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Abstract

We consider a continuous-time dynamic principal-agent model with experimentation

under a mixed-news framework. In an exponential two-armed bandit framework,

the agent can achieve success and failure from both known and unknown risky

arms. We frame success to be conclusive i.e. a single success truly reveals its type

and inconclusive breakdowns for the unknown arm. Although success arrives at

a lower rate in the unknown risky arm than the known arm, it generates higher

revenue for the experimenting agent. To motivate the agent to experiment in the

unknown arm in spite of delayed success, the principal proposes a mechanism which

involves rewarding failures and punishing fake successes, in order to incentivize the

agent to experiment in the unknown risky arm. We derive the optimal deadline for

experimentation which ensures full honesty from the agent.
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1. Introduction

Adopting a new experimental approach can lead to greater initial losses from failures

and may result in significant delays before achieving success. However, despite these

setbacks, adopting such technology can ultimately provide stakeholders with greater

long-term benefits.

Therefore, it is crucial to incentivize researchers and experimental agencies to

avoid reverting to safer options. Many firms implement various incentive schemes

to promote such exploration. For example, Google X, Procter & Gamble, and Tata

allow employees the freedom to pursue low-yield projects and even reward failures.

The European Research Council (ERC) also funds groundbreaking research without

expecting immediate technological returns1.

In this paper, we develop a continuous-time strategic experimentation model in

a two-armed bandit setup. Arm 1 represents the technology or research path under

investigation—the new and unknown avenue for research or technology development.

In contrast, Arm 0 represents the safer option, the existing and known research

paths. Both arms generate lump-sum rewards and costs at the jump times of the

Poisson process.

We consider a mixed news framework integrating the conclusive success as in

Keller et al.(2005) and the inconclusive failure in Keller and Rady (2015). Arm 0

generates success (good news) and failure (bad news) with a higher success rate.

Arm 1 is unexplored. It can be either good or bad and generates both success (with

a lower rate than Arm 0) and failure if it is good and can generate failure (with a

higher intensity than if the arm is good) if it is bad.

A single success on Arm 1 makes the belief jump to full certainty and conclu-

sively reveals its type, irrespective of the belief held before. In addition, the arrival

of failure and the absence of news make the agent more pessimistic (with a discrete

downward jump in case of failure). To simplify our analysis, we restrict ourselves

to Markov strategies, with the posterior belief as a state variable. Given the dis-

crete downward adjustment of beliefs, payoff functions solve first-order ordinary

differential-difference equations (ODDEs) as in Keller and Rady(2010,2015).

In a principal-agent framework, we demonstrate how the principal can motivate

the agent (e.g., a researcher) to experiment with an unknown project (Arm 1). We

propose a mechanism that rewards failures and punishes fake successes. We derive

the optimal mechanism, which encompasses a reward and punishment scheme along

with an optimal deadline, as part of the principal’s wage minimization problem.

The agent has one unit of resource to allocate between the two projects. The

1According to the data, over 44% of ERC-funded projects have generated research that was
subsequently cited by patent applications.
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arrival rate of news—whether good or bad—is assumed to be proportional to the

resources allocated to each project. The agent receives a reward (or incurs a cost)

whenever a good (or bad) signal is realized. While the principal cannot observe

the agent’s choice of projects (or arms), she can monitor the timing of when good

and bad signals occur. The lower success rate and, consequently, the lesser rewards

associated with the unexplored project may lead the agent to cheat by switching to

the known project, which offers a higher success rate.

Thus to prevent the agent from cheating and using Arm 0, the principal designs

an incentive scheme. First, he optimally chooses a deadline for experimentation. At

the deadline, the principal collects all good and bad news reported by the agent till

that time. While choosing an exogenous threshold (convex combination of the ratio

of failure rate to success rate from Arm 0 and Arm 1, see page 18) as a parameter

of honesty, the principal calculates the ratio of bad news and good news the agent

has reported. Now if the calculated number exceeds the chosen threshold, then the

principal compensates the agent for his reported bad news. Note that a relatively

higher number of bad news is more likely to occur in Arm 1 rather than Arm 0 since

the arrival rate of bad news relative to good news is higher in Arm 1 than in Arm 0.

But in case, the calculated ratio does not exceed the chosen threshold, the principal

punishes the agent for his reported good news.

As a benchmark, we determine the agent’s behavior in the absence of the prin-

cipal’s incentive scheme. Proposition 1 shows that without any incentives, there

exists some threshold belief below which the agent cheats by switching to the known

project.

In Proposition 2 and Proposition 3, we show that after the implementation of

the incentive scheme, there still exists some threshold belief below which the agent

switches to the safer option, but this threshold is lower than the former one. The

incentive scheme now motivates the agent to spend more time on the unexplored

project. Anticipating the agent’s behavior, the principal optimally chooses a dead-

line along with minimizing wage payments that ensures the full honesty of the agent.

Proposition 4 shows the optimal stopping time when the principal stops the exper-

imentation and pays the agent depending on its outcome. In Proposition 5 upon

setting an optimal deadline, we focus on the arm identification by the principal.

Since a single success reveals the unknown state of the project to be good, the prin-

cipal declares the unknown arm (Arm 1) to be good if the sequence submitted by

the agent contains at least one good piece of news. On the contrary, upon receiving

no good news till the optimal deadline, the principal identifies the unknown arm

(Arm 1) to be bad with a higher probability under the incentive scheme compared

to the situation when there is no incentive.

The contribution of our paper is twofold. First, contrary to Klein (2016) and
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Hidir (2019), we frame our model with the hybrid news framework by integrating

the conclusive success of Keller et al. (2005) and the inconclusive failure introduced

by Keller, Rady (2015), i.e., our bandit arms can produce good news and bad

news both2. Secondly, because the action of the agent is not observable by the

principal, hence it is difficult to identify whether reported successes and failures

are obtained through cheating or honest experimentation. Thus we propose a

novel mechanism by the principal, which involves rewarding occasional failures,

and punishing occasional successes, to incentivize the agents to experiment in the

unknown Arm 1.

Related Literature: Our work contributes to the ongoing literature on the

Principal-agent problem with bandit games, intending to maintain the agent’s

truthfulness. In this regard, our work is closest to Klein (2016). Considering

three-armed bandit Klein (2016) demonstrates how a principal motivates an agent

to experiment even when he has the option to cheat. It considers a “good news”

model where the agent has two options to work along with a safe option; one arm

(Arm 0) is known (where the arrival of success is lower) and another arm (Arm

1) is unknown, and where the arrival rate of success is high if it is good and no

success otherwise. Being a “good news” model, it provides an optimal mechanism

to be depending on the number of good news. In contrast, we consider a hybrid

news (success & failure) framework by integrating conclusive success proposed by

Keller et al. (2005) and inconclusive failure introduced by Keller, and Rady (2015).

The known risky arm (Arm 0) offers a higher rate of success than failure. On the

other hand, the unknown arm (Arm 1), with delayed success, generates a higher

rate of failure than success if it is good and no success if it is bad. Thus, it is

difficult to verify the agent’s honesty by looking into the reported news. Hence, in

contrast to Klein (2016), our paper derives the optimal mechanism which rewards

honest experimentation and punishes fake successes, based on the ratio of failures

and successes.

In terms of the specification of the unknown arm (Arm 1), our paper also relates

to Hidir (2019). It considers the agent to have an outside option to shirk (we call

it a safe option) along with experimenting with the unknown arm with hybrid news

(produces success and failure if the arm is good and generates failure otherwise).

In contrast to the framework by Hidir(2019), our model considers one arm to be a

known risky arm and another arm to be an unknown risky arm that can be of good

quality or bad quality respectively, and like Hidir(2019) we have not considered safe

arm to our model. Therefore, the principal is unable to confirm if the agent is telling

2The feature that good risky arm can produce bad news is shown in Keller and Rady (2015)

4



the truth or not. Our paper focuses on this particular question.

In terms of motivation, our paper is somewhat related to Kuvalekar and Ravi

(2019). It reports the dynamic principal-agent problem and establishes an optimal

incentive scheme to incentivize the agents by rewarding them even if they receive

breakdowns in their experimentation. In a similar line, our paper extends our opti-

mal incentive scheme to reward occasional failures and punish fake successes.

In the strategic experimentation literature, several papers consider incentiviz-

ing agents in a dynamic principal-agent framework. For example, Bergemann and

Hege (1998, 2005) consider the dynamic principal-agent framework where a venture

capitalist (the principal) looks for optimal financing for an unknown project con-

ducted by the entrepreneur (the agent) in the context of moral hazard. Horner and

Samuelson (2013) also analyze optimal incentive schemes in a related framework.

Halac, Kartik, and Liu (2016) consider optimal contracts in the presence of moral

hazard and adverse selection in a similar exponential bandit framework. Guo (2016)

considers a similar dynamic principle-agent framework where the principal delegates

the agent for experimentation.

