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Abstract

The Right to Free and Compulsory Education Act (2009) (RTE) of the Government

of India prescribes teacher-student ratios for state-run schools. One method advocated

by the Act to achieve its goals is the redeployment of teachers from surplus to deficit

schools. We consider a model where teachers can either remain in their initially assigned

schools or be transferred to a deficit school in their acceptable set. Transfers cannot

turn a surplus school into a deficit school and a deficit school cannot be made a surplus

school. The planner’s objective is specified in terms of the post-transfer deficit vector

that can be achieved. We show that there exists a transfer policy that generates a

post-transfer deficit vector that Lorenz dominates all achievable post-transfer deficit

vectors. We also show that the Lorenz-dominant post-transfer deficit vector can be

achieved as the outcome of a strategy-proof mechanism.
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1 Introduction

The Right to Education Act in India, 2009 was enacted to improve access to schooling for

all children in India. To address the regional disparities in pupil-teacher rations (PTR’s)

in public schools in a state, the act called for direct transfers of teachers where possible

to ensure that all schools meet the minimum teacher requirement. Here the government’s

objective is to achieve regional balance in the quality of education in public schools in a

state. One constraint on redistribution policies is that transfers must be voluntary, so that

the transfer policy must be individually rational. The salaries of the public school teachers

are fixed and independent of their posting. In this paper, we investigate the possibility of

designing a transfer policy that satisfies individual rationality constraints while achieving

distributional/fairness objectives and is incentive-compatible.

There is a set of teachers and a set of schools. Each teacher belongs to a single school. We

assume for simplicity that each school has a fixed number of students. Given a mandate on

minimum teacher-student ratio, an initial distribution may leave some schools with a surplus

number of teachers while some may run deficits. Using this minimum teacher-student ratio,

we can partition the set of schools into surplus and deficit schools. We assume that there are

teachers in the surplus schools who are willing to transfer to deficit schools. However these

teachers have a preference over the deficit schools they would like to be transferred to: in

particular, we assume that each teacher partitions the set of deficit schools into acceptable

and non-acceptable sets. A teacher with a non-empty acceptable set of deficit schools has

a “trichotomous ” preference where the top indifference class consists of the deficit schools

she finds acceptable, the second indifference class is the surplus school that she is currently

posted at and the third class is the set of non-acceptable surplus schools.

The objective is to transfer teachers from surplus schools to deficit schools such that no

surplus school becomes a deficit school after the transfer and no deficit school becomes a

surplus school after the transfer. In addition to this feasibility constraint, the teacher policy

scheme must satisfy several criteria. First, the teacher transfer policy must satisfy individual

rationality, i.e no teacher can be transferred to a non-acceptable school.

One can conceive of the planner having one of several objectives. A utilitarian planner

may wish to minimise the aggregate sum of deficits or transfer as many teachers as possible.

An egalitarian planner may wish to “minimise the worst deficits”. Since the set of all possible

post-transfer deficit vectors is finite, it follows that the utilitarian and egalitarian solutions

exist. In general, there is no reason to believe that these solutions will coincide. The existence

of a Lorenz dominant policy would simultaneously reconcile the objectives of utilitarian,

egalitarian and welfare maximising planners. The main goal of the paper is to show that
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a Lorenz dominant policy always exists. Finally we show that a Lorenz dominant transfer

policy can be attained by a strategy-proof mechanism.

2 The Model

We let D = {d1, . . . , dL}, S = {s1, . . . , sM} and T = {t1, . . . , tN} denote the sets of deficit

schools, surplus schools and teachers respectively. We denote a generic deficit school by dk,

a surplus school by sj and a teacher by ti. Each teacher ti belongs to a unique surplus school

O(ti) ∈ S. This is the initial assignment of ti. For each sj ∈ S, let W (sj) = {ti ∈ T : O(ti) =

s} be the set of teachers currently assigned to school sj.

Each teacher ti has a set of acceptable schools A(ti). This set consists of all deficit schools

that she would like to be transferred to, i.e. A(ti) ⊆ D. In order to avoid trivialities, we

assume A(ti) contains at least one deficit school. For each deficit school dk, β(dk) is a strictly

positive integer which is the deficit of dk. We will refer to the vector β = (β(d1), . . . , β(dL))

as the deficit vector. For each surplus school sj, α(sj) is a strictly positive integer which is

the surplus of sj. We will refer to the vector α = (α(s1), . . . , α(sM)) as the surplus vector.

A Teacher Transfer problem (TT) is a tuple Γ = 〈D,S, T, {A(ti)ti∈T}, β, α〉.
A transfer policy in a TT is a map σ : T → D ∪ S satisfying the following properties:

1. σ(ti) ∈ A(ti) ∪ {O(ti)} for all ti ∈ T ,

2. |{ti ∈ W (sj) : σ(ti) 6= sj}| ≤ α(sj) for all sj ∈ S and

3. |{ti ∈ T : σ(ti) = dk}| ≤ β(dk) for all dk ∈ D.

Various restrictions are imposed on a transfer policy. According to the first, a teacher can

only be transferred to an acceptable deficit school or remain in her original assignment.

The second imposes the requirement that no surplus school can become a deficit school post-

transfers. The third ensures that no deficit school can become a surplus school post-transfers.

We regard these restrictions to be reasonable. In Section 6, we show that that the model

can be reformulated and several of the restrictions relaxed without any qualititative change

in the main result.

We let Σ denote the set of all transfer policies. Every transfer policy σ ∈ Σ generates a

post-transfer deficit vector βσ where βσ(dk) = β(dk)− |{ti ∈ T : σ(ti) = dk}| for all dk ∈ D.

The goal of the planner is to choose a transfer policy from Σ by evaluating the post-transfer

deficit vector by the policy. We discuss various objectives of the planner below.
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2.1 Objectives of the planner

One can conceive of the planner having one of several objectives. A utilitarian planner may

wish to minimise the aggregate sum of deficits or transfer as many teachers as possible. An

egalitarian planner may wish to “minimise the worst deficits”. We define this more formally

below.

Let γ be an arbitrary vector in <L. Let [γ] denote the vector where the components of γ

are ordered from highest to lowest, i.e. [γ] = (γ[1], . . . , γ[L]) and γ[1] ≥ γ[2] . . . ≥ γ[L]. Consider

γ, γ′ ∈ <L. We say γ lexicographically dominates γ′ if there exists an integer r ∈ {1, . . . , L}
such that γ[1] = γ′[1], . . . , γ[r] = γ′[r] and γ[r+1] < γ′[r+1] or γ[r] = γ′[r] for all r ∈ {1, . . . , L}. An

egalitarian planner would like to choose a transfer policy σ such that βσ lexicographically

dominates βσ
′

for all other σ′ ∈ Σ.

