20**
(1.91) (1.81) (1.78)

Neighboring States × Post × October 3.32 2.92 4.22
(2.35) (2.30) (2.27)

Neighboring States × Post × November 10.3*** 10.3*** 4.99*
(2.39) (2.15) (2.19)

Neighboring States × Post × December 7.42** 7.09** 7.15**
(2.77) (2.56) (2.57)

Neighboring States × Post × January 7.85*** 7.46*** 7.53***
(1.81) (1.77) (1.77)

Burned Area (sq. km.) 0.026*** 0.025***
(0.00) (0.00)

Average Burned Area in Punjab (sq. km.) 0.030***
(0.00)

Observations 58080 57596 57596
R-squared 0.79 0.79 0.79

Notes: This table reports the effect of Punjab and Haryana Subsoil Water Preservation Acts on satellite-
derived measures of PM2.5 expressed as micrograms per cubic meter of air (µg/m3). The interaction terms
capture the differential impact in Punjab, Haryana and their neighbouring states (Himachal Pradesh,
Rajasthan, Uttar Pradesh and Delhi) across Kharif months, relative to July. Analysis is restricted to
the period since 2003, Kharif months (July to January), and states that grow paddy once in a year.
All specifications control for minimum temperature, maximum temperature, precipitation, wind speed,
state-specific linear time trends, and district, year and month fixed effects. The unit of analysis is dis-
trict. Standard errors are clustered at the state level. ***, **, and * indicate statistical significance at
the levels of 1, 5 and 10%, respectively.
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Table 7: Estimates of the Effects of Sub-Soil Water Preservation Acts on Groundwater

(1) (2) (3) (4)

Punjab × Post 3.38*** -0.40 -0.39 -0.30
(0.34) (0.31) (0.31) (0.29)

Haryana × Post 1.18* -0.63* -0.64** -0.63**
(0.56) (0.27) (0.26) (0.24)

Observations 11112 11112 11112 11112
R-squared 0.10 0.92 0.92 0.92
District FE No Yes Yes Yes
Year FE No No Yes Yes
Month FE No No No Yes

Notes: This table reports the effect of Punjab and Haryana Subsoil Water Preservation Acts on ground-
water levels expressed as meters below ground level. The interaction terms capture the differential im-
pact in Punjab and Haryana. Analysis is restricted to the period since 2003–2015 and states that grow
paddy once in a year. All specifications control for temperature, precipitation, proportion of missing val-
ues and state-specific linear time trends. The unit of analysis is district. Standard errors are clustered at
the state level. ***, **, and * indicate statistical significance at the levels of 1, 5 and 10%, respectively.
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Table 8: Pretrends in Thermal Anomalies, Burned Area and PM2.5

Thermal Anomalies Burned Area PM2.5

Punjab × Year 3.67*** -0.22 0.013
(0.12) (0.13) (0.37)

Haryana × Year 0.51*** -1.12*** 0.36
(0.15) (0.14) (0.35)

Observations 14520 14520 14520
R-squared 0.57 0.34 0.90

Notes: This table reports the pretrends in thermal anomalies, burned area and PM2.5. Data is restricted
to the period between 2003 and 2009. All specifications control for temperature, precipitation, and dis-
trict, year and state-specific month fixed effects. ***, **, and * indicate statistical significance at the
levels of 1, 5 and 10%, respectively.
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Table 9: Estimates Adjusted for Spatial Autocorrelation

Thermal Anomalies Burned Area PM2.5

Punjab × Post 7.57** 7.22** 4.51***
(3.68) (3.55) (1.06)

Haryana × Post 5.93*** 3.92** 8.59***
(2.00) (1.58) (1.22)

Neighboring × Post 4.12***
(1.14)

Observations 58080 57596 58080
R-squared 0.00017 0.00026 0.0014

Notes: This table reports the effects of the Water Acts on thermal anomalies, burned area and PM2.5

as estimated by Equation (1), corrected for spatial autocorrelation. ***, **, and * indicate statistical
significance at the levels of 1, 5 and 10%, respectively.
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A Appendix

Table A.1: Correlation between Satellite-Derived PM2.5 and CPCB Monitoring Station
Readings

Satellite-Derived PM2.5

Exact Matches All Matches All Matches

CPCB PM2.5 0.79*** 0.54***
(0.07) (0.05)

CPCB PM2.5/SPM 0.11***
(0.00)

Observations 445 1213 17722
R-squared 0.55 0.36 0.26

Notes: This table reports the slope coefficient from regressions of satellite-derived PM2.5 on correspond-
ing CPCB measures from monitoring stations. To match the satellite-derived measure with the read-
ings from the monitoring stations we find the geocodes of the stations using their physical address and
Google’s Geocoding API. In Column 1 the estimation sample is restricted to the cases where monitoring
stations could be geocoded to an exact address match, while columns 2 and 3 additionally include cases
of partial matches. A partial match occurs when the geocoder fails to match the full address and is only
able to match a part of the address, thus decreasing the accuracy. Column 3 replaces missing values of
PM2.5 in CPCB data with corresponding values of SPM. ***, **, and * indicate statistical significance
at the levels of 1, 5 and 10%, respectively.
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Table A.2: Correlation between EVI and Rice Production

(1) (2) (3) (4) (5)

EVI (May) 10.9***
(3.84)

EVI (Jun) 16.4***
(3.31)

EVI (Jul) 32.1***
(2.41)

EVI (Aug) 33.1***
(1.86)

EVI (Sep) 40.0***
(1.90)

Observations 942 942 942 942 942
R-squared 0.0085 0.025 0.16 0.25 0.32

Notes: This table reports the regression of rice-cropped area (in hectares) during Kharif season on the
Enhanced Vegetation Index for different months. specifications are restricted to districts with greater
than 50% of net cropped area under paddy cultivation, and the period 2003 – 2009. ***, **, and * indi-
cate statistical significance at the levels of 1, 5 and 10%, respectively.
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Figure A.1: Comparison of ICRISAT’s Calculation against Author’s Calculation of
Climate Variables using Terra Climate Satellite Data

(a) Minimum Temperature (b) Maximum Temperature

(c) Precipitation (d) Windspeed

Notes: This figure compares the climate variables derived from Terra Climate satellite
data to those from the ICRISAT data.
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