The paper progresses as follows. Section 2 describes the model; Section 3 derives

the agent’s problem and proceeds with two sub-sections; Subsection 3.1 looks into

the agent’s problem without the incentive scheme, whereas Subsection 3.2 focuses

on the agent’s problem with the incentive scheme; Section 4 considers the principal’s

problem and consists of two subsections; Subsection 4.1 formally derives the optimal

deadline, whereas Subsection 4.2 looks into the principal’s problem of identification

of unknown arm (Arm 1) and Section 5 concludes the paper. Appendix A includes

the proofs of the agent’s problem and mathematical details are given in Appendix

B.

2. Model

We frame our principal-agent problem in a continuous time (t ∈ [0,∞)) two-armed

exponential bandit framework. One arm (“Arm 0”) is known to generate success

as well as failure whenever played. Another arm (“Arm 1”) is unknown involving

uncertainty and can either be good or bad. If the arm is good, then it produces

good news as well as bad. It never generates success if the arm is bad. Each arm

generates a lump-sum payoff (Reward or Punishment) whenever pulled.

Arm Specification:

Arm 0 produces lump-sum rewards that arrive according to a Poisson process with

the parameter γg > 0. These lump-sum rewards are drawn from a time-invariant
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distribution on R++ with mean sg; therefore it is equivalent to a constant flow payoff

of R0 = γgsg. In addition to, Arm 0 produces lump-sum costs that arrive according

to a Poisson process with the parameter γb > 0. These lump-sum costs are drawn

from a time-invariant distribution on R− with mean sb; therefore it is equivalent to

a constant flow payoff of C0 = γbsb.

Similar to Arm 0, Arm 1 produces lump-sum rewards that arrive according to

a Poisson process with the parameter λG
g > 0 (if the time-invariant state of the

world θ = G i.e. Good). These lump-sum rewards are drawn from a time-invariant

distribution on R++ with mean hg; therefore it is equivalent to a constant flow

payoff of R1 = λG
g hg. Also, Arm 1 produces lump-sum costs that arrive according to

a Poisson process with the parameter λG
b > 0 (if the time-invariant state of the world

θ = G i.e. Good) and λB
b > 0 respectively (if the state is θ = B i.e. Bad). These

lump-sum costs are drawn from a time-invariant distribution on R− with mean hb.

Table 1 can be referred to for a more concise representation of the arm specifications.

Assumption 1. We assume that good news arrives at a lower frequency in Arm 1

compared to Arm 0 i.e. γg > λG
g but generates a higher lump-sum payoff than Arm

0 i.e. hg > sg. In addition, the net flow payoff from Arm 1 is higher than Arm 0,

i.e. R1 > R0.

Assumption 2. Arm 1 involves a high failure rate, i.e. even if it is good, breakdown

arrives at a higher rate relative to Arm 0, i.e. λB
b > λG

b > γb. In addition, the

absolute value of cost incurred from experimenting with Arm 1 is higher than Arm

0, i.e. |hb| > |sb|.

Assumption 3. Arm 0 produces good news at a higher rate than bad news i.e. γg > γb.

Assumption 4. We assume that good news arrives at a higher rate than bad news

if the underlying state is “Good” i.e λG
g > λG

b . Additionally, the Arrival rate of bad

news from Arm 1 in a “Good” state is bounded above by some threshold λ̄G
b to be

determined. (See Lemma 1)

Assumption 5. We further assume that any news arrives at a higher rate if the state

is “good” than if it is “bad” i.e. λG
g + λG

b > λB
b

Payoffs:

The agent is endowed with one unit of perfectly divisible resource per unit of time. If

k1,t denotes the fraction of the agent’s resources that he devotes to Arm 1 at instant

t, then the fraction (1− k1,t) is allocated to Arm 0.
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Arm Specification with Poisson process

Arm Arm Quality Types of News Intensity Reward Cost

Arm 0 (Known) Good Good News γg sg > 0 ×

Bad News γb × sb < 0

Arm 1 (Unknown) If Good Good News λG
g hg > 0 ×

Bad News λG
b × hb < 0

If Bad Bad News λB
b ×

Table 1: Arm Specification

If the agent allocates the fraction (1 − k1,t) of his resources to the Arm 0 over

an interval of time [t, t + dt), the probability of a breakthrough at some point in

the interval is (1 − k1,t)γgdt and the probability of a breakdown at some point in

the interval is (1− k1,t)γbdt. Players start with a common prior belief p0 about the

unknown state of the world. Let, pt be the subjective probability that the agent

assigned to Arm 1 being good at time t. The fraction k1,t allocated to Arm 1

produces a breakthrough at some point in the interval with probability ptk1,tλ
G
g dt

and causes a breakdown at some point in the interval with probability k1,tλ(pt)dt

with

λ(pt) = ptλ
G
b + (1− pt)λ

B
b .

Given the agent’s action {k1,t}t≥0 the agent’s expected experimentation outcome

conditional on all available information in time dt is[
(1− k1,t)(R0 + C0) + k1,tptR1 + k1,tλ(pt)hb

]
dt

Now, the agent’s expected discounted payoff, expressed in per-period units, is

E

[∫ T

0

re−rt
[
(1− k1,t)(R0 + C0) + k1,tptR1 + k1,tλ(pt)hb

]
dt

]

where the expectation is now over the stochastic processes {kt} and {pt}.
Starting with a prior belief p0 that the Arm 1 is good, her overall objective is to

choose a strategy {k1,t}t≥0 that maximizes

E

[∫ T

0

re−rt
[
(1− k1,t)(R0 + C0) + k1,tptR1 + k1,tλ(pt)hb

]
dt

]
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which expresses the total payoff in per-period terms.

Evolution of Beliefs:

To derive the law of motion of beliefs, suppose that over the interval of time [t, t+dt)

the agent allocates the fraction k1,t of the unit resource to Arm 1. If Arm 1 is good,

the probability of having a breakdown is λG
b k1,tdt

3; if Arm 1 is bad, the probability

of having a breakdown is λB
b k1,tdt. When the agent starts with the common belief

pt and achieves a breakdown in [t, t + dt), therefore, the updated belief at the end

of that period is (by Bayes’ rule)

j(pt−) =
pt−λ

G
b k1,tdt

pt−λG
b k1,tdt+ (1− pt−)λB

b k1,tdt

=
λG
b pt−

λG
b pt− + (1− pt−)λB

b

< pt−

As the frequency of arrival of a breakdown is higher when the underlying state is bad

than when the state is good, the agent postulates that the breakdown may arrived

from a bad quality of Arm 1. Hence, intuitively, in the presence of a breakdown,

the agent’s posterior belief follows a downward jump according to Bayes’ rule. Once

there is a breakthrough, of course, the posterior belief jumps to 1. Belief is also

updated when the agent observes no news from Arm 1. Now, If Arm 1 is good,

the probability of having no news is (1 − k1,tλ
G
g dt − k1,tλ

G
b dt) and if Arm 1 is bad,

the probability of having no news is (1− k1,tλ
B
b dt). When the agent starts with the

common belief pt and finds no news in [t, t+dt), therefore, the updated belief at the

end of that period is (by Bayes’ rule)

pt + dpt =
pt(1− k1,tλ

G
g dt− k1,tλ

G
b dt)

pt(1− k1,tλG
g dt− k1,tλG

b dt) + (1− pt)(1− k1,tλB
b dt)

Simplifying, we see that after having no news, the belief changes by

dpt = k1,tpt(1− pt)(λ
B
b − λG

b − λG
g )dt = −ve

Since in the good state, the news arrives at a higher rate than in the bad state (λG
g +

λG
b > λB

b , by Assumption 5), the absence of any news makes the agent pessimistic

and belief falls downwards.

3This is up to the terms of order o(dt), which we can ignore here and in what follows
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Jump due to bad news

No news

Figure 1: Belief Updation

Principal’s Objective:

The principal obtains a benefit of RP from the agent’s experimentation on Arm 1.

This consists of the current experimentation payoff generated from the agent’s effort

on Arm 1 and the future value expected by the principal upon the revelation of the

true state of the unknown world (Arm 1).

We assume, RP > R1 > R0. Hence the principal receives a higher value from Arm

1 as compared to the agent, the agent tends to offer lower effort than he does when

the principal incentivizes him to do so. Having a lucrative option of grabbing higher

benefits, the principal is more interested in involving the agent in experimenting on

Arm 1 and accessing information regarding success and failures obtained through

Arm 1.

The principal monitors all successes and failures and the time they arrive but

is unaware at which arm these events have been achieved. Additionally, the agent

knows the arm he pulls and generates success and failure. More formally, define the

point process {(Ng)t}0≤t≤T̄ and {(Nb)t}0≤t≤T̄ by the number of success and failure

obtained till the time t respectively. Additionally, the point process {Nt}0≤t≤T̄

is defined by Nt := (Ng)t + (Nb)t for all t. Also, we define {(Ng)t}0≤t≤T̄ and

{(Nb)t}0≤t≤T̄ by (Ng)t := (N1
g )t + (N0

g )t and (Nb)t := (N1
b )t + (N0

b )t where (N i
g)t

and (N i
b)t represents the number of successes and failures arrived on arm i till and

including the time t respectively. Furthermore, let ξ:={ξt}0≤t≤T̄ and {ξNt }0≤t≤T̄ rep-

resents the filtrations generated by the process {((N1
g )t, (N

0
g )t), ((N

1
b )t, (N

0
b )t)}0≤t≤T̄

and {((Ng)t, (Nb)t)}0≤t≤T̄ , respectively. The former captures the idea that, at any

given time, the agent knows when all past successes and failures have been achieved

and can pinpoint the arms he has operated. The latter contains less information, in

other words, the principal knows the timing of all successes and failures but can not

comment about the arm where they arrived.