The set of all possible post-transfer deficit vectors is finite. Therefore it follows that the

utilitarian and egalitarian solutions exist. In general, there is no reason to believe that these

solutions will coincide.1 A welfare maximizing planner may wish to......

Consider γ, γ′ ∈ <L. We say γ Lorenz dominates γ′ (denoted by γ �LO γ′) if

k∑
i=1

γ[i] ≤
k∑
i=1

γ′[i] for all k ∈ {1, . . . , L}.

Definition 1 A transfer policy σ∗ is Lorenz dominant if βσ
∗ �LO βσ

′
for all σ′ ∈ Σ.

The order �LO is a partial order, which implies that a Lorenz dominant transfer policy

need not exist. For instance, it does not exist in the example in Footnote 1. However if it

does, it would simultaneously reconcile the objectives of utilitarian, egalitarian and welfare

maximising planners. The main goal of the paper is to show that a Lorenz dominant policy

always exists.

3 A network flow formulation and preliminary analysis

A TT problem can be formulated as a single source multiple sink network flow problem.2

We consider two versions of the problem, one where flows are integers and the other where

1 Consider the following example. There are two deficit schools and the set of post-transfer deficit vectors

is the set {(β1, β2) ∈ N2 : 2β1 + β2 ≤ 30}. The utilitarian and egalitarian solutions would pick (0, 30) and

(10, 10) respectively.
2For a comprehensive survey of network flows see Ahuja et al. (1988).
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flows are allowed to be fractional. Both versions use the same network structure which we

describe below.

The set of nodes N in the graph consist of a source N0, the set of surplus schools S, the

set of teachers T and the set of deficit schools D. Formally N = {N0} ∪ S ∪ T ∪D. The set

D is the set of sinks. An oriented capacity graph G with edges E is constructed as follows.

There is an edge between the source node N0 and each surplus school sj ∈ S. There is an

edge between each surplus school sj and each teacher ti ∈ W (sj). There is an edge between

each teacher ti and deficit school dk if dk ∈ A(ti). All edges in G are oriented from source

to sink. The capacity of an edge (N0, sj) is α(sj). The capacity of an edge (sj, ti) where

ti ∈ W (sj), is 1. Similarly the capacity of an edge (ti, dk) where dk ∈ A(ti), is 1.3 Each

deficit school dk has a node capacity β(dk). We let G denote this network.

An integer flow is a function f from E to the non-negative set of integers such that

1. f(N0, sj) ≤ α(sj) for all sj ∈ S.

2.
∑
ti∈T

f(ti, dk) ≤ β(dk) for all dk ∈ D.

3. f(sj, ti) ≤ 1 for all edges (sj, ti) such that sj = O(ti).

4. f(N0, sj) =
∑

ti∈W (sj)

f(sj, ti) for each surplus school sj ∈ S.

5. f(O(ti), ti) =
∑

dk∈A(ti)

f(ti, dk) for each teacher ti ∈ T .

Let F denote the set of integer flows in G. We refer to ΓI = 〈G,F〉 as the integer network

flow problem. We also define a relaxed network flow problem ΓR = 〈G, F̂〉 where F̂ is the

set of functions (flows) from E to the non-negative set of reals satisfying Conditions 1 to 5

above. Observe that ΓI and ΓR use the same network G and F ⊂ F̂ .

Every transfer policy σ ∈ Σ can be uniquely identified with a flow f ∈ F . For every

f ∈ F , we define a corresponding transfer policy σ as follows.

σ(ti) =

dk, if f(ti, dk) = 1

O(ti), if f(ti, dk) = 0 for all dk ∈ A(ti)

3Note that it is essential for our analysis, that the capacity of the edges (sj , ti) must be 1. However,

it is not essential to assume capacity 1 for an edge between a teacher and a deficit school that she finds

acceptable.
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It is easy to verify that σ satisfies Properties 2 and 3 in the definition of a transfer policy.

Similarly given a transfer policy σ, we define a corresponding flow f ∈ F as follows. For the

edge (ti, dk), let

f(ti, dk) =

1, if σ(ti) = dk

0, if σ(ti) = O(ti)

For the edge (O(ti), ti), let

f(O(ti), ti) =

1, if σ(ti) = dk

0, if σ(ti) = O(ti)

For the edge (N0, sj), let

f(N0, sj) = |{ti ∈ W (sj) : σ(ti) 6= sj}|

Once again it is easy to verify that f is integer-valued and satisfies conditions 1 to 5 in

the definition of a flow.

Example 1 is an instance of a TT problem. The associated network flow formulation of

the problem is illustrated in Figure 1.

Example 1 The sets of deficit schools, surplus schools and teachers are S = {s1, s2, s3},
D = {d1, d2, d3, d4, d5, d5, d7} and T = {t1, t2, t3, t4, t5}. The initial assignment of teachers

is given by: O(t1) = s1, O(t2) = O(t3) = s2 and O(t4) = O(t5) = s3. The acceptable

sets are as follows: A(t1) = {d1, d2}, A(t2) = A(t3) = {d1.d2, d3, d4, d5}, A(t6) = {d6} and

A(t5) = {d6, d7}. The deficit of every school dk ∈ D is β(dk) = 5. The surplus of schools s1,

s2 and s3 are α(s1) = 1 and α(s2) = α(s3) = 2.

For the remainder of this section, we restrict attention to the problem ΓR. Let X, Y ⊂ N

and f ∈ F̂ . The outflow from set X to Y under f is,

f(X, Y ) =
∑

(x,y)∈(X,Y )∩E

f(x, y).

For any B ⊆ D, the inflow into B is f(B) = f(N,B).

Following Megiddo (1974), the characteristic function of ΓR is a real valued function

v : 2D → R such that for every B ⊆ D,
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Figure 1: Example 1

v(B) = max{f(N,B) : f ∈ F̂}.

For all B ⊂ D, let β(B) =
∑

dk∈B β(dk). Define w : 2D → R as follows: for all B ⊆ D,

w(B) = β(B)− v(B).

