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Abstract

In electoral democracies around the world, majoritarian ethnic parties
often mobilize political support by engaging in anti-minority violence.
While such behavior is common, it is not immediately clear why this
strategy appeals to rational voters. In this paper, we offer an explanation
for why rational voters from the majority (minority) group may vote for
a party that organizes anti-minority (anti-majority) violence. Our model
suggests that by engaging in such violence, parties send a costly signal
to voters, indicating that if elected, they will prioritize the provision of
majority(minority)-specific public goods. This strategy is particularly
effective in environments where electoral promises lack credibility. We
find that in a two-party electoral competition, signals of both majority
and minority bias cannot coexist in equilibrium. Using the universal
divinity criterion, we show that minority-biased signals are sent only
when the majority and minority groups are of comparable size, while
majoritarian signals are sent, at high signaling costs, only when the
majority group is significantly larger. Additionally, we find that the
likelihood of sending extreme signals increases when parties prioritize
electoral victory over implementing their ideal policy positions.
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Introduction
Ideally, elections are fought on the promise of public goods. In reality,
however – specially in less developed countries – strategies such as
bribing (Mitra and Mitra, 2017), clientelism (Breeding, 2011; Bardhan
and Mookherjee, 2012; Veenendaal and Corbett, 2020), voter intimidation
(Frye et al., 2019) and mafia involvement (De Feo and De Luca, 2017)
are often employed as strategies for winning elections. Besides these
strategies, campaigns laden with anti-minority rhetoric and the role of
news and social media in amplifying such sentiments have been widely
used to explain the rise of Donald Trump in the U.S. and several anti-
immigrant parties in Europe (Hooghe and Dassonneville, 2018; Enns and
Jardina, 2021; Boomgaarden and Vliegenthart, 2007; Müller and Schwarz,
2023). The scenario is even more stark in the context of less developed
countries where anti-minority campaign rhetoric often culminates in
episodes of ethnic violence (Kongkirati, 2016; Ezeibe, 2021; Wilkinson,
2006).

While there is ample evidence on the use of ethnic violence in ma-
nipulating election results, theoretically there is no clear mechanism
that explains this phenomenon. In rational choice models, voters maxi-
mize their expected utilities under different candidates or parties and
vote accordingly (Downs, 1957). While in these models voter behavior
is influenced by allocation of public goods, bureaucratic efficiency and
macroeconomic policies, more recent literature has attempted to broaden
them to also include identity in the individual voter’s preferences, thus
making the ethnic, religious or racial identity of the candidate or the
party an important factor in influencing electoral outcomes (Kramer,
1971; Stigler, 1973; Fair, 1996; Glaeser, 2005; Fearon, 1999). As ethnic
groups become electorally viable, ethnic identity becomes politically
salient in catapulting the rise of identity politics and of political parties
based on ethnic identities (Posner, 2004). Studies analyzing the political
logic of violence find that violence or polarizing anti-minority events
take place in the most competitive seats and this is confirmed by higher
electoral dividends for the party with the strongest majority identity in
the subsequent election for constituencies worst affected by such events
(Wilkinson, 2006; Dhattiwala and Biggs, 2012).

Why might voters respond to such electoral strategies? Sen (2007) in
his seminal work on identity argues that people have multiple identities
which become salient at different times given the environment and context
in which they live. In India, as such, voters often engage in group based
voting along the lines of gender, religion, caste or ethnicity. Much of the
literature in social science, therefore, has argued that communal riots
effect electoral outcomes through the salience of religious identities (Brass,
2011; Wilkinson, 2006; Varshney, 2003). Riots are, thus, instrumental
in making the religious identity of voters salient, thereby consolidating
vote for the party that best reflects that religious identity. In this paper,
we try to theorize why use of violence can be a rational election strategy.
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Specifically, why does ethnic violence against one group (say, minorities)
induce votes from the other group (say, majority)? One explanation
could be that the majority derives utility from violence towards minority
(or, vice versa) and in doing so attracts votes. We, in this paper, offer a
different theoretical explanation.