To maintain the objective of knowing the type of Arm 1, the principal prevents

the agent from switching to a known option by implementing an incentive scheme of

“rewarding the bads” and “punishing the goods”. (For details please refer to Subsec-

tion 3.2). Now, therefore, the principal’s objective function includes the principal’s
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benefit and payment to the agent according to the experimentation outcome. Hence,

we formalize the objective function as follows,

VP (T ) = RP +Wage payment

In our specification, the principal’s benefit RP is independent of the time, hence

to maximize VP (T ), the principal should optimize T by setting up an appropriate

deadline (we denote it by T ∗) ensuring the complete honesty of the agent.

3. Agent’s Problem

In this section, we solve the agent’s problem. Subsection 3.1 solves the agent’s

problem without the incentive scheme and shows that there exists a threshold belief

below which the agent switches to “Arm 0” (i.e. prefers to cheat). In Subsection 3.2

we briefly discuss the “Incentive scheme” and solve the agent’s problem under the

proposed scheme. We show that under the proposed incentive scheme the threshold

belief at which the agent switches to “Arm 0” is lower than the former one.

3.1. Agent’s Problem without Incentive

The agent wants to maximize his total expected payoff by choosing the action profile

{k1,t}t≥0. This is a dynamic programming problem with the current belief pt as the

state variable.

We now derive the agent’s Bellman equation. By the Principle of Optimality,

the agent’s value function satisfies

u(p) = max
k1∈[0,1]

{
rdt[(1− k1)(R0 +C0) + k1pR1 + k1λ(p)hb] + e−rdtE[u(p+ dp)|p]

}
where the first term is the expected current payoff and the second term is the

discounted expected continuation payoff.

As to the expected continuation payoff, with subjective probability pk1λ
G
g dt a

breakthrough occurs and the agent expects a flow payoff of u(1) = R1 in the future;

with probability, k1λ(p)dt the breakdown occurs and receives payoff u(j(p)), where

j(p) is given by

j(p) =
λG
b p

λG
b p+ (1− p)λB

b

< p

Moreover, with subjective probability (1− pk1λ
G
g dt− k1λ(p)dt) no news arrives and
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his expected payoff is

u(p) + u′(p)dp = u(p) + k1u
′(p)p(1− p)(λB

b − λG
b − λG

g )dt

Using (1 − rdt) to approximate e−rdt, we see the agent’s discounted expected con-

tinuation payoff is

(1− rdt)
[
pk1λ

G
g R1dt+ k1λ(p)u(j(p))dt+

{
1− pk1λ

G
g dt− k1λ(p)dt

}{
u(p)+

u′(p)k1p(1− p)(λB
b − λG

b − λG
g )dt

}]
Simplifying, we have the agent’s discounted expected continuation payoff

u(p)
(
1− rdt

)
+pk1λ

G
g R1dt+ k1λ(p)u(j(p))dt− k1pu(p)λ

G
g dt−

k1λ(p)u(p)dt+ u′(p)k1p(1− p)[λB
b − λG

b − λG
g ]dt

So, his expected total payoff is

rdt
[
(1−k1)(R0+C0)+k1pR1+k1λ(p)hb

]
+u(p)

(
1−rdt

)
+pk1λ

G
g R1dt+k1λ(p)u(j(p))dt

− k1pu(p)λ
G
g dt− k1λ(p)u(p)dt+ u′(p)k1p(1− p)[λB

b − λG
b − λG

g ]dt

Simplifying, the value function of the agent satisfies the Bellman equation

u(p) = (R0 + C0) + max
k1∈[0,1]

k1

{
[bs(p, u) + bf (p, u) + bn(p, u)]/r − c(p)

}
Define

b(p, u) = [bs(p, u) + bf (p, u) + bn(p, u)]/r

where bs(p, u) is the expected benefit from the good news (success) from Arm 1

bs(p, u) = pλG
g [R1 − u(p)]

bf (p, u) is the expected loss from the bad news (failure) from Arm 1

bf (p, u) = λ(p)[u(j(p))− u(p)]

bn(p, u) is the expected loss from the absence of news (no success and no failure)

from Arm 1 is

bn(p, u) = p(1− p)[λB
b − λG

b − λG
g ]u

′(p)
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and the opportunity cost of playing Arm 1 is

c(p) = (R0 + C0)−
[
pR1 + λ(p)hb

]
If the opportunity cost of playing Arm 1 exceeds the total expected benefit b(p, u)

from Arm 1 (sum of expected benefit from success and expected loss from failure

and absence of news), it is optimal to set k1 = 0 and u(p) = R0+C0, otherwise k1 =

1 and u satisfies the following first-order ordinary differential-difference equation

(henceforth ODDE)

u(p)(r + pλG
g ) + λ(p)[u(p)− u(j(p))]− p(1− p)[λB

b − λG
b − λG

g ]u
′(p) =

pR1r + rλ(p)hb + pλG
g R1 (1)

A particular solution to the ODDE is given by

u(p) = pR1 + λ(p)hb −
λG
g λ

G
b hb

r + λG
g

p

The option value being able to switch to Arm 0 is captured by v(p) = (1− p)Ω(p)µ

for some µ > 0 to be determined and this u(p) constitutes the solution to the

homogeneous version of the ODDE. We define

Ω(p) =
1− p

p

Now,

v′(p) = − µ+ p

p(1− p)
v(p) and v(j(p)) =

λB
b

λ(p)

(
λB
b

λG
b

)µ

v(p)

Substituting these into the homogeneous version of the ODDE and simplifying,

r + λB
b − µ∆λ = λB

b

(
λB
b

λG
b

)µ

(2)

where

∆λ = λG
g + λG

b − λB
b

The left-hand side of (2) is a negatively sloped straight line that cuts the vertical

axis at r+λB
b . The right-hand side is a increasing exponential function which tends

to ∞ as µ → ∞, tends to 0 as µ → −∞, and cuts the vertical axis at λB
b . Thus

the above equation in µ has one positive solution; we write µ(λG
g , λ

G
b , λ

B
b ) for the
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positive solution. Observe that

µ ∈ (0, r/∆λ)

Thus the solution to the ODDE for k1 = 1 is given by

V1(p) = pR1 + λ(p)hb −
λG
g λ

G
b hb

r + λG
g

p+ C(1− p)Ω(p)µ

where C is a constant of integration.

Proposition 1. In the agent’s problem, there exists a threshold belief p∗1 > 0 such

that the optimal policy k∗
1(p) is given by

k∗
1(p) =

1 (playing “Arm 1”) if p ∈ (p∗1, 1]

0 (playing “Arm 0”) if p ∈ [0, p∗1]

and the threshold belief satisfies

p∗1 =
µ(R0 + C0 − λB

b hb)

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

− (R0 + C0)
(3)

where µ > 0 is the positive solution to

r + λB
b − µ[λG

g + λG
b − λB

b ] = λB
b

(
λB
b

λG
b

)µ

and the agent’s value function under optimal policy is given by

V ∗
1 (p) =

V1(p) if p ∈ (p∗1, 1]

(R0 + C0) if p ∈ [0, p∗1]

where

V1(p) = pR1 + λ(p)hb −
λG
g λ

G
b hb

r + λG
g

p+
[
R0 + C0 − p∗1R1 − λ(p∗1)hb

+
λG
g λ

G
b hb

r + λG
g

p∗1

]( 1− p

1− p∗1

)(
Ω(p)

Ω(p∗1)

)µ

Proof: See Appendix A.1 ■
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Figure 2: Agent’s value functions without incentive

Remark:

From Proposition 1, we have the explicit expression for the threshold p∗1 at which the

agent switches to the “Arm 0” from “Arm 1”. In Lemma 1 we have already shown

that the threshold belief p∗1 exists and it is positive. The value function for the

Agent’s problem without incentive (V ∗
1 ) and the threshold belief (p∗1) are illustrated

in Figure 1.

To stop the agent from cheating, the principal designs an incentive scheme. Next,

we show that under the proposed incentive scheme, the agent has no option to cheat.

It can also be possible that under some conditions even if the agent plans to cheat

by switching to Arm 0, the threshold will be much lower. The next section follows

the discussion of the incentive scheme and looks into the agent’s problem with the

proposed incentive scheme.