The pairs 〈D, v〉 and 〈D,w〉 are cooperative games where D is the set of players and v

and w are the respective characteristic functions. Since D will be held fixed throughtout the

analysis, we will refer to these games by v and w respectively. Proposition 1 shows that any

post-transfer deficit vector that can be achieved by a flow f ∈ F̂ can be expressed in terms

of a condition on w.

Let h = (h1, . . . , hL) be an L-dimensional vector of real numbers. For any B ⊆ D,

let h(B) =
∑

dk∈B hk. The vector h is achievable if there exists f ∈ F̂ such that hk =

β(dk)− f(dk) for all dk ∈ D. In other words, h is the post-transfer deficit vector generated

by a flow in the relaxed problem ΓR.
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We state and prove two propositions which we will use in the proof of our main result.

Both rely heavily on results in Megiddo (1974).

Proposition 1 The vector h is achievable if and only if h(B) ≥ w(B) for all B ⊆ D.

Proof : Suppose h is achievable. There exists f ∈ F̂ such that hk = β(dk) − f(dk). Pick

an arbitrary B ⊆ D. By definition β(B) − h(B) = f(B). The construction of v implies

f(B) ≤ v(B). Therefore h(B) ≥ β(B)− v(B) = w(B).

Let h be an L-dimensional vector satisfying h(B) ≥ w(B) for all B ⊆ D. For any dk ∈ D,

f(dk) = β(dk) − hk. Since h(B) ≥ w(B), we have f(B) ≤ v(B). Applying Lemma 4.1 in

Megiddo (1974), we conclude f ∈ F̂ . It follows immediately that h is achievable. �

Proposition 2 The game w satifies the following properties.

1. w(B) is an integer for all B ⊆ D.

2. w is convex 4.

Proof : Pick an arbitrary B ⊆ D. By the max-flow min-cut theorem, v(B) is the capacity

of the minimum cut separating the source N0 from B. Since all capacities in ΓR are integers,

it follows that v(B) is an integer. Since β(B) is an integer, so is w(B). This completes Part

1.

Lemma 3.2 (Part (ii)) of Megiddo (1974)) proves that v is concave. In order to prove w

is convex, pick B1 ⊆ B2 ⊂ D \ {dk}. Then,

w(B2 ∪ {dk})− w(B2) = β(B2 ∪ {dk})− v(B2 ∪ {dk})− [(β(B2)− v(B2)]

= β(dk)− [(v(B2 ∪ {dk}))− v(B2)]

≥ β(dk)− [v(B1 ∪ {dk})− v(B1)]

= [β(B1 ∪ {dk})− β(B1)]− [v(B1 ∪ {dk})− v(B1)]

= β(B1 ∪ {dk})− v(B1 ∪ {dk})− [β(B1)− v(B1)]

= w(B1 ∪ {dk})− w(B1).

The inequality follows from the concavity of v. This completes Part 2. �

4 Recall that w is convex if w(B2 ∪ {dk})− w(B2) ≥ w(B1 ∪ {dk})− w(B1) for all B1 ⊂ B2 ⊆ D \ {dk}.
It is concave if w(B2 ∪ {dk})− w(B2) ≤ w(B1 ∪ {dk})− w(B1) for all B1 ⊂ B2 ⊆ D \ {dk}.
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We can summarize the results in this section as follows. Every TT problem can be

reformulated as a network flow problem ΓI with integer flows. A convex cooperative game

w is induced by the relaxed network flow problem ΓR where the set of deficit schools can

be interpreted as players. For every coalition B ⊆ D, w(B) is an integer. In addition, a

post-transfer deficit vector is achievable in the relaxed problem (where fractional teacher

flows are allowed) if and only if it belongs to the core of w. We return to Example 1 and

illustrate the construction of the game w.

EXAMPLE 1 (continued): We divide the deficit schools into three groups:

D1 = {d1, d2}; D2 = {d3, d4, d5}; D3 = {d6, d7}

In Figure 1, every deficit school in D1 has exactly three incoming edges and every school

in D2 has exactly two incoming edges. School d6 has two incoming edges and school d7 has

one incoming edge. Using these, we conclude the value of singleton coalitions as:

w(di) =


2 if di ∈ D1

3 if di ∈ D2 ∪ {d6}

4 if di = d7

For coalitions with two deficit schools, note that any such coalition (i) in D2 or D3 can

receive a maximum of two teachers; (ii) in D1 can receive all three teachers. Using these, we

conclude the value of doubleton coalitions as:

w(di, dj) =



7 if {di, dj} = D1

8 if {di, dj} ⊆ D2 or {di, dj} ⊆ D3

7 if di ∈ D1, dj ∈ D2

5 if di ∈ D1, dj = d6

6 if di ∈ D1, dj = d7

6 if di ∈ D2, dj = d6

7 if di ∈ D2, dj = d7

For coalitions of size three, the calculations can be done by looking at maximum flows in
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the graph in Figure 1.

w(di, dj, dk) =



12 if {di, dj} = D1 and dk ∈ D2

12 if {di, dj} ⊆ D2 and dk ∈ D1

10 if {di, dj} = D1 and dk = d6

11 if {di, dj} = D1 and dk = d7

11 if {di, dj} ⊆ D2 and dk = d6

12 if {di, dj} ⊆ D2 and dk = d7

13 if {di, dj, dk} = D2

10 if {di, dj} = D3 and dk ∈ D1

11 if {di, dj} = D3 and dk ∈ D2

10 if di ∈ D1, dj ∈ D2, and dk = d6

11 if di ∈ D1, dj ∈ D2, and dk = d7

For coalitions of size four, the calculations can be done by looking at maximum flows in

the graph in Figure 1. One observation is if all four deficit schools belong to D1 or D2, the

maximum flow they can receive is three. If three or two of the deficit schools belong to D1

or D2, the calculations are more subtle.

w(di, dj, dk, d`) =



17 if {di, dj, dk, d`} ⊆ D1 ∪D2

17 if {di, dj, dk} = D2, d` ∈ D1 or d` = d7

16 if {di, dj, dk} = D2, d` = d6

16 if {di, dj, dk} 6= D2, {di, dj, dk} ⊆ D1 ∪D2, d` = d7

15 if {di, dj, dk} 6= D2, {di, dj, dk} ⊆ D1 ∪D2, d` = d6

16 if {di, dj} = D3, {dk, d`} ⊆ D2

15 if {di, dj} = D3, {dk, d`} ∩D1 6= ∅

For larger coalitions, the value is computed as follows. First, coalition of size five is

computed as follows.

w(D1 ∪D2) = 22

For any S ⊆ D1 ∪D2 with |S| = 4, we have

w(S ∪ {di}) =

20 if di = d6

21 if di = d7
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For any S ⊆ D1 ∪D2 with |S| = 3, we have

w(S ∪D3) =

20 if S 6= D2

21 if S = D2

For coalitions of size six, we can compute as follows.

w(D1 ∪D2 ∪ {di}) =

25 if di = d6

26 if di = d7

For coalition S ⊆ D1 ∪D2 with |S| = 4,

w(S ∪D3) = 25

Finally,

w(D) = 30

NOTE: Observe that w(S) is an integer for all S ⊆ D. It can also be verified that w is

convex. For instance, ......