It is already known from Alesina et al. (1999) that in ethnically
diverse constituencies, group identity matters for social coordination
which determines the type and the size of public good because preference
for different types of public goods varies across ethnic groups. Hence, to
rally support, political parties representing ethnic interests must promise
ethnicity specific public goods along with more general public goods. In
the presence of incomplete information, parties through their promises of
ethnicity specific public goods can signal their type i.e, their ethnic bias
in favour of (or against) a community (or communities). However, in
an institutional setting where electoral promises are not credible, voters
cannot distinguish between cheap-talking and more honest intentions
of promise keeping. Therefore, to signal its intention of keeping its
promise of providing ethnicity specific good upon winning election, a
party in our model, would take costly political actions. We show that
parties transmit such costly signals i.e, undertake costly political actions
only when the constituency is sufficiently polarized or if the size of the
majority community is sufficiently large.

In our model, policies (or public goods) play a central role in mobilizing
votes. In this framework, there can be two types of public goods – neutral
public goods (e.g. hospitals) and ethnicity specific public goods (e.g.
religious establishment such as temple and mosque). Voters care about
both types of public goods. Political parties on the other hand, care about
two things. First, they get utility from being in power. Second, they
have a bliss point i.e, an ideal amount of ethnicity specific public good.
Therefore, if the actual ethnic public good deviates from the party’s ideal,
they get a disutility. In our model, parties send costly signals to signal
this ideal position which we refer to as the ‘ideology’ of the party. Such
signals in reality take the form of ethnic riots, hate speech and other
forms of violence and vandalism. More specific examples of such signals
garnering electoral support would be the Hindu nationalist Bharatiya
Janata Party’s (then Jana Sangh) cow protection movement in 1960s,
riots and their temple building campaign in the 1990s which increased
their vote share in the subsequent national and state elections (after
1990s) or the onset of electoral gains for Shiv Sena in the 1980s following
their militant activism and vandalism of South Indian and Gujarati
business establishments, in favour of Marathi causes like language and
employment for the Marathi manoos (Iyer and Shrivastava, 2018; Johari,
2015; Roychowdhury, 2018).

The voters are same across ethnic groups regarding their preference
for neutral public good, but they differ in terms of their preference for
group-specific public goods. In our model, there is no commitment device
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(as in Callander and Wilkie (2007)) -i.e, parties do not have to stick to
their announced platforms. Hence, a party which cares about the ethnic
minority, can send anti-minority signal before election and implement
pro-minority policy upon winning. However, what disciplines the party
is the assumption that the cost of signaling increases the further the
signal is, from the party’s ideal policy which is similar to Banks (1990)
where the costs to the candidates increase if the distance between the
announced and the true position increases. In other words, sending a
pro-minority signal will be costly for a majoritarian party and vice-versa.

The sequence of the game is as follows: parties observe their ideal
policy privately and then send signals. All voters observe the signals and
update their beliefs regarding each party’s ideal policy position. Based
on their updated beliefs about each party’s ideal position, voters vote
sincerely, i.e. each voter votes for the party which is expected to give
her higher payoff given the signals. The winner is decided using a simple
majority rule and the winner implements her ideal policy.

Our paper is related to a wide variety of models in the voting literature.
In its essence, our model is closely linked with the costly signaling model
of Banks (1990) where in a two candidate electoral competition, voters are
uncertain about the policy that the elected candidate would implement
because of the distance between the candidate’s announced position and
his true position. Our paper is also related to a bunch of papers which
model political activism as a signaling mechanism (Lohmann, 1993, 1994,
1995).

The paper is organized as follows: in the next section (Section 2) we
present the model, Section 3 characterizes the equilibrium behavior of
the political parties and voters and in Section 4 we conclude. Proofs
of the results are relegated to the appendix following the concluding
section.

Model
We set up a model of political competition with two political parties - 1
and 2 - and electorate distributed between two groups - A and B. The
size of the electorate is normalized to 1. Group A is the majority group
with size α and Group B is the minority group with size 1 − α where
α > 1

2 .
We assume that there is a fixed budget (again normalized to 1) to

be spent on two types of public goods. There is a neutral public good
the benefit of which accrues to all voters. However, spending can be
diverted to some group-specific public good which only benefits the
voters belonging to that particular group. In our model q ∈ [−1, 1]
denotes the policy regarding group-specific public good that is being
implemented. Specifically, any q > 0 indicates that the amount |q| is
being spent on a public good that is beneficial to majority (Group A),
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while q < 0 indicates that the amount |q| is being spent on a public good
that is beneficial to minority (Group B). Whenever |q| is spent on a
group-specific public good, the rest of the amount of the public good
budget, i.e. 1− |q| is spent on neutral public good. The policy variable
q is chosen by the winner of the political competition.