3.2. Agent’s Problem with Incentive

B.1. Incentive Scheme

The primary objective of the principal is to prevent the agent from cheating

(by playing Arm 0). Every time, when the agent finds any news (breakthrough

or breakdown), he reports to the principal. So, the principal has a sequence

of news reported by the agent. But interestingly he doesn’t know from where

the information is coming (from “Arm 0 or Arm 1”). So, the principal asks the

agent to come up with a certain number of news containing breakthroughs and

breakdowns. The principal calculates the ratio of the number of breakthroughs

and breakdowns reported by the agent (henceforth denoted by λ). The principal

chooses an exogenous threshold of the ratio (henceforth denoted by λ̄) between

14



the number of breakdowns and breakthroughs. Now if the ratio calculated from

the reported sequence of breakthroughs and breakdowns exceeds the threshold,

the principal surely predicts that the agent has come up with a relatively high

number of bad news and more likely pulled “Arm 1” throughout his experiment.4So,

as a reward for honesty, the principal pays for the bad news he reported. On

the other hand, if the calculated ratio from the reported sequence can not exceed

the threshold, the principal surely concludes that the agent has come up with a

relatively high number of good news and cheated by pulling “Arm 0” throughout

his experiment. Hence, the principal now punishes the agent for the good news he

reported. More importantly, this incentive is ex-ante information to the agent. So,

in his maximization framework, he considers the expected payment obtained from

the incentive scheme. Before going to the structural framework, we demonstrate

this with a simple example.

Example. Suppose the principal asks the agent to come up with 10 news con-

sisting of breakthroughs as well as breakdowns. So, we plot these combinations

(breakdowns, breakthroughs) in a real line. The texts below the number line denote

(0, 10)

0

(1, 9)

1
9

(2, 8)

2
8

(3, 7)

3
7

(4, 6)

4
6

(5, 5)

5
5

(6, 4)

6
4 λ̄ = 2

(7, 3)

7
3

(8, 2)

8
2

(9, 1)

9
1

Figure 3

the combinations of news(number of breakdowns, number of breakthroughs), and

the text above represents the ratio of the number of breakdowns to breakthroughs.

Now, he will choose an exogenous threshold of 2. Now, the principal will punish

the agent if his ratio obtained from the reported number of breakdowns and break-

throughs is not enough to cross the threshold of 2, and reward otherwise. Since the

information about the incentive scheme is ex-ante to the agent, he will calculate and

incorporate the expected reward in his optimization framework. The reward and

punishment scheme will be elaborated on in the next section. For now, we represent

R as reward and P as punishment.

Interestingly, the number of breakthroughs decreases as we move along the real

number line (the opposite holds for the number of breakdowns). Hence we can con-

clude that the ratio of the number of breakdowns to the number of breakthroughs

4Note that relatively higher number of bad news can only be attained from“Arm 1” rather than
“Arm 0” since γg > λG

g and λB
b > λG

b > γb
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is unique and for the simplicity of the calculation of the probability, we need to con-

sider the number of breakthroughs only. So, the probability that the ratio will cross

the threshold of 2 is the sum of the probability that the number of breakthroughs

(g) is 1,2,3 (See Figure 2).

So, the expected payoff can be written as:

P(λ ≥ 2)R + P(λ < 2)P

Now, the P(λ ≥ 2) can be written as

3∑
i=1

P(g = i)

and the P(λ < 2) can be written as

10∑
i=4

P(g = i)

where g represents the number of breakthroughs. So, the expected payoff can be

written like this:
3∑

i=1

P(g = i)R +
10∑
i=4

P(g = i)P

We now move on to the formal incentive structure in the next section.

B.2. Incentive Structure

We list the notations used throughout the paper.

1. Basic Notations:

I. m denotes the number of news asked by the principal.

II. V (1), V (0) > 0 denotes the exogenous payment as a reward and punish-

ment respectively.

III. Ng and Nb denote the number of breakthroughs and breakdowns reported

by the agent.

IV. λ denotes the ratio of the reported breakdowns and breakthroughs.

First, we construct λ̄ as

λ̄ = a
γb
γg

+ (1− a)
λG
b

λG
g

, where a ∈ (0, 1) (4)
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where λ̄ denotes the exogenous threshold fixed by the principal.

Mechanism. I. The principal asks the agent to submit a sequence of news including

successes and failures, denoted by m.

II. The principal calculates the ratio of failures and successes achieved by the agent.

III. He chooses an exogenous threshold as an honesty parameter, denoted by λ̄.

IV. The principal rewards for the bads when the calculated ratio crosses the threshold

and punishes for the goods when the agent fails to maintain honesty by not crossing

the pre-determined threshold.

We define the reward and punishment scheme using the notations we have de-

scribed above. As we have mentioned earlier in the section of the incentive scheme,

the principal will check whether the λ calculated from the reported news crosses the

threshold λ̄ or not. If λ crosses λ̄, the principal surely knows that the agent is honest

and operated“Arm 1”and rewards the agent for the breakthroughs he reported. If λ

can’t cross λ̄, the principal surely knows that the agent cheated and operated “Arm

0” and punishes the agent for the breakdowns he reported. So the expected payoff

for the honest agent under the reward scheme is expressed as follows

(λ− λ̄)NbV (1)

where, (λ− λ̄) represents how far the agent is from the threshold λ̄. The expected

payoff for the off-path agent(playing “Arm 0”) under the punishment scheme is

expressed as follows

(λ− λ̄)NgV (0)

Hence, the ex-ante expected payoff for the agent is

P(λ ≥ λ̄)(λ− λ̄)NbV (1) + P(λ < λ̄)(λ− λ̄)NgV (0)

We need an explicit representation of P(λ ≥ λ̄) and P(λ < λ̄). As we have mentioned

earlier, the P(λ ≥ λ̄) can be represented as a summation of the probability that the

agent is receiving some number of breakthroughs. More formally, let us find for a

given m and λ̄, what is the exact number of breakthroughs the agent can at least

achieve.

Let, g represent the number of breakthroughs and b represent the number of

breakdowns. Additionally, we have g + b = m. Hence, we have,

b

g
= λ̄ =⇒ g =

m

1 + λ̄

In the example that we have mentioned earlier, for m=10 and λ̄ = 2, we have

g = 3.33 ≈ 3. So for the calculation of the probability P(λ ≥ λ̄), we need g = 1, 2, 3

17



m

0

m− 1

1
m−1

m− 2

2
m−2 λ̄

m
1+λ̄

3

m−3
3

2

m−2
2

1

m−1
1

Figure 4: Diagrammatic Representation of the ratio of reported breakdowns and
breakthroughs

and the rest for the opposite calculation. The texts below the number line denote

the number of breakthroughs that occurred till time T , and the text above represents

the ratio of the number of breakdowns to breakthroughs. From the calculation, we

know that the number of breakthroughs corresponding to λ̄ is m
1+λ̄

. So, from the

Figure 3, the calculation of P(λ ≥ λ̄) involves the summation of P(g = i) where

i = 1, 2, 3, ..., m
1+λ̄

and the rest for the P(λ < λ̄). Hence,

P(λ ≥ λ̄) =

m
1+λ̄∑
i=1

P(g = i)

P(λ < λ̄) =
m∑

i=( m
1+λ̄

+1)

P(g = i)

=⇒ P(λ < λ̄) =
m∑
i=1

P(g = i)−

m
1+λ̄∑
i=1

P(g = i)

I. Explicit representation of P(g = i)

Earlier in our model setup, we have mentioned the point process (Poisson) for

the number of breakthroughs {(Ng)t}0≤t≤T̄ consisting of the number of break-

throughs {(N1
g )t}0≤t≤T̄ coming from the “Arm 1” and the number of breakthroughs

{(N0
g )t}0≤t≤T̄ coming from the“Arm 0”with the intensity λG

g k1 and γg(1−k1) respec-

tively. So, {(Ng)t}0≤t≤T̄ follows the poison process with the intensity (1 − k1)γg +

λG
g k1. So, the probability that the number of breakthroughs occurred during the

time T can be calculated as follows:

P(g = i) = e{−((1−k1)γg+λG
g k1)T}{((1− k1)γg + λG

g k1)T}
i

i!

Let, K = {((1− k1)γg + λG
g k1)T}, rewriting the above equation we have

P(g = i) = e−KKi

i!
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So, the expressions for P(λ ≥ λ̄) and P(λ < λ̄) can be written as,

P(λ ≥ λ̄) =

m
1+λ̄∑
i=1

e−KKi

i!

P(λ < λ̄) =
m∑

i= m
1+λ̄

+1

e−KKi

i!

Hence, the ex-ante expected payoff for the agent is defined as follows

m
1+λ̄∑
i=1

e−KKi

i!
(λ− λ̄)NbV (1) +

m∑
i= m

1+λ̄
+1

e−KKi

i!
(λ− λ̄)NgV (0)

where, K = {((1− k1)γg + λG
g k1)T}

Under this proposed incentive scheme, we look into the agent’s optimization problem

in the next section.