4 The Main Result

We can now state our main result.

Theorem 1 There exists a Lorenz dominant transfer policy.

In Section 3, we have shown that the set of post-transfer deficit vectors in ΓR coincides

with the core of a convex game. Dutta and Ray (1989) show that the core of a convex game

always contains a Lorenz dominant allocation and provide an algorithm to identify it.5 We

can therefore find an Lorenz dominant post-transfer deficit vector in the relaxed problem ΓR

using the algorithm. We construct an appropriate integer approximation from the Lorenz

dominant post-transfer deficit vector in the relaxed problem. This “approximated” vector

will typically not be Lorenz dominant among all achievable vectors in the relaxed problem.

However, we show that it is Lorenz dominant among all achievable vectors in the integer

network flow problem ΓI . The flow corresponding to this approximated vector is the desired

transfer policy. We now proceed to details.

5Megiddo (1974) also proposed the same algorithm to construct a lex optimal flow.
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Proof : We first construct a Lorenz dominant post-transfer deficit vector h∗ in ΓR using

the algorithm in Dutta and Ray (1989) and Megiddo (1974). The algorithm inductively

constructs a sequence of sets {B0, . . . , BP} and {Z1, . . . , ZP} which are subsets of deficit

schools.

Initially B0 = ∅. For i = 1, 2, . . ., let

Zi = arg max
Y⊆D\Bi−1

{
w(Y ∪Bi−1)− w(Bi−1)

|Y |

}
.

Break ties arbitrarily in case of multiple solutions. At the end of Step i, set Bi = Bi−1 ∪ Zi.
Observe that Zi is non-empty at every Step i. This implies that the algorithm terminates at

some Step P where BP = D.

In any Step i, the sets Z1, . . . , Zi−1 have been determined. The algorithm picks the

subset Zi from the remaining deficit schools D \Bi−1, that has the highest average marginal

contribution to the set Bi−1 = Z1 ∪ . . .∪Zi−1. The collection {Z1, . . . , ZP} forms a partition

of D. The average marginal contribution computed in Step i (i ∈ {1, . . . , P}) is denoted by

gi, i.e.

gi =
w(Zi ∪Bi−1)− w(Bi−1)

|Zi|

Since {Z1, . . . , ZP} is a partition of D, the collection {gi}i∈{1,...,P} determines a post-

transfer vector h∗ in ΓR as follows: h∗k = gi if dk ∈ Zi for all k = {1, . . . L}.

Lemma 1 The vector h∗ satisfies the following properties:

1. Suppose dk ∈ Zi and dk′ ∈ Zi′ where i < i′. Then h∗k ≥ h∗k′.

2. h∗(∪ip=1Zp) = w(∪ip=1Zp) for all i ∈ {1, . . . , P}.

3. h∗ is achievable.

The construction of the algorithm immediately implies Parts 1 and 2 of Lemma 1. The

proof of Part 3 of Lemma 1 uses Proposition 1. Details can be found in Megiddo (1974) and

Dutta and Ray (1989). In fact, we can use the arguments in Dutta and Ray (1989) to show
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that h∗ is the Lorenz dominant vector in ΓR. For our purpose, we only use the fact that h∗

is achievable.

The post-transfer deficit of school dk in h∗ where dk ∈ Zi is,

h∗k = gi =
w(∪ip=1Zp)− w(∪i−1

p=1Zp)

|Zi|
. (1)

According to Part 1 in Proposition 2, w(B) is an integer for all B ⊆ D. As a result, the

numerator in Equation 1 is an integer, but h∗ may not be one. However gi|Zi| which is the

total post-transfer deficit of all schools in Zi, is an integer. We use this fact to construct a

Lorenz dominant flow in ΓI .

Lemma 2 There exists f̂ ∈ F and a corresponding achievable vector ĥ in ΓI such that

1. ĥ(∪ip=1Zp) = w(∪ip=1Zp) for all i ∈ {1, . . . , P}.

2. ĥk ∈ {bgic , dgie} for all dk ∈ D where dk ∈ Zi.

Proof : We construct an auxillary network ΓAU using {Z1, . . . , ZP} and {g1, . . . , gP}. The

set of nodes N ′ in the graph G′ consists of a source N0, the set of surplus schools S, the set

of teachers T , the set of deficit schools D and the set {Z1, . . . , ZP}. The set {Z1, . . . , ZP}
is the set of sinks. An oriented capacity graph G′ with edges E ′ is constructed as follows.

There is an edge between the source node N0 and each surplus school sj ∈ S. There is an

edge between each surplus school sj and each teacher ti ∈ W (sj). There is an edge between

each teacher ti and deficit school dk if dk ∈ A(ti). For each deficit school dk, there is an edge

between dk and Zi if and only if dk ∈ Zi. All edges in G′ are oriented from source to sink.

The capacity of an edge (N0, sj) is α(sj). The capacity of an edge (sj, ti) where ti ∈ W (sj),

is 1. Similarly the capacity of an edge (ti, dk) where dk ∈ A(ti), is 1. An edge (dk, Zi) where

dk ∈ Zi has upper (capacity) and lower bounds of dβ(dk)− gie and bβ(dk)− gic respectively.

Each deficit school dk has node capacity β(dk)
6, while each node Zi has capacity β(Zi)−gi|Zi|.

Note that all capacities are integers. All flows are admissible in ΓAU (including fractional

flows). Let FAU denote the set of all flows in ΓAU . The construction of ΓAU is illustrated in

Figure ....

Since h∗ is achievable (Part 3 in Lemma 1), there exists f ∗ ∈ F̂ such that f ∗(dk) =

β(dk)− h∗k for all dk ∈ D. Construct the flow f ∗∗ by augmenting f ∗ as follows: for every dk,

6Do we need to put node capacity on deficit schools? Think it is not required. However keeping it, makes

it consistent with the original network G - then G′ just adds an extra layer to G.
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the flow on the edge (dk, Zi) where dk ∈ Zi is β(dk) − h∗k = β(dk) − gi. Clearly f ∗∗ ∈ FAU .