Political Parties
We assume that political party i, i = 1, 2 has an ideal group-specific
public good policy qi which is private information. We assume that
qi is distributed uniformly over [−1, 1] and the distribution is common
knowledge. Party i’s payoff when policy q is implemented is given by
− (q − qi)2. However, a party also suffers an additional loss l ≥ 0 from
losing the election. Notice that the party that wins the election is always
going to implement its ideal policy. Hence, the winning payoff for a
party is 0. Specifically, the pay off for party i is given by

Wi (q, qi) =
{

0 if i wins
−
[
l + (q − qi)2

]
if i loses and policy q is implemented

(1)
In our specification, higher the value of l, more a party cares about
winning the election relative to its ideological position.

Before voting takes place, party i can send a signal si ∈ Si to inform
voters about its ideological position. We assume that the signal is
publicly observable and Si is the set of signals available to party i. In
our analysis, we restrict Si to a finite set of three elements {−1, 0, 1}.
Signals are costly and the cost of sending signal si ∈ Si for i with type
qi is

C (si) =


c (1 + qi) if si = −1

0 if si = 0
c (1 − qi) if si = 1

(2)

where c > 0. In our specification, the signal 0 can be interpreted as no
signal. However, signal 1 and signal −1 are costly signals and the cost of
sending signal 1 (alternatively −1) falls as qi rises (alternatively falls)1.

1We assume that conflicts are costly only for the party and not the community members
the party is trying to appease. But in reality, an anti-minority riot may be costly for majority
voters as well. In our model, there is no such cost. We assume that any conflict that a party
organizes against ethnic group A does not affect ethnic group B. This is consistent with
the nature of ethnic violence in an electoral democracy like India. Here, ethnic riots are
low-grade localised conflicts where the number of casualty is much lower than the large scale
ethnic conflicts we see in a non-democratic set up. For example, compared to the Rwandan
genocide which claimed 500,000 to 1 million lives, the number of casualties in religious riots
in India is much lower. A case in point would be the Godhra riot of 2002, one of the biggest
episodes of ethnic violence in independent India, in which around 1000 people were killed.
Similarly, in the anti-Sikh riot of 1984, around 3000 people lost their lives. But for most of
the riots that took place in independent India, the number of casualties is much lower.
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Voters
The preferences of the voters in the two groups differ with respect to
the group-specific public good, but not with respect to the neutral
public good. We also assume that all members belonging to the same
group do not value the group-specific public good similarly. A voter’s
preference over group-specific public good vis-a-vis the neutral public
good is captured by the preference parameter γ ∈ [0, 2]. The preference
parameter γ is voter-specific and captures the voter’s relative valuation
of her group-specific public good vis-a-vis the neutral public good. More
specifically, if a voter with the preference parameter γ belongs to group
A, her willingness to substitute the neutral public good for A-specific
public good is given by γ. Hence, there are differences, both within
group and between the group in voters’ preferences. There is no envy
in our model, i.e. a majority voter does not get any disutility from the
minority voter getting its group-specific public good and vice versa. We
have already mentioned that a policy q > 0 (alternatively q < 0) implies
that the amount |q| will be spent on A-specific (alternatively B-specific)
public good. Specifically, the payoff to a Group A voter of type γ from
policy q is

uA (q, γ) =
{

1 − |q| + γ |q| if q ≥ 0
1 − |q| if q < 0 (3)

Similarly, the payoff to a Group B voter of type γ from policy q is

uB (q, γ) =
{

1 − |q| + γ |q| if q ≤ 0
1 − |q| if q > 0 (4)

We assume that γ is uniformly distributed in [0, 2]. Notice that voters
of type γ ∈ [0, 1) value neutral public good more than the group-specific
one while voters of type γ ∈ (1, 2] value group-specific public good more.