B.3. Agent’s value function

Under the ex-ante incentive scheme, the agent wants to maximize his total expected

payoff by choosing the action profile {k1,t}t≥0. Given this incentive scheme, the

agent will choose a strategy {k1,t}t≥0 that maximizes

E

[∫ T

0

re−rt
[
(1−k1,t)(R0+C0)+k1,t

(
ptR1+λ(pt)hb

)]
dt

]
+T1(k1,t)+T2(k1,t)

]

where, T1(k1,t) and T2(k1,t) is defined by

T1(k1,t) = e−rT

m
1+λ̄∑
i=1

e−KKi

i!
(λ− λ̄)NbV (1) and

T2(k1,t) = e−rT

m∑
i= m

1+λ̄
+1

e−KKi

i!
(λ− λ̄)NgV (0)

and

K = {((1− k1,t)γg + λG
g k1,t)T}

The first term is the payoff generated from the experimentation performed by the

agent and the second term is the expected wage payment received by the agent at

the end of the experimentation.
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In the earlier section, we have derived the agent’s Bellman equation. Since the

expected wage payment is independent of the prior (as well as posterior) belief, the

final term will be considered as a constant and will not be accounted for in the

calculation for the Bellman equation. Using the prior calculation, we obtain the

agent’s value function as follows

u(p) = R0+C0+ max
k1∈[0,1]

[
k1

{
[bs(p, u)+bf (p, u)+bn(p, u)]/r−c(p)

}
+T1(k1)+T2(k1)

]
where, the definition of bs(p, u), bf (p, u), bn(p, u), c(p) follows from the Agent’s

problem without Incentive. (See Subsection 3.1 for more details)

Note that the last term involving the principal’s incentive scheme is a non-

linear function of k1. We ensure that under some assumptions imposed on the

parameter, we don’t have any interior solution. (For detailed discussion please refer

to Appendix B.2)

Note. We have already shown that under some conditions imposed on the param-

eter, we don’t have any interior solution, hence k1 = {0, 1} solves the agent’s opti-

mization problem. We carefully investigate the terms T1(k1) and T2(k1) at k1 = 0, 1.

Case I: (k1 = 0)

Suppose the agent pulls Arm 0 throughout his experiment, in that case, k1 = 0. By

the assumption of Arm 0 and for a given interval of the time the agent will receive

more breakthroughs than breakdowns. Therefore, with a very low probability λ

calculated from the agent’s reporting can cross the threshold λ̄. We denote this by

ϵc > 0, where c denotes cheating. Therefore, the probability that λ is strictly lower

than the threshold is 1− ϵc.

Now,

T1(0) = e−rTP(λ ≥ λ̄)(λ− λ̄)NbV (1)

= e−rT (λ− λ̄)NbV (1) ∗ ϵc = ϵ0

Therefore, the value of T1(0) is very low, we denote it by ϵ0, where “0” indicates

pulling Arm 0. Also,

T2(0) = e−rTP(λ < λ̄)(λ− λ̄)NgV (0)

= e−rT (λ− λ̄)NgV (0)(1− ϵc)
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As the probability that λ calculated from the agent’s reporting crosses the threshold

λ̄, tends to zero i.e. ϵc → 0, we have,

T1(0) = 0 and T2(0) = e−rT (λ− λ̄)NgV (0) (5)

Case II: (k1 = 1)

Suppose the agent pulls Arm 1 throughout his experiment, in that case, k1 = 1. By

the assumption of Arm 1 and for a given interval of the time the agent will receive

more breakdowns than breakthroughs. Therefore, the probability that λ is strictly

lower than the threshold λ̄ is very low. We denote this by ϵh > 0, where h denotes

honesty. Therefore, the probability that λ calculated from the agent’s reporting

crosses the threshold λ̄ is 1− ϵh.

Now,

T2(1) = e−rTP(λ < λ̄)(λ− λ̄)NgV (0)

= e−rT (λ− λ̄)NgV (0) ∗ ϵh = ϵ1

Therefore, the value of T2(1) is very low, we denote it by ϵ1, where “1” indicates

pulling Arm 1. Also,

T1(1) = e−rTP(λ ≥ λ̄)(λ− λ̄)NbV (1)

= e−rT (λ− λ̄)NbV (1) ∗ (1− ϵh)

As the probability that λ is strictly lower than the threshold λ̄, tends to zero i.e.

ϵh → 0, we have,

T1(1) = e−rT (λ− λ̄)NbV (1) and T2(1) = 0 (6)

Interestingly, we can easily argue T2(0) is negative and T1(1) is positive. In both the

expression of T2(0) and T1(1) , we have (λ − λ̄). Notice, whenever k1 = 0 (Pulling

Arm 0) calculated λ is strictly lower than λ̄ and for k1 = 1 (experimenting with Arm

1) λ always exceeds λ̄. Hence,

T2(0) = e−rT (λ− λ̄)︸ ︷︷ ︸
−ve

NgV (0) = −ve

and

T1(1) = e−rT (λ− λ̄)︸ ︷︷ ︸
+ve

NbV (1) = +ve

We rewrite the Agent’s maximization problem under the incentive scheme and
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it simplifies to the following Bellman equation

u(p) = R0+C0+ max
k1∈[0,1]

[
k1

{
[bs(p, u)+bf (p, u)+bn(p, u)]/r−c(p)

}
+T1(k1)+T2(k1)

]
where, the definition of bs(p, u), bf (p, u), bn(p, u), c(p) follows from the Agent’s

problem without Incentive.

Define b̄(p, u), to be the total expected experimentation benefit under the

incentive scheme (including the reward from the principal) and it is given by

b̄(p, u) = b(p, u) + T1(1)

and the total opportunity cost of playing Arm 1 (including the punishment from the

principal) is given by

c̄(p) = c(p) + T2(0)

If the opportunity cost of playing Arm 1, c̄(p) (including exogeneous punishment

from the principal) exceeds the total expected benefit from Arm 1, b̄(p, u) (sum

of expected benefit from success, and expected loss from failure and absence of

news, and exogenous reward from the principal), it is optimal to set k1 = 0 and

u(p) = R0 + C0 + T2(0), otherwise k1 = 1 and u satisfies the following first-order

ordinary differential-difference equation (henceforth ODDE)

u(p)(r + pλG
g ) + λ(p)[u(p)− u(j(p))]− p(1− p)[λB

b − λG
b − λG

g ]u
′(p) =

pR1r + rλ(p)hb + pλG
g R1 + rT1(1)

A particular solution to the ODDE is given by

u(p) = pR1 + λ(p)hb −
λG
g λ

G
b hb

r + λG
g

p−
λG
g T1(1)

r + λG
g

p

Since the homogeneous version of the ODDE is the same as the Agent’s problem

without incentive, we can proceed with the same µ, as derived in the Subsection 3.1.

Thus the solution to the ODDE for k1 = 1 is given by

V̄1(p) = pR1 + λ(p)hb −
λG
g λ

G
b hb

r + λG
g

p−
λG
g T1(1)

r + λG
g

p+ C(1− p)Ω(p)µ

where C is a constant of integration.

The Proposition 2 & Proposition 3 stated below describes the optimal policy
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for the agent and the switching belief at which he prefers not to work. Most

interestingly, this threshold belief (p̄1) is lower than the threshold belief without

incentive (p∗1). This shows that under the incentive scheme, the agent sticks to

“Arm 1” for a higher range of belief.

Proposition 2. In the agent’s problem under the incentive scheme, there exists

p̄1 ≥ 0 such that the optimal policy k̄1(p) is given by

k̄1(p) =

1 if p ∈ (p̄1, 1]

0 if p ∈ [0, p̄1]

and the threshold belief satisfies

p̄1 =
µ
[
R0 + C0 − λB

b hb + T2(0)− T1(1)
]

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

+ rT1(1)
r+λG

g
− µT1(1)− (R0 + C0)− T2(0)

(7)

where µ > 0 is the positive solution to

r + λB
b − µ[λG

g + λG
b − λB

b ] = λB
b

(
λB
b

λG
b

)µ

and the agent’s value function under optimal policy is given by

V̄1(p) =

V (p) if p ∈ (p̄1, 1]

R0 + C0 + T2(0) if p ∈ [0, p̄1]

where

V (p) = pR1 + λ(p)hb −
λG
g λ

G
b hb

r + λG
g

p−
λG
g T1(1)

r + λG
g

p+
[
R0 +C0 + T2(0)− p̄1R1 + λ(p̄1)hb

−
λG
g λ

G
b hb

r + λG
g

p̄1 −
λG
g T1(1)

r + λG
g

p̄1

]( 1− p

1− p̄1

)(
Ω(p)

Ω(p̄1)

)µ

and T2(0), T1(1) and λ̄ are respectively defined as follows

T2(0) = e−rT (λ− λ̄)NgV (0)

T1(1) = e−rT (λ− λ̄)NbV (1)

λ̄ = a
γb
γg

+ (1− a)
λG
b

λG
g
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Proof: See Appendix A.2 ■

Till now, we have established the existence of threshold belief p̄1, below which the

agent switches to the known option and stops experimenting. Now we will state our

main result, which says under the proposed mechanism, the agent now switches to

a lower threshold belief, i.e. the agent spends more time experimenting “Arm 1”.