The flow received by a sink Zi in f ∗∗ is,

f ∗∗(Zi) =
∑
dk∈Zi

f ∗∗(dk, Zi)

=
∑
dk∈Zi

[β(dk)− gi]

=
∑
dk∈Zi

β(dk)− gi|Zi|

= β(Zi)− gi|Zi| (2)

The RHS of Equation 2 is the capacity of node Zi. It follows that f ∗∗ is a maximal flow

in ΓAU .

Since all capacities in ΓAU are integers, the integrality theorem7 implies that there exists

an maximum integer flow f̂ ∈ FAU . Therefore
∑P

i=1 f
∗∗(Zi) =

∑P
i=1 f̂(Zi). Indeed, for node

capacities of sinks not to be exceeded in f̂ , we must have

f ∗∗(Zi) = f̂(Zi) for all i ∈ {1, . . . , P}. (3)

Define ĥk = β(dk)− f̂(dk) for all dk ∈ D. Note that ĥ is the post-transfer deficit vector

corresponding to f̂ . Observe

f ∗∗(Zi) = β(Zi)− gi|Zi| = β(Zi)− h∗(Zi). (4)

f̂(Zi) =
∑
dk∈Zi

f̂(dk)

=
∑
dk∈Zi

[β(dk)− ĥk]

=
∑
dk∈Zi

β(dk)−
∑
dk∈Zi

ĥk

= β(Zi)− ĥ(Zi) (5)

Using Equations 3, 4 and 5, we conclude that ĥ(Zi) = h∗(Zi) for all i ∈ {1, . . . , P}. Since

the Zi’s are all disjoint, we can use Part 2 of Lemma 1 to conclude that

7Add reference
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ĥ(∪ip=1Zp) = h∗(∪ip=1Zp) = w(∪ip=1Zp) for all i ∈ {1, . . . , P}. (6)

By the construction of ΓAU , f̂ induces an integer flow in ΓI . It follows that ĥ is an

achievable post-transfer deficit vector in ΓI . Equation 6 establishes Part 1 of Lemma 2.

For any school dk ∈ D, we know f̂(dk) = β(dk) − ĥk. By flow conservation for node dk

where dk ∈ Zi, we have f̂(dk) = f̂(dk, Zi). Thus,

bβ(dk)− gic ≤ f̂(dk) ≤ dβ(dk)− gie
=⇒ bβ(dk)− gic ≤ β(dk)− ĥk ≤ dβ(dk)− gie
=⇒ β(dk)− dgie ≤ β(dk)− ĥk ≤ β(dk)− bgic
=⇒ −dgie ≤ −ĥk ≤ −bgic
=⇒ bgic ≤ ĥk ≤ dgie

This establishes Part 2 of Lemma 2 below. �

Recall that the algorithm constructed a partition {Z1, . . . , ZP} and post-transfer deficits

{g1, . . . , gP} (which may not be integers) where g1 ≥ g2 . . . ≥ gP (Proposition 1), i.e.

dg1e ≥ bg1c ≥ dg2e ≥ bg2c . . . ≥ dgP e ≥ bgP c. Construct a coarsening of {Z1, . . . , ZP} which

we refer to as {Z̄1, . . . , Z̄R} by lumping together different elements of the original partition if

their ceilings coincide with each other as do their floors. Formally, Z̄i = Zp ∪Zp+1 . . .∪Zp+s
if dgpe = dgp+1e . . . = dgp+se = x+ 1 and bgpc = bgp+1c . . . = bgp+sc = x for some integer x.

Suppose the original partition is {Z1, Z2, Z3, Z4, Z5} with g1 = 6.4, g2 = 6.2, g3 = 6.1,

g4 = 5.6 and g5 = 4.8. Then the coarsened partition is {Z̄1, Z̄2, Z̄3} where Z̄1 = Z1∪Z2∪Z3,

Z̄2 = Z4 and Z̄3 = Z5. The ceilings and floors associated with Z̄1, Z̄2 and Z̄3 are {7, 6},
{6, 5} and {5, 4} respectively.

Observation 1 The following facts hold for the post-transfer deficit vector ĥ and the par-

tition {Z̄1, . . . , Z̄R}.

1. For all dk ∈ Z̄i, ĥk ∈ {x, x+ 1} where x and x+ 1 are the floor and ceiling associated

with Z̄i.

2. ĥ(∪ip=1Z̄p) = w(∪ip=1Z̄p) for all i ∈ {1, . . . , R}.

Part 1 follows immediately from the construction of the new partition. Part 2 follows

from Part 1 of Lemma 2 and the fact that the new partition is constructed by combining

consecutive elements in the original partition.
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We claim that ĥ Lorenz dominates all other achievable vectors h in the problem ΓI .

We need to show that the following inequalites hold for the vectors [ĥ] and an arbitrary

achievable [h] (in ΓI).

m∑
i=1

ĥ[i] ≤
m∑
i=1

h[i] for all m = 1, 2, . . . , |D|. (7)

Assume w.l.o.g that components in ĥ are arranged according to the partition {Z̄1, . . . , Z̄R},
i.e. the first |Z̄1| terms in ĥ correspond to deficit schools belonging to Z1, the next |Z̄2| terms

correspond to deficit schools belonging to Z2 and so on. Also within each Z̄i, the terms in ĥ

are arranged in decreasing order. By construction, we know for any Z̄p and Z̄q where p < q,

it must be dgpe > bgpc ≥ dgqe > bgpc , i.e. [ĥ] and ĥ are identical. Thus,

m∑
i=1

ĥ[i] =
m∑
i=1

ĥi for all m = 1, 2, . . . , |D|. (8)

The vector h̄ is constructed vector from [h] using the partition {Z̄1, . . . , Z̄R}. The first

|Z̄1| terms in h̄ are the deficit schools belonging to Z1, the next |Z̄2| terms in h̄ are the deficit

schools belonging to Z̄2 and so on. Within each Z̄i, the terms are arranged in decreasing

order. We are abusing notation here. According to our earlier notation, the ith component

h̄i in a post-transfer deficit vector h̄ refers to the deficit of school di. However in this case,

h̄i refers to the post-transfer deficit of a school in Z̄p where
∑p−1

i=1 |Z̄i| < i ≤
∑p

i=1 |Z̄i|.
The following inequalities must hold for the vectors h̄ and [h].