The Game
Party i privately observes qi and then both parties choose si ∈ Si

simultaneously. All voters observe the signals (s1, s2) and update their
beliefs about each party’s ideal policy position. Based on their updated
beliefs about each party’s ideal position, voters vote sincerely, i.e. each
voter votes for the party which is expected to give her higher payoff
given the signals. If a voter is indifferent, she votes for each party with
equal probability. The winner is decided using a simple majority rule
and the winner implements her ideal policy.

Strategies
A strategy for party i is a mapping from her type space [−1, 1] to the
signal space Si = {−1, 0, 1}, i.e.

si : [−1, 1] → {−1, 0, 1}

A voter’s strategy on the other hand depends on the group she belongs
to, her preference for the neutral public good vis-a-vis the group-specific
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public good characterized by the parameter γ and the signals she observes.
For a group j voter, j = A, B, the voting strategy is a mapping as defined
below:

rj : S1 × S2 × [0, 2] →
{

0,
1
2 , 1

}
where rj (., ., .) is the probability of voting for party 1.

Equilibrium Behavior
We first examine strategies which constitute a Perfect Bayesian equilib-
rium (PBE). Briefly, a PBE consists of signaling strategies s∗

1 (.) , s∗
2 (.)

for the parties which are optimal with respect to each other as well as
to the strategies r∗

A (., ., .) , r∗
B (., ., .) of the voters, where these voting

strategies are optimal given the voters’ beliefs, µ∗
1 (.) , µ∗

2 (.) , regarding
the true policy positions of the parties. It requires voters to form these
beliefs about parties 1 and 2 for all possible signals, so that µ∗

i (si) is
defined for all si ∈ Si, i = 1, 2. These beliefs need to be rational in
the sense that, upon observing a signal si, from party i, µ∗

i (si) is the
posterior probability obtained via Bayes’ Rule from the party’s signaling
strategy s∗

i (.) and the common knowledge prior.
We look at equilibrium in symmetric cutoff2 signaling strategies for

the parties. This means that equilibrium strategies must satisfy two
conditions:

1. q1 = q2 ⇒ s∗
1 (q1) = s∗

2 (q2)
2. For some q, q̄ ∈ [−1, 1] with q ≤ q̄,

s∗
i (qi) =


−1 if qi ∈ [−1, q)
0 if qi ∈ [q, q̄]
1 if si ∈ (q̄, 1]

(5)

Since we are looking at symmetric strategies, we can ignore
the subscript in the strategy functions. We also assume that if a
voter prefers the expected policy outcome under party i, she votes for
party i, but if she is indifferent she votes for each party with probability 1

2 .

2These strategies are referred to as “cutoff strategies” because parties choose their optimal
signal depending on whether or not their ideal qi lies below a cutoff value (i.e, within a
specific range of q).
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Figure 1: Cutoff strategies for the parties: s∗
i (qi)

Notes: There can be three scenarios for the values of the lower and higher cutoffs. In the
above figure we have three panels for the same. The first panel represents the scenario when
both the lower and higher cutoff, q̄ and q is negative. In the second panel, q < 0 and q̄ > 0
and in the third panel, q̄ and q is positive.

Unlike the type space which is continuous, the signal space, in our
model, is restricted to three signals. Therefore, a fully informative
or separating equilibrium is not possible in our structure. As such,
we can have a semi-pooling and/or a pooling equilibrium. Unlike the
pooling equilibrium which is completely uninformative, in a semi-pooling
equilibrium, some information transmission takes place and this allows
voters to update their beliefs accordingly.