Proposition 3. The switching threshold belief from the Agent’s problem with In-

centive (p̄1) is strictly less than of the Agent’s problem without Incentive (p∗1) i.e.

p̄1 < p∗1.

Proof: See Appendix A.3 ■

Figure 5: Agent’s value functions with and without incentive

Remark: In the Incentive Structure, we have mentioned that the principal rewards

an honest agent for the bad news he reports and punishes an off-path agent

for the good news he reports. In the Proposition 2 & Proposition 3, we have

shown that under this Incentive scheme, the agent has no option to cheat, and

even if he plans to cheat, the threshold belief at which he switches to “Arm 0”

is lower than the former one. The value function for the Agent’s problem un-

der the incentive scheme (V̄1) and the threshold belief (p̄1) are illustrated in Figure 4.

The same result will hold even if we slightly alter our proposed incentive

scheme. Instead of rewarding the honest agent with the bad news he reported, if

we compensate him by paying for the good news he reported and punishing the

off-path agent for the bad news he reported, we can obtain the same result as

before.

Formally, if the agent maintains his honesty by pulling the “Arm 1” throughout
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his experiment, the principal will compensate for the cost he incurs for several bad

news. So, his ex-ante expected reward is

e−rT (λ− λ̄)NgV (1)

But, if the agent cheats on the principal throughout his experiment and gains lump-

sum payoffs from his reported good news, the principal will punish him for the bad

news he reports. So, his ex-ante expected punishment is

e−rT (λ− λ̄)(Nb)
−1V (0)

More specifically, the Proposition 3 holds in the slightly modified version of the

proposed incentive scheme.

This concludes the agent’s problem. In the next section, we solve the principal’s

problem. Given the proposed incentive scheme, the principal can prevent the agent

from pulling the “Arm 0”. To ensure full honesty from the experimentation, he

optimally chooses an end date (deadline) at which the experimentation ceases and

the principal pays the agent for his effort (See Proposition 4). Next, Proposition 5

looks into the Arm Identification problem for the principal.

4. Principal’s Problem

4.1. Optimal stopping time

We derive the objective function of the principal. The principal gains a higher pri-

vate benefit of RP from “Arm 1”which includes the current benefit from the agent’s

experimentation on Arm 1 and the future valuation upon the revelation of the true

state of the unknown project. Hence, his objective function considers the experi-

mentation value as well as payment to the agent according to the experimentation

outcome. So the objective function of the principal is given by

VP (T ) = RP + T1(1) + T2(0) = RP + e−rT (λ− λ̄)NbV (1) + e−rT (λ− λ̄)NgV (0) (8)

Now, the principal wants the agent to experiment by honest means, i.e. the λ crosses

the threshold λ̄. Then, in equilibrium, the component in the principal’s objective

function T2(0) will be zero. Hence, the principal’s objective function is given by

VP (T ) = RP + e−rT (λ− λ̄)NbV (1) (9)
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On the equilibrium path characterized by the Markov perfect equilibrium, the prin-

cipal will optimize his payoff function by optimally choosing the deadline for the

experimentation and denoted by T ∗

As discussed in the previous section, we observe that under the incentive scheme

proposed by the principal, the agent will switch himself to Arm 0 at a lower thresh-

old. Keeping this in mind, the principal will choose the end date, cease the exper-

imentation, and pay the agent accordingly. For this purpose, he chooses optimal

T ∗ to ensure that the agent never opts for playing “Arm 0”, more formally, p̄1 = 0.

The main idea of the proof is that here we want to ensure full honesty from the

agent, our condition p̄1 = 0 is equivalent to the fact that the λ calculated from

the agent’s reported information always exceeds the exogenous threshold λ̄, more

formally P(λ ≥ λ̄) = 1. More specifically, we are only interested in the fact that

the honest agent just crosses the threshold λ̄, hence then the number of good news,

Ng (or bad news, Nb) corresponding to his reported λ just next to λ̄ serves our

requirement for the proof.

Proposition 4. The principal will stop the game at time T ∗ when p̄1 = 0 where T ∗

is given by

T ∗ =
1

r
ln

(λ̄+ 1)(mλ̄+ 1 + λ̄)V (1)

(R0 + C0 − λB
b hb)(m− 1− λ̄)

(10)

Proof: Let, the experimentation ceases at T ∗. Hence, at T ∗, p̄1 = 0

Now, from the expression of p̄1, we have,

p̄1 =
µ
[
R0 + C0 − λB

b hb + T2(0)− T1(1)
]

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

+ rT1(1)
r+λG

g
− µT1(1)− (R0 + C0)− T2(0)

Set, p̄1 = 0. Since the denominator is positive, p̄1 = 0 implies

R0 + C0 − λB
b hb + T2(0)− T1(1) = 0

Where T2(0) represents the ex-ante punishment for the off-path agent for playing

“Arm 0” and T1(1) represents the ex-ante reward for the honest agent for playing

“Arm 1”.

Now, the condition p̄1 = 0 ensures that the agent never switches to Arm 0, in

other words, he never operates on Arm 0. Hence, in this context,

T2(0) = 0 and T1(1) = e−rT ∗
(λ− λ̄)NbV (1)
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From the condition, we have,

R0 + C0 − λB
b hb − e−rT ∗

(λ− λ̄)NbV (1) = 0

Simplifying, we have,

T ∗ =
1

r
ln

(λ− λ̄)NbV (1)

R0 + C0 − λB
b hb

Now, since we are only interested in the situation where the calculated ratio just

crosses the exogenous threshold, in that case, Nb = m− ( m
1+λ̄

− 1) = ( mλ̄
1+λ̄

+ 1) and

corresponding (λ− λ̄) can be calculated as follows:

λ− λ̄ =
m− ( m

1+λ̄
− 1)

m
1+λ̄

− 1
− λ̄

=⇒ λ− λ̄ =
λ̄+ 1
m

1+λ̄
− 1

And,

Nb(λ− λ̄) = (
mλ̄

1 + λ̄
+ 1)

λ̄+ 1

( m
1+λ̄

− 1)
=

(λ̄+ 1)(mλ̄+ 1 + λ̄)

m− 1− λ̄

Now, substituting the value of Nb(λ− λ̄) in the expression of T ∗, we have,

T ∗ =
1

r
ln

(λ̄+ 1)(mλ̄+ 1 + λ̄)V (1)

(R0 + C0 − λB
b hb)(m− 1− λ̄)

Hence, proved. ■

In this section, We have obtained the optimal deadline that ensures the full honesty

of the agent. The question now remains to solve is whether the unknown arm is

good or bad. In the next section, we identify the type of the unknown arm.

4.2. Identification of Arm-1

Since, the optimal deadline T ∗ ensures full honesty, the problem of identification is

straightforward if the sequence of good-bad news reported by the agent contains at

least one good news. In this case, we directly conclude that the unknown arm is of

good type. Now if the agent’s reported sequence does not contain any good news,

in that case, with a high probability the principal can conclude that the unknown

arm is of bad type. We will argue this formally in Proposition 5.

Proposition 5. Arm Identification:

A. If at least one good news arrives till the optimal deadline T ∗, given the mecha-

nism the principal can identify that Arm 1 is good with certainty.
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B. If no good news has arrived till the optimal deadline T ∗, given the mechanism the

principal identifies the Arm 1 to be bad with a higher probability than that without

the mechanism.

Proof: A. Given the mechanism, in equilibrium, the agent plays only Arm 1.

Since a bad Arm 1 can not produce any good news, therefore at least one good news

arrives, the principal is certain that it comes from a good Arm 1.

B. We know bad news arrives from a Poisson process with intensity λG
b and λB

b when-

ever Arm 1 is good and bad respectively. Also, Arm 0 produces bad news through a

Poisson process with intensity γb. The principal ceases the experimentation at time

T ∗ and asks to submit m news including breakthroughs and breakdowns. When the

agent reports no breakthrough, it is equivalent to reporting m breakdowns.

Without any mechanism, since bad news can be achieved from both types (good

and bad) of Arm 1 and Arm 0, the probability of Arm 1 being bad given the

information that m bad news is achieved is given by,

PW/O(Arm 1 is bad|m bad news)

Define RG = Arm 1 is good and RB = Arm 1 is bad

=
P(m bad news|RB)P(RB)

P(m bad news|RG)P(RG) + P(m bad news|RB)P(RB) + P(m bad news|Arm 0)P(Arm 0)

Now, the probability of m-bad news achieved from the Arm 1 of good, bad type and

Arm 0 are given by

P(m bad news|RB)P(RB) = e−λB
b T ∗

(λB
b )

mT ∗m

m!

P(m bad news|RG)P(RG) = e−λG
b T ∗

(λG
b )

mT ∗m

m!

P(m bad news|Arm 0) = e−γbT
∗
(γb)

mT ∗m

m!