m∑
i=1

h̄i ≤
m∑
i=1

h[i] for all m = 1, 2, . . . , |D|. (9)

In view of Inequalities 8 and 9, Inequality 10 below suffices to establish Lorenz dominance

of ĥ.

m∑
i=1

ĥi ≤
m∑
i=1

h̄i for all m = 1, 2, . . . , |D|. (10)

Pickm ∈ {1, . . . , |D|}. Since ĥ and h̄ are arranged according to the partition {Z̄1, . . . , Z̄R},
the mth term in the sums

∑m
i=1 ĥi and

∑m
i=1 h̄i belong to the same element of the partition,

say Z̄p. Recall ĥk ∈ {q, q + 1} for some integer q, for all dk ∈ Z̄p (Part 2 of Lemma 2). Let

r be the highest index such that
∑p−1

i=1 |Z̄i| < r ≤
∑p

i=1 |Z̄i| and ĥr = q + 1. Then all terms
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between (r + 1) and
∑p

i=1 |Z̄i| in ĥ belong to Z̄p and have value q. For convenience, denote∑p
i=1 |Z̄i| by ap.

There are two possibilities: (A) m = ap and (B) ap−1 < m ≤ ap. We will deal with these

two cases separately.

Case A: In order to show Inequality 10, we have:

m∑
i=1

h̄i = h̄(∪pk=1Z̄k)

≥ w(∪pk=1Z̄k)

= ĥ(∪pk=1Z̄k)

=
m∑
i=1

ĥi

The first inequality follows from achievability of h̄ and Proposition 1. The second equality

follows from Part 1 of Lemma 2.

Case B: The sum
∑m

i=1 ĥi can be split into two parts: the sum of all deficit schools that

belong to ∪p−1
k=1Z̄k and the remaining terms that belong to Z̄p. We can similarly split the

sum
∑m

i=1 h̄i. The achievability of vector h̄ for the set ∪p−1
k=1Z̄k (Proposition 1) and Part 1 of

Lemma 2 imply,

h̄(∪p−1
k=1Z̄k) ≥ ĥ(∪p−1

k=1Z̄k). (11)

Inequality 11 can be rewritten as,

ap−1∑
i=1

h̄i ≥
ap−1∑
i=1

ĥi. (12)

Now consider the last term ĥm in the sum
∑m

i=1 ĥm. There are two subcases to consider

depending on where “m cuts Z̄p”.

• Case B.1: ĥm = q. This means m > r or m− ap−1 > r − ap−1.

• Case B.2: ĥm = q + 1. This means m ≤ r or m− ap−1 ≤ r − ap−1.
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Case B.1: ĥm = q (or m > r). This case will be further split up into two subcases depending

upon whether h̄m ≥ q + 1 or h̄m ≤ q.

Case B.1.1: h̄m ≥ q + 1.

Consider the sums in h̄ and ĥ restriced to Z̄p, i.e. sum of terms in h̄ from ap−1 + 1 to m and

sum of terms in ĥ from ap−1 + 1 to m. Since h̄m ≥ q + 1, we have

m∑
i=ap−1+1

h̄i ≥ (m− ap−1)(q + 1) = (m− ap−1)q + (m− ap−1).

Also,

m∑
i=ap−1+1

ĥi = (r − ap−1)(q + 1) + (m− r)q

= (r − ap−1 +m− r)q + (r − ap−1)

= (m− ap−1)q + (r − ap−1)

Since m > r, we have (m− ap−1)q+ (m− ap−1) > (m− ap−1)q+ (r− ap−1). This implies

m∑
i=ap−1+1

h̄i >
m∑

i=ap−1+1

ĥi. (13)

We can obtain Inequality 10 by summing Inequalities 12 and 13.

Case B.1.2: h̄m ≤ q.

Consider the sums of h̄ and ĥ in the remaining part of Z̄p, i.e. sum of terms in h̄ from m+ 1

to ap and sum of terms in ĥ from m+1 to ap. Since m > r, we know
∑ap

i=m+1 ĥi = (ap−m)q.

By asssumption, h̄m ≤ q. So
∑ap

i=m+1 h̄i ≤ (ap −m)q. These facts together imply,

ap∑
i=m+1

h̄i ≤
ap∑

i=m+1

ĥi. (14)

The achievability of vector h̄ for the set ∪pk=1Z̄k (Proposition 1) and Part 1 of Lemma 2

implies,

ap∑
i=1

h̄i ≥
ap∑
i=1

ĥi. (15)
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Since
∑ap

i=m+1 h̄i ≤
∑ap

i=m+1 ĥi (Inequality 14), we can subtract
∑ap

i=m+1 h̄i from the LHS

and
∑ap

i=1 ĥi from the RHS of Inequality 15 and the inequality will be preserved. We obtain

Inequality 10 as follows.

m∑
i=1

h̄i =

ap∑
i=1

h̄i −
ap∑

i=m+1

h̄i

≥
ap∑
i=1

ĥi −
ap∑

i=m+1

ĥi

=
m∑
i=1

ĥi

Case B.2: ĥm = q + 1 (or m ≤ r). This case will be further split up into two subcases

depending upon whether h̄m ≥ q + 1 or h̄m ≤ q.

Case B.2.1: h̄m ≥ q + 1.

Consider the sums in h̄ and ĥ restriced to Z̄p, i.e sum of terms in h̄ from ap−1 + 1 to m and

sum of terms in ĥ from ap−1 + 1 to m. Since h̄m ≥ q + 1, we have

m∑
i=ap−1+1

h̄i ≥ (m− ap−1)(q + 1).

Since m ≤ r, we have

m∑
i=ap−1+1

ĥi = (m− ap−1)(q + 1).

Thus,

m∑
i=ap−1+1

h̄i ≥
m∑

i=ap−1+1

ĥi. (16)

We can obtain Inequality 10 by summing Inequalities 12 and 16.

Case B.2.2: h̄m ≤ q.

Consider the sums of h̄ and ĥ in the remaining part of Z̄p, i.e. sum of terms in h̄ from m+ 1

to ap and sum of terms in ĥ from m+1 to ap. Since h̄m ≤ q, we have
∑ap

i=m+1 h̄i ≤ (ap−m)q.