We now define our equilibrium in terms of strategies of the players
and beliefs. We use the standard notion of Perfect Bayesian Equilibrium
which in the context of our model is formally defined below.
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Definition 1 A perfect Bayesian equilibrium of the above model consists
of party strategies s∗

1 (.) , s∗
2 (.), voter strategies r∗

A (., ., .) , r∗
B (., ., .), and

beliefs µ∗
1 (.) , µ∗

2 (.), such that
1. For all qi ∈ [−1, 1], s∗ (qi) maximizes

Eqi∈[−1,1] [W (qi, s, s∗ (qi′) , r∗
A (s, s∗ (qi′)) , r∗

B (s, s∗ (qi′)))]

for i′ ̸= i.
2. For all γ ∈ [0, 2] and for all (s1, s2) ∈ S1 × S2,

r∗
A (s1, s2, γ) =


1
1
2
0

as Eq1 [uA (q1, γ)] |µ∗
1(q1|s1) ⪌ Eq2 [uA (q2, γ)] |µ∗

2(q2|s2)

and

r∗
B (s1, s2, γ) =


1
1
2
0

as Eq1 [uB (q1, γ)] |µ∗
1(q1|s1) ⪌ Eq2 [uB (q2, γ)] |µ∗

2(q2|s2)

3. For all si ∈ Si, if s∗−1
i (si) ̸= ϕ, then µ∗

i (ti|si) is the conditional
probability that qi ∈ ti ∩ s∗−1

i (si) given qi ∈ s∗−1
i (si) where ti ⊂

[−1, 1].

Condition 1 states that each party maximizes its expected payoff
given the strategies of the other party and the voters. Condition 2 states
that the voters vote for the party that gives them higher expected payoff
and if indifferent chooses each party with equal probability. Condition 3
implies that voters use Bayes’ Rule to update their beliefs in equilibrium
after observing the signals.

Out-of-equilibrium beliefs
We restrict voters’ off-equilibrium beliefs using the universal divinity
criterion following Banks and Sobel (1987) and Banks (1990). Universal
divinity requires that, for every out of equilibrium signal, voters form
beliefs about which type of party is “most likely” to defect (i.e. the
type that gets the highest possible payoff from the act of defection)
and then place probability one on that type of party sending the out-
of-equilibrium signal. Given our signal structure, this implies that if
the out-of-equilibrium signal is si = 1 (alternatively si =-1), voters
believe that the type “most likely” to defect is qi= 1 (alternatively, qi=
-1) because for it the cost of signaling is zero. This follows from the
differential signaling costs for signals si = 1 and si = -1 across types. In
other words, this implies that if the “most likely” type to defect does not
have the incentive to defect, then no other type would either. However,
if the out-of-equilibrium signal is si =0, every type is equally likely to
send this signal since every type faces zero signaling cost.

Electoral Equilibrium
For our subsequent analysis, we concentrate on pure strategy equilibria
in strategies and beliefs that satisfy Definition 1 and universal divinity
as defined above. We call these equilibria “electoral equilibria”. This is
formally stated in the following definition.
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Definition 2 An electoral equilibrium of the model consists of party
strategies, voter strategies, and beliefs as described in Definition 1 such
that the out-of-equilibrium beliefs are restricted by universal divinity
criterion.

Voters’ Optimal Strategies
Given Bayesian updating of beliefs and the proposed symmetric equilib-
rium strategy profile described in (5), the expected policy outcomes from
party i after signals si = −1, si = 0 and si = 1 are −1+q

2 , q+q̄

2 and q̄+1
2

respectively. Since voter preferences differ between the two groups with
respect to q, we need to analyze the voting decision of the the voters
belonging to different groups separately.

We need to analyze voter’s strategies for three separate possibilities
in our search for equilibrium - (i) q̄ ≤ 0, (ii) q ≥ 0 and (iii) q ≤ 0 ≤ q̄. If
both parties send the same signal, the probability of voting for either
party is 1

2 for all voters. However, if the signals differ, the optimal
voting strategy for different members in both groups may be different.
The optimal voting strategies for the voters belonging to either group
when signals from the parties differ are described in Table 1 below. The
derivation of these optimal strategies is relegated to the appendix.
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Table 1: Equilibrium Voting Strategies