Hence, PW/O(Arm 1 is bad|m bad news) is given by

=
(1− pT ∗)e−λB

b T ∗
(λB

b )
mT ∗m

m!

pT ∗e−λG
b T ∗

(λG
b )

mT ∗m

m!
+ (1− pT ∗)e−λB

b T ∗
(λB

b )
mT ∗m

m!
+ e−γbT ∗(γb)m

T ∗m

m!

=
(1− pT ∗)e−λB

b T ∗
(λB

b )
m

pT ∗e−λG
b T ∗

(λG
b )

m + (1− pT ∗)e−λB
b T ∗

(λB
b )

m + e−γbT ∗(γb)m

Now, our mechanism restricts bad news arriving from Arm 0. Hence, the probability
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of Arm 1 being bad given the information that m bad news is achieved is given by

PW (Arm 1 is bad|m bad news) =
P(m bad news|RB)P(RB)

P(m bad news|RG)P(RG) + P(m bad news|RB)P(RB)

=
(1− pT ∗)e−λB

b T ∗
(λB

b )
mT ∗m

m!

pT ∗e−λG
b T ∗

(λG
b )

mT ∗m

m!
+ (1− pT ∗)e−λB

b T ∗
(λB

b )
mT ∗m

m!

=
(1− pT ∗)e−λB

b T ∗
(λB

b )
m

pT ∗e−λG
b T ∗

(λG
b )

m + (1− pT ∗)e−λB
b T ∗

(λB
b )

m

Hence, it is easy to see that PW/O(Arm 1 is bad|m bad news) is less than

PW (Arm 1 is bad|m bad news) i.e. our proposed mechanism identifies the Arm 1

to be bad more precisely.

Hence proved. ■

5. Conclusion

Our paper focuses on the principal who wants to engage an agent for a low-rewarding

and unknown project. For this purpose, we design an optimal incentive scheme in a

continuous-time dynamic principal-agent framework with a two-armed bandit (Arm

0 and Arm 1). We frame our model in a hybrid news environment, where break-

throughs and breakdowns can be achieved in both known (Arm 0) and unknown

(Arm 1) arms. Hence, it is difficult for the principal to distinguish whether an agent

achieves the reported breakthroughs and breakdowns through cheating or honest ex-

perimentation. For this purpose, we construct a threshold as a parameter of honesty

and design an optimal incentive scheme through which the principal compensates

the agent for the honest experimentation and punishes him for the fake successes he

achieves. However, we show that our incentive scheme works well in such a hybrid

news framework and ensures the full honesty of the agent. In addition, along the

equilibrium path, we also obtain an optimal deadline that supports our foremost

requirement of honest experimentation on low-rewarding projects.

Our result does not depend on the risk-neutrality of the agent. The threshold at

which the agent chooses to switch to the known arm continues to be the same even

if we consider the risk aversion in our framework. Although under the risk-aversion,

we see the changes in the value function as compared to the risk-neutrality of the

agent.
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Appendix

A. Detailed Proofs for Agent’s Problem

A.1 Proof of Proposition 1

The proof is by a standard verification argument. The expression for p∗1 and the

constant of integration are obtained by imposing V ∗
1 (p

∗
1) = (R0 +C0) (value match-

ing) and (V ∗
1 )

′(p∗1) = 0 (smooth pasting). The existence of p∗1 (i.e. p∗1 > 0) can be

established from the following Lemma 1.

We first state the Lemma and establish the existence of p∗1, i.e. the threshold belief

is positive.

Lemma 1. For the Agent’s Problem without Incentive, the threshold belief p∗1 exists

and it is positive.

Proof: The expression for p∗1 and the constant of integration are obtained by

imposing V ∗
1 (p

∗
1) = (R0 +C0) (value matching) and (V ∗

1 )
′(p∗1) = 0 (smooth pasting).

Thus the expression for p∗1 is as follows

p∗1 =
µ(R0 + C0 − λB

b hb)

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

− (R0 + C0)

From the assumption (A.2), we have

λG
b > γb =⇒ λG

b |hb| > γb|hb| > γb|sb|
=⇒ − λG

b hb > −γbsb = −C0

=⇒ C0 − λG
b hb > 0

Since, R0 and µ is positive, µ(R0 + C0 − λB
b hb) is positive. Hence, the numerator is

positive.

Now, it remains to check for the sign of the denominator for p∗1. The expression

for the denominator is as follows

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λ

G
b hb

r + λG
g

− (R0 + C0)

Rearranging, we have

(1 + µ)(R1 −R0) + (1 + µ)

[
rλG

b hb

r + λG
g

− C0

]
+ µ(R0 + C0 − λB

b hb) (11)
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From the assumption (A.1), we have R1 − R0 is positive, and we have shown that

µ(R0 + C0 − λB
b hb) is positive.

Define a function,

f(λG
b ) :=

rλG
b hb

r + λG
g

− C0

Since hb is negative, f ′(p) is negative. Hence f(p) is a monotonically decreasing

function. Hence there exists a λ̄G
b such that f(λ̄G

b ) = 0, also f(λ) > 0 for all

λ ∈ (0, λ̄G
b ), where, λ̄

G
b is expressed as follows

λ̄G
b =

γbsb(r + λG
g )

rhb

=
C0(r + λG

g )

rhb

Now, from the assumption (A.4), λG
b ∈ (0, λ̄G

b ), implies f(λG
b ) > 0. So the expression

(11) is positive and hence, p∗1 exists and positive.

We have established the existence of the threshold belief p∗1. V ∗
1 solves the

Bellman equation, which can easily be verified.

It is easy to check b(p, V ∗
1 ) falls short of c(p) to the left of p∗1, coincides at p∗1

and exceeds right to the p∗1. So V ∗
1 solves the Bellman equation as stated in the

proposition. ■

A.2 Proof of Proposition 2

The proof is by a standard verification argument. The expression for p̄1 and the

constant of integration are obtained by imposing V̄1(p̄1) = R0 + C0 + T2(0) (value

matching) and (V̄1)
′(p̄1) = 0 (smooth pasting). The existence of p̄1 (i.e. p̄1 ≥ 0) can

be established from the following Lemma 2.

We first state the Lemma and establish the existence of p̄1, i.e. the threshold belief

is non-negative.

Lemma 2. In the Agent’s Problem with Incentive, under the condition |T2(0)| >
µT1(1) the threshold belief p̄1 exists and it is non-negative.

Proof: The expression for p̄1 and the constant of integration are obtained by

imposing V̄1(p̄1) = R0 + C0 + T2(0) (value matching) and (V̄1)
′(p̄1) = 0 (smooth

pasting). Thus the expression for p̄1 is as follows

p̄1 =
µ
[
R0 + C0 − λB

b hb + T2(0)− T1(1)
]

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

+ rT1(1)
r+λG

g
− µT1(1)− (R0 + C0)− T2(0)
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If the following condition holds

R0 + C0 − λB
1bhb ≥ T1(1)− T2(0)

the numerator is non-negative. Now It remains to check for the sign of the denomi-

nator for p̄1. The expression for the denominator is as follows

R1(1+µ)+(1+µ)λG
b hb−µλB

b hb−(1+µ)
λG
g λ

G
b hb

r + λG
g

+
rT1(1)

r + λG
g

−µT1(1)−(R0+C0)−T2(0)

(12)

We have proved in Lemma 1, the following expression is positive i.e.

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λ

G
b hb

r + λG
g

− (R0 + C0) > 0

Under the condition |T2(0)| > µT1(1), the following expression is positive, i.e.

−µT1(1)− T2(0) > 0

Since, T1(1) is positive, the expression of the denominator is positive. Hence the

threshold belief p̄1 exists and is non-negative.

Now we have established the existence of the threshold belief p̄1. V̄1 solves

the Bellman equation can easily be verified. Now, it is easy to check b̄(p, V̄1) falls

short of c̄(p) to the left of p̄1, coincides at p̄1 and exceeds right to the p̄1. So V̄1

solves the Bellman equation as stated in the proposition. ■

A.3 Proof of Proposition 3

We have,

p̄1 =
µ
[
R0 + C0 − λB

b hb + T2(0)− T1(1)
]

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

+ rT1(1)
r+λG

g
− µT1(1)− (R0 + C0)− T2(0)

and

p∗1 =
µ(R0 + C0 − λB

b hb)

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

− (R0 + C0)
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In the Subsection 3.2, we have argued that T2(0) is negative and T1(1) is positive .

Define,

X =
rT1(1)

r + λG
1g

− µT1(1)− T2(0)

Since, T1(1) is positive and from Lemma 2, we have −µT1(1) − T2(0) is positive,

hence, X is positive. Now,

p∗1 =
µ(R0 + C0 − λB

b hb)

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

− (R0 + C0)

>
µ(R0 + C0 − λB

b hb) + µT2(0)− µT1(1)

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

− (R0 + C0)

>
µ(R0 + C0 − λB

b hb) + µT2(0)− µT1(1)

R1(1 + µ) + (1 + µ)λG
b hb − µλB

b hb − (1 + µ)
λG
g λG

b hb

r+λG
g

− (R0 + C0) +X
= p̄1

Hence, p̄1 < p∗1, Proved.