Since m ≤ r, we have
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ap∑
i=m+1

ĥi = (r −m)(q + 1) + (ap − r)q

= (r −m+ ap − r)q + (r −m)

= (ap −m)q + (r −m)

Since r −m ≥ 0, we have

ap∑
i=m+1

h̄i ≤
ap∑

i=m+1

ĥi. (17)

The achievability of h̄ for the set ∪pk=1Z̄k (Proposition 1) and Part 1 of Lemma 2 imply,

ap∑
i=1

h̄i ≥
ap∑
i=1

ĥi. (18)

Since
∑ap

i=m+1 h̄i ≤
∑ap

i=m+1 ĥi, we can subtract
∑ap

i=m+1 h̄i from the LHS and
∑ap

i=1 ĥi

from the RHS of Inequality 18 and the inequality will be preserved. Inequality 10 can be

obtained as follows.

m∑
i=1

h̄i =

ap∑
i=1

h̄i −
ap∑

i=m+1

h̄i

≥
ap∑
i=1

ĥi −
ap∑

i=m+1

ĥi

=
m∑
i=1

ĥi

We have established that Inequality 10 holds for the vector ĥ. This completes the proof

of Lorenz dominance of ĥ. The integer flow f̂ that results in the post-transfer deficit vector

ĥ is a Lorenz dominant transfer policy. �

We illustrate the ideas behind the proof of Theorem 1 with reference to Example 1.
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EXAMPLE 1 (continued): We begin by computing the maximum value of w(S)
|S| for all coali-

tion sizes.

max
S:|S|=1

w(S)

|S|
= 4

max
S:|S|=2

w(S)

|S|
= 4

max
S:|S|=3

w(S)

|S|
=

13

3
= 4

1

3

max
S:|S|=4

w(S)

|S|
=

17

4
= 4.25

max
S:|S|=5

w(S)

|S|
=

22

5
= 4.4

max
S:|S|=6

w(S)

|S|
=

26

6
= 4

1

3

max
S:|S|=7

w(S)

|S|
=

30

7
= 4

2

7

The maximum ratio in Step 1 of the algorithm corresponds to Z1 = D1 ∪D2. In Step 2

of the algorithm, we look at the marginal ratios below.

w(S1 ∪ {d6})− w(S1) = 3

w(S1 ∪ {d7})− w(S1) = 4

w(S1 ∪D3)− w(S1)

2
= 4

Hence, (one of) the maxima occurs by adding D3. So, Z2 = D3. The partition chosen by

the algorithm is {D1∪D2, D3} with associated values g1 = 4.4 and g2 = 4. The post-transfer

deficit vector h∗ is defined as follows: h∗k = 4.4 for all dk ∈ D1 ∪ D2 and h∗k = 4 for all

dk ∈ D3. It is clear that the vector h∗ cannot be obtained from an integer flow (or a teacher

transfer).

An important observation here is that h∗ cannot be approximated by an arbitrary integer

vector ĥ. For example, suppose ĥ1 = ĥ2 = 5, ĥ3 = ĥ4 = ĥ5 = 4, ĥ6 = ĥ7 = 4. Although∑
k∈D1∪D2

ĥk = w(D1 ∪D2) = 22,
∑

k∈D2
ĥk = 12 < w(D2) = 13. According to Proposition

1, ĥ is not achievable. This can also be directly verified by noting that only two teachers t2

and t3 can be transferred to D2. Consequently, the aggregate deficit of D2 cannot be reduced

to 12 from 15.

In order to construct an achievable integer approximation of h∗, we construct the aux-

illiary network ΓAU shown in Figure below. The vector ĥ where ĥ1 = 5, ĥ2 = ĥ3 = ĥ4 =
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4, ĥ5 = 5, ĥ6 = ĥ7 = 4 is an achievable post-transfer vector in ΓI . It can also be shown to

Lorenz-dominate all achievable post-transfer vectors in ΓI .

5 Strategy-Proofness

The objective of this section is to show that the Lorenz dominant post-transfer deficit vector

can be achieved by means of a strategy-proof mechanism.

We assume that every teacher ti has “trichotomous” preferences over schools. The first

indifference class consists of deficit schools in A(ti). The second indifference class consists

of her initial assignment O(ti) and the third indifference class consists of non-acceptable

deficit schools D \ A(ti). Each teacher ti is indifferent between acceptable deficit schools in

A(ti) and strictly prefers being transferred to a school in A(ti) than remaining in her initial

assignment. Her initial assignment is strictly preferred to any school in D \ A(ti).

Recall that a teacher transfer problem (TT) is a tuple Γ = 〈D,S, T, {A(ti)ti∈T}, β, α〉.
We assume that the vectors β and α are publicly observable as is the initial assignment of

teachers O(ti), ti ∈ T . However the set A(ti), ti ∈ T , is private information for teacher ti. A

teacher transfer policy must therefore be based on reports of the acceptable sets of teachers.

Let A denote the set of all non-empty subsets of D. A profile A is an N -tuple of acceptable

sets, i.e A = {(A(ti), ti ∈ T} ∈ AN . Let F(A) denote the set of feasible (integer) flows in the

TT problem with profile A. For any flow f ∈ F(A), let βf denote the post-transfer deficit

vector generated by f . Let F̄(A) denote the set of flows in F(A) that generate the Lorenz

dominant post-transfer deficit vector. It is clear that βf = βf
′

for all f, f ′ ∈ F̄(A).

A teacher transfer policy function (TTPF) is a map σ that associates a flow σ(A) ∈ F̄(A)

for every A ∈ AN . Let σ(A, ti) denote the school assigned to teacher ti in σ(B). For any

teacher ti ∈ T , there are two possibilities: (i) σ(A, ti) ∈ A(ti) or (ii) σ(A, ti) = O(ti). Teacher

ti is not transferred if Case (ii) occurs.

Teacher ti manipulates σ at profile A = (A(ti), A(t−i)
8 if there exists A′(ti) ⊆ D such that

(i) teacher ti is not transferred in σ(A) and (ii) σ((A′(ti), A(t−i)), ti) ∈ A(ti). The TTPF σ

is strategy-proof if it cannot be manipulated.

A teacher assignment assigns each teacher either to a deficit school or to her initial

assignment. Let Σ̄ denote the set of all teacher assignments. Note that a teacher assignment

is defined without any reference to acceptable sets of teachers. A choice function is a map

C : 2Σ̄ → Σ̄ such that C(X) ∈ X for all X ⊆ Σ̄. Pick an arbitrary A ∈ AN . Then F̄(A) ⊆ Σ̄

and C(F̄(A)) ∈ F̄(A). In other words, a choice function picks a flow that generates a Lorenz

8A(t−i) denotes the reports of all teachers except ti in the profile A.
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dominant post-transfer deficit vector.