Signal Profile r∗
A(s1, s2, γ) r∗

B(s1, s2, γ) Cut off

Case I: q ≤ q ≤ 0

s1 = 0, s2 = −1 1 for all γ
1 for γ < 1
1
2 for γ = 1
0 for γ > 1

s1 = 1, s2 = −1 1 for all γ
1 for γ < γ1

γ1 = 1 − 1
(1−q)(1−q̄)−q̄2

1
2 for γ = γ1
0 for γ > γ1

s1 = 1, s2 = 0
1 for γ > γ2 1 for γ < γ3 γ2 = 1 + q̄ + q − qq̄
1
2 for γ = γ2

1
2 for γ = γ3 γ3 = 1 − 1

−q̄−q+qq̄0 for γ < γ2 0 for γ > γ3

Case II: 0 ≤ q ≤ q

s1 = 0, s2 = −1
1 for γ > γ4 1 for γ < γ5 γ4 = 1 − 1

q̄+q+qq̄
1
2 for γ = γ4

1
2 for γ = γ5 γ5 = 1 − (q̄ + q + qq̄)0 for γ < γ4 0 for γ > γ5

s1 = 1, s2 = −1
1 for γ > γ6

0 for all γ γ6 = 1 − 1
(1+q)(1+q̄)−q2

1
2 for γ = γ6
0 for γ < γ6

s1 = 1, s2 = 0
1 for γ > 1

0 for all γ1
2 for γ = 1
0 for γ < 1

Case III: q ≤ 0 ≤ q

s1 = 0, s2 = −1 1 for all γ
1 for γ < γ7

γ7 = 1 − q̄2

q̄−q−qq̄
1
2 for γ = γ7
0 for γ > γ7

s1 = 1, s2 = −1
1 for γ > γ8 1 for γ < γ9 γ8 = 1 − 1−q

1+q̄1
2 for γ = γ8

1
2 for γ = γ9 γ9 = 1 − 1+q̄

1−q0 for γ < γ8 0 for γ > γ9

s1 = 1, s2 = 0
1 for γ > γ10

0 for all γ γ10 = 1 − q2

q̄−q−qq̄
1
2 for γ = γ10
0 for γ < γ10
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Equilibrium Behavior of the Parties
We denote by vi (s1, s2, α) party i’s vote share from any signal profile
(s1, s2). From the previous discussion we know that Party 1’s vote share
for any signal profile (s1, s2) is

v1 (s1, s2, α) = α

∫
r∗

A (s1, s2, γ) dγ + (1 − α)
∫

r∗
B (s1, s2, γ) dγ

In Table 2 in the Appendix, we present party 1’s vote-share and ex-
pected payoff for different signal profiles. If both parties send the same
signal, the vote share and win probability for both of them is 1

2 . Given
simple majority voting, party 1 wins the election with probability 1 iff
v1 (s1, s2, α) > 1

2 . If v1 (s1, s2, α) = 1
2 , party 1 wins with probability 1

2 .
Notice that if party 1 wins, its payoff is 0 (since it always implements q1
on winning). Hence, each party chooses the signal so as to minimize the
expected loss.

We first show that if party 2 adopts the signaling strategy described
in (5), for q ≤ 0, party 1’s sequentially rational strategy would never
include s1 = −1 for any realization of q1 ∈ [−1, 1]. On the other hand,
for q > 0, party 1’s sequentially rational strategy would never include
s1 = 1 for any q1 ∈ [−1, 1]. Thus, we cannot have an equilibrium in
monotone symmetric cutoff strategies in which all three signals are being
sent by some types. This is summarized in the following lemma.

Lemma 1 No symmetric electoral equilibrium in monotone cutoff strate-
gies exists in which every si ∈ {−1, 0, 1} is chosen by some qi ∈ [−1, 1].

Proof. Proof of the lemma is in the Appendix.
The last lemma rules out any monotone cutoff strategy equilibrium

with three intervals. We now examine whether a perfect Bayesian
equilibrium in monotone cutoff strategies exists with two intervals. We
once again have three possible cases:

1. q = −1, which implies in equilibrium party i sends si = 0 if
qi ∈ [−1, q̄] and si = 1 if qi ∈ (q̄, 1] for some q̄ ∈ (−1, 1).

2. q̄ = 1, which implies in equilibrium party i sends si = −1 if
qi ∈ [−1, q) and si = 0 if qi ∈

[
q, 1
]

for some q ∈ (−1, 1).
3. q = q̄ ∈ (−1, 1), which implies in equilibrium party i sends si = −1

if qi ∈ [−1, q) and si = 1 if qi ∈ (q, 1].