33



B. Mathematical Appendix

B.1 Assumptions

1. Basic Assumptions:

(a) γg > γb

(b) R0, R1 > 0 with R1 > R0

(c) sb, hb < 0 with |hb| > |sb|

(d) λG
g , λ

G
b , λ

B
b > 0 with λB

b > λG
b

(e) λG
b > γb

B.2 Check the Sign for the expressions with unknown parameters

I. Sign(T1)
2(k1) + (T2)

2(k1)

We know,

T1(k1) = e−rT

( m
1+λ̄∑
i=1

e−[(1−k1)γg+λG
g k1]T

[(1− k1)γg + λG
g k1]

i T i

i!

)
(λ− λ̄)NbV (1)

For simplicity of calculation, define, (1− k1)γg + λG
g k1 = A(k1),

m
1+λ̄

= m̄,

e−rT (λ− λ̄)NbV (1) = B

Hence,

T1(k1) = Be−A(k1)T

m̄∑
i=1

A(k1)
iT i

i!
(13)

Now, differentiating w.r.t k1, we have,

(T1)
1(k1) = Be−A(k1)T (−A′(k1)T )

m̄∑
i=1

A(k1)
iT i

i!
+

Be−A(k1)TA′(k1)T
m̄−1∑
i=0

A(k1)
iT i

i!

Simplifying,

(T1)
1(k1) = −Be−A(k1)TA′(k1)T

[
A(k1)

m̄T m̄

m̄!
− 1

]
(14)
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Again, differentiating w.r.t k1, we have,

(T1)
2(k1) = Be−A(k1)T (A′(k1)T )

2

[
A(k1)

m̄T m̄

m̄!
− 1

]

−Be−A(k1)T (A′(k1)T )
2

[
A(k1)

m̄−1T m̄−1

(m̄− 1)!

]

Simplifying,

(T1)
2(k1) = Be−A(k1)T (A′(k1)T )

2

[
A(k1)

m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!
− 1

]
(15)

Also,

(T2)(k1) = e−rT

(
m∑

i=m̄+1

e−[(1−k1)γg+λG
g k1]T

[(1− k1)γg + λG
g k1]

i T i

i!

)
(λ− λ̄)NgV (0)

For simplicity of calculation, let’s define, C = e−rT (λ− λ̄)NgV (0)

Hence,

(T2)(k1) = Ce−A(k1)T

m∑
i=m̄+1

A(k1)
iT i

i!
(16)

differentiating w.r.t k1,

(T2)
1(k1) = Ce−A(k1)T (−A′(k1)T )

m∑
i=m̄+1

A(k1)
iT i

i!

+ Ce−A(k1)TA′(k1)T
m−1∑
i=m̄

A(k1)
iT i

i!

Simplifying,

(T2)
1(k1) = −Ce−A(k1)TA′(k1)T

[
A(k1)

mTm

m!
− A(k1)

m̄T m̄

m̄!

]
(17)

Again, differentiating w.r.t k1, we have,

(T2)
2(k1) = Ce−A(k1)T (A′(k1)T )

2

[
A(k1)

mTm

m!
− A(k1)

m̄T m̄

m̄!

]
−

Ce−A(k1)T (A′(k1)T )
2

[
A(k1)

m−1Tm−1

m− 1!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!

]
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Simplifying,

(T2)
2(k1) = Ce−A(k1)T (A′(k1)T )

2

[(
A(k1)

mTm

m!
− A(k1)

m−1Tm−1

(m− 1)!

)
−(

A(k1)
m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!

)]
(18)

Summarizing (T1)
2(k1) and (T2)

2(k1)

(T1)
2(k1) = Be−A(k1)T (A′(k1)T )

2

[
A(k1)

m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!
− 1

]
(19)

(T2)
2(k1) = Ce−A(k1)T (A′(k1)T )

2

[(
A(k1)

mTm

m!
− A(k1)

m−1Tm−1

(m− 1)!

)
−(

A(k1)
m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!

)]
(20)

Define, [
A(k1)

m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!

]
= I

and [A(k1)mTm

m!
− A(k1)

m−1Tm−1

(m− 1)!

]
= II

Hence, we have,

(T1)
2(k1) = Be−A(k1)T (A′(k1)T )

2[I − 1]

and

(T2)
2(k1) = Ce−A(k1)T (A′(k1)T )

2[II − I]

Now, we need to determine the sign of B and C.

Recall that the term B is the reward for the honest agent for pulling “Arm 1”,

throughout his experiment and denoted by T1(1) and the term C is the punishment

for an off-path agent for not experimenting, and denoted by T2(0). Also, in Subsec-

tion 3.2, we have argued that T1(1) is positive and T2(0) is negative. Hence, we can

conclude that B is positive and C is negative.

B = e−rT (λ− λ̄)NbV (1) = +ve

C = e−rT (λ− λ̄)NgV (0) = −ve
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Now,

(T1)
2(k1) + (T2)

2(k1) = Be−A(k1)T (A′(k1)T )
2︸ ︷︷ ︸

+ve

[I − 1] + Ce−A(k1)T (A′(k1)T )
2︸ ︷︷ ︸

−ve

[II − I]

(21)

So, for (T1)
2(k1) + (T2)

2(k1) to be +ve, we need,

I − 1 > 0 =⇒ I > 1

II − I < 0 =⇒ I > II

A. Condition for I > 1

Given the assumption

γg > λG
g

for any k1 ∈ (0, 1), we have

γg > (1− k1)γg + k1λ
G
g =⇒ γg > A(k1)

and

(1− k1)γg + k1λ
G
g > λG

g =⇒ A(k1) > λG
g

Thus, we have,
(γg)

m̄T m̄

m̄!
>

A(k1)
m̄T m̄

m̄!
(22)

and,
A(k1)

m̄−1T m̄−1

(m̄− 1)!
>

(λG
g )

m̄−1T m̄−1

(m̄− 1)!

=⇒ −
(λG

g )
m̄−1T m̄−1

(m̄− 1)!
> −A(k1)

m̄−1T m̄−1

(m̄− 1)!
(23)

Adding equation (22) and (23), we have

(γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
>

A(k1)
m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!
= I > 1 (24)

Hence, for I > 1, we must have

(γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
> 1 (25)

B. Condition for I > II
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From the equation (24), we have,

(γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
>

A(k1)
m̄T m̄

m̄!
− A(k1)

m̄−1T m̄−1

(m̄− 1)!
= I > 1

Now, proceeding as above, we have,

A(k1)
mTm

m!
>

(λG
g )

mTm

m!
(26)

and,
(γg)

m−1Tm−1

(m− 1)!
>

A(k1)
m−1Tm−1

(m− 1)!

=⇒ −A(k1)
m−1Tm−1

(m− 1)!
> −(γg)

m−1Tm−1

(m− 1)!
(27)

Adding the equations (26) and (27), we have,

II =
A(k1)

mTm

m!
− A(k1)

m−1Tm−1

(m− 1)!
>

(λG
g )

mTm

m!
− (γg)

m−1Tm−1

(m− 1)!
(28)

Now, from the equations (24) and (28), we have,

(γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
> I > II >

(λG
g )

mTm

m!
− (γg)

m−1Tm−1

(m− 1)!

Hence, for I > II, we have,

(γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
>

(λG
g )

mTm

m!
− (γg)

m−1Tm−1

(m− 1)!
(29)

Now, conditions for I > 1 and I > II are stated as follows

(γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
> 1 (30)

=⇒ (γg)
m̄T m̄

m̄!
−

(λG
g )

m̄−1T m̄−1

(m̄− 1)!
>

(λG
g )

mTm

m!
− (γg)

m−1Tm−1

(m− 1)!
(31)

Hence, under the conditions (30) and (31), the expression (T1)
2(k1) + (T2)

2(k1) is

positive.
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B.3 Conditions for Interior Solution

Define,

f(k1) = (1−k1)(R0+C0)+k1

{
pR1+λ(p)hb+

1

r

[
pλG

g [R1−u(p)]+λ(p)[u(j(p))−u(p)]+

p(1− p)[λB
b − λG

b − λG
g ]u

′(p)

]}
+T1(k1) + T2(k1)

For simplicity define,

R0 + C0 = A

and,

pR1+λ(p)hb+
1

r

[
pλG

g [R1−u(p)]+λ(p)[u(j(p))−u(p)]+p(1−p)[λB
b −λG

b −λG
g ]u

′(p)

]
= B

Hence,

f(k1) = (1− k1)A+ k1B + T1(k1) + T2(k1) (32)

Taking differentiation w.r.t k1, we get,

f 1(k1) = −A+B + (T1)
1(k1) + (T2)

1(k1) (33)

f 2(k1) = (T1)
2(k1) + (T2)

2(k1) (34)

where the superscript i = 1, 2 denotes the i-th derivative of the function.

Now, check for the sign of (T1)
2(k1) + (T2)

2(k1). (See Appendix B.2). From

the detailed discussion from Appendix B.2, we have that under the conditions (30)

and (31), f(k1) is strictly convex and no interior solution exists. Hence proved.
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