The choice function C satisfies contraction consistency (CC) if for all X,X ′ ⊆ Σ̄,

[X ′ ⊂ X and C(X) ∈ X ′] =⇒ [C(X) = C(X ′)].

This is a standard property of choice functions sometimes referred to Sen’s Property α. It

is a necessary condition for the rationalizability of choice functions. It is also sufficient with

additional richness assumptions on the choice function. It is always satisfied if it is obtained

by maximising a fixed anti-symmetric ordering on Σ̄ (See Rubenstein book, chapter....).

Proposition 3 Let C be a choice function satisfying CC. The TTPF σ defined by σ(A) ≡
C(F̄(A)) for all A ∈ AN is strategy-proof.

Proof : The proof of the proposition relies on two lemmas.

Lemma 3 Pick ti ∈ T and A ∈ AN . Suppose A′(ti) = A(ti) ∪ {dk}. Then either

σ((A′(ti), A(t−i)), ti) = dk or σ((A′(ti), A(t−i)), ti) = σ(A, ti) holds.

Proof : Assume for contradiction that there exists a teacher ti, a profile A and a deficit school

dk such that A′(ti) = A(ti)∪ {dk} and σ((A′(ti), A(t−i)), ti) /∈ {dk, σ(A, ti)}. Thus σ(A) and

σ(A′(ti), A(t−i)) are distinct.

For notational convenience, we will suppress A(t−i) in the following expressions. Hence-

forth σ(A) and σ(A′(ti), A(t−i)) will be written as σ(A(ti)) and σ(A′(ti)) respectively. Simi-

larly σ(A, ti) and σ((A′(ti), A(t−i)), ti) will be written as σ(A(ti), ti) and σ(A′(ti), ti) respec-

tively. Finally, F(A), F̄(A), F(A′(ti), A(t−i)) and F̄(A′(ti), A(t−i)) will be written simply

as F(A(ti)), F̄(A(ti)), F(A′(ti)) and F̄(A′(ti)) respectively.

Let f and f ′ denote the flows σ(A(ti)) and σ(A′(ti)) respectively. Since f ′ does not use

the edge (ti, dk), it follows that f ′ ∈ F(A(ti)). Also F(A(ti)) ⊂ F(A′(ti)) since A′(ti) =

A(ti) ∪ {dk}.
We claim that βf = βf

′
. Since F(A(ti)) ⊂ F(A′(ti)), we know f ∈ F(A′(ti)). This

implies βf
′ �LO βf . Since f ′ ∈ F(A(ti)), we have βf �LO βf

′
. This immediately implies

βf = βf
′
.

Since f ′ ∈ F(A(ti)) and βf = βf
′
, we have f ′ ∈ F̄(A(ti)). Also βf = βf

′
and F(A(ti)) ⊂

F(A′(ti)) together imply F̄(A(ti)) ⊆ F̄(A′(ti)). The flow f ′ is chosen in F̄(A′(ti)) and it

belongs to F̄(A(ti)). By CC, f ′ must be chosen in F̄(A(ti)). This leads to a contradiction

since f 6= f ′ by assumption. �
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Lemma 4 Pick ti ∈ T and A ∈ AN . Suppose A′(ti) = A(ti) \ {dk} where σ(A, ti) 6= dk.

Then σ((A′(ti), A(t−i)), ti) = σ(A, ti) holds.

Proof : We use the same notation as in the proof of Lemma 3. Assume for contradiction

that there exists a teacher ti, a profile A and a deficit school dk such that A′(ti) = A(ti)\{dk}
and f ′ = σ(A′(ti), ti) 6= σ(A(ti), ti) = f .

Since A′(ti) = A(ti) \ {dk}, we have F(A′(ti)) ⊂ F(A(ti)). Also f ∈ F(A′(ti)) since f

does not use the edge (ti, dk).

We claim that βf = βf
′
. Since f ∈ F(A′(ti)), we have βf

′ �LO βf . Also f ′ ∈ F(A(ti))

because F(A′(ti)) ⊂ F(A(ti)). Thus f �LO f ′. This immediately implies βf = βf
′
.

Since F(A′(ti)) ⊂ F(A(ti)) and βf = βf
′

we have F̄(A′(ti)) ⊆ F̄(A(ti)). Also f ∈
F(A′(ti)) and βf = βf

′
implies that f ∈ F̄(A′(ti)).

We have established f ∈ F̄(A′(ti)) and F̄(A′(ti)) ⊆ F̄(A(ti)). This is contradicts CC

since f ′ 6= f by assumption. �

We now complete the proof of the proposition. Let A be an arbitrary preference profile

and ti be a teacher who is not transferred in σ(A(ti)), i.e. σ(A(ti), ti) = O(ti). Let A′(ti) ∈ A
be an arbitrary set of deficit schools. We claim that σ(A′(ti), ti) /∈ A(ti) which implies that

ti cannot manipulate.

We proceed in two steps. In the first step, we consider the assignment for ti in the profile

(A
′′
(ti), A(t−i)) where A

′′
(ti) = A′(ti) ∩ A(ti). The set A

′′
(ti) can be obtained from A(ti)

by removing some deficit schools, say d1, d2, . . . , dK ∈ A(ti). Since σ(A(ti), ti) 6= d1, Lemma

4 can be applied to infer that σ(A(ti) \ {d1}, ti) = O(ti). Progressively removing schools

d2, . . . dK from A(ti) \ {d1} and applying Lemma 4 repeatedly, it follows that σ(A
′′
(ti), ti) =

O(ti).

Let A
′
(ti) \ A

′′
(ti) = {d′1, . . . d′S} so that A′(ti) can be obtained from A

′′
(ti) by adding

schools d′1, . . . d
′
S. In the second step, we progressively add schools d′1, . . . d

′
S to A

′′
(ti).

Applying Lemma 3,we can infer that σ(A
′′
(ti) ∪ {d′1}, ti) ∈ {d′1, O(ti)}. Adding d′2, . . . d

′
S

in turn to A
′′
(ti) ∪ {d′1} and applying Lemma 3 repeatedly, it follows that σ(A′(ti), ti) ∈

{d′1, . . . d′S, O(ti)}. Since d′1, . . . d
′
S, O(ti) /∈ A(ti), it follows that σ(A′(ti), ti) /∈ A(ti).

�
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