We first argue that we cannot have an equilibrium with q = q̄ such
that only the signals −1 and +1 are sent. As shown in the proof of
Lemma 1, if q = q̄ < 0, the best response of party i never includes
si = −1 as si = 0 leads to lower expected loss given the strategy of the
other player. Similarly, if q = q̄ ≥ 0, the best response of party i never
includes si = 1.

Notice that if q̄ = 1, we cannot have an equilibrium with q < 0 either.
This is because if q < 0, then for all qi ∈ [−1, 1], si = 0 leads to lower
expected loss relative to si = −1 as argued in the proof of Lemma 1.

We next characterize the conditions under which a symmetric Perfect
Bayesian equilibrium in cutoff strategies with two intervals may exist.
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First we take up the case with q̄ = 1. From our discussion in the last
paragraph we already know that we cannot have such an equilibrium
with

si (qi) =
{

−1 for qi ∈ [−1, q)
0 for qi ∈ [q, 1] (6)

for q < 0. We show that there exists a symmetric equilibrium in cutoff
strategies described in (6) under certain restrictions on the parameters
of the model. We then examine the case of q = −1. We show that a
cutoff equilibrium with symmetric strategies described as

si (qi) =
{

0 for qj ∈ [−1, q̄]
1 for qj ∈ (q̄, 1] (7)

exists with q̄ < 0. Finally, we show that a symmetric equilibrium with
the same cutoff strategy in (7) with q̄ ≥ 0 exists for different values of
the parameters.

All these are stated in the following lemma.

Lemma 2 1. Suppose l ≤ 2
3 . Then, for all c > l

4 + 1
3 there exists

α2 (l, c) > 1
2 such that for all α ≥ α2 (l, c), we have a cutoff

equilibrium with

s∗
i (qi) =

{
0 for qi ∈ [−1, q̄2 (l, c)]
1 for qi ∈ (q̄2 (l, c) , 1]

for some q̄2 (l, c) ∈ [0, 1) .

2. Suppose l > 2
3 . Then for c ∈

(
l
4 + 1

3 , l
2 + 1

6

]
, there exists α1 (l, c) >

1
2 such that for all 1

2 < α ≤ α1 (l, c), we have a cutoff equilibrium
with

s∗
i (qi) =

{
−1 for qi ∈ [−1, q (l, c))
0 for qi ∈ [q (l, c) , 1]

for some q (l, c) ∈ [0, 1). For all values of α > 1
2 , there is another

cutoff equilibrium with

s∗
i (qi) =

{
0 for qi ∈ [−1, q̄1 (l, c)]
1 for qi ∈ (q̄1 (l, c) , 1]

for some q̄1 (l, c) ∈ (−1, 0). Lastly, for c > l
6 + 1

2 there exists
α2 (l, c) > 1

2 such that for all α ≥ α2 (l, c), we have another {0,1}
equilibrium with

s∗
i (qi) =

{
0 for qi ∈ [−1, q̄2 (l, c)]
1 for qi ∈ (q̄2 (l, c) , 1]

for some q̄2 (l, c) ∈ [0, 1) .

Proof. The proof is in the Appendix
The second part of Lemma 2 shows when parties attach high value to

loss from election and the signaling cost is middling - we have two cutoff
equilibria: one where besides the neutral signal, only signal indicative of

13



minority specific public good preference is transmitted and one where
besides the neutral signal, only signal indicative of majority specific
public good preference is. However, both these results differ in terms
of their parametric specification: the first one holds only when α lies
below a certain threshold value and the second one holds for all value of
α. The first result is counter-intuitive, since the majority never prefers
the public good budget being spent on minority specific public good.
This explains why the result holds only when the size of the minority
is sufficiently large, i.e, the size of the majority is below a critical level
α1 (l, c). However, with higher signaling costs, the only cutoff equilibrium
that may exist is the one where along with the neutral signal, the signal
indicative of majority specific public good preference is transmitted if
and only if the size of the majority is sufficiently large.

Semi-pooling equilibria under universal divinity
In this section, we analyze which of our semi-pooling equilibria survives
under universal divinity. Taking the first of our proposed equilibrium
{−1, 0}, the only signal that a deviating party can send is that of si=1.
Under universal divinity, voters on seeing the si= 1 attach probability
1 to the deviating party to be of type qi=1. Under such a belief, the
minority would never vote for the deviating party. To win, the party
would then need to rely on the majority voters. We show that under
universal divinity, the majority votes received are not enough to win
(for the deviating party). Therefore, no party has incentive to deviate
from the proposed equilibria {−1, 0}. Similarly, we also show that for
our two majoritarian semi-pooling equilibria {0, 1} with q̄ < 0 [q̄1 (l, c)]
and the one with q̄ > 0 [q̄2 (l, c)], any deviation to signal si= -1 would
be sub-optimal for a party as the majority would never would vote it.
This is described in the following proposition.

Proposition 1 All equilibria described in Lemma 2 surive under uni-
versal divinity.

Proof. Proof is in the Appendix.
Next, we look at how the parameters l and c affect the cutoffs

described in Proposition 1 in the relevant range. We establish the
properties of the cutoffs in the Lemma 3.

Lemma 3 1. For l > 2
3 and c ∈

(
l
4 + 1

3 , l
2 + 1

6

]
, q (l, c) is strictly

increasing in l and strictly decreasing in c.
2. For l > 2

3 and c ∈
(

l
4 + 1

3 , l
2 + 1

6

]
, q̄1 (l, c) is strictly decreasing in

l, but strictly increasing in c.
3. If c > max

{
l
4 + 1

3 , l
2 + 1

6

}
, q̄2 (l, c) is strictly decreasing in l, but

strictly increasing in c.

Proof. Proof is in the Appendix.
We now look at the ex-ante probability of observing extreme signals

in different equilibria. We first consider the equilibrium with

s∗
i (qi) =

{
−1 for qi ∈ [−1, q (l, c))
0 for qi ∈ [q (l, c) , 1]

14



This equilibrium exists when l > 2
3 and c ∈

(
l
4 + 1

3 , l
2 + 1

6

]
. Moreover,

we also need α ≤ α1 (l, c). Suppose these conditions are met. Then, the
probability that at least one party will be sending signal −1 is

1 −
(

1 − q (l, c)
2

)2

As l increases q (l, c) increases. This will not affect the requirement
α ≤ α1 (l, c) since α1 (l, c) is strictly increasing in l. Thus the probability
of observing the signal indicative of minority specific public good
preference will increase.

In the other equilibria with

s∗
i (qi) =

{
0 for qi ∈ [−1, q̄ (l, c)]
1 for qi ∈ (q̄ (l, c) , 1]

the probability of observing the extreme signal is

1 −
(1 + q̄

2

)2

Since the cutoffs q̄1 (l, c) and q̄2 (l, c) are strictly decreasing in l, the above
probability is also increasing in l. The above discussion is summarized
in the following proposition.

Proposition 2 Whenever a cutoff equilibrium exists, the probability
that an extreme signal is sent by one of the parties increases as the
parties care relatively more about losing the election and lower is the
signaling cost.

As parties care more about electoral loss, the cutoffs q (l, c) increases
and that of q̄1 (l, c) and q̄2 (l, c) decreases. This implies that the range
of values of qi, the party’s ideal position, for which an extreme signal
indicating minority or majority bias is sent, increases as electoral loss
matters more. The opposite happens when the cost of signaling goes up.

We finally look at what happens to equilibrium if α changes. Suppose
l > 2

3 and c ∈
(

l
4 + 1

3 , l
2 + 1

6

]
and α ≤ α1 (l, c). In this case both types

of equilibrium with

s∗
i (qi) =

{
−1 for qi ∈ [−1, q (l, c))
0 for qi ∈ [q (l, c) , 1]

and
s∗

i (qi) =
{

0 for qi ∈ [−1, q̄ (l, c)]
1 for qi ∈ (q̄ (l, c) , 1]

are possible. As α increases beyond α1 (l, c), the equilibrium with

s∗
i (qi) =

{
−1 for qi ∈ [−1, q (l, c))
0 for qi ∈ [q (l, c) , 1]

gets knocked out, but the {0,1} cutoff equilibrium with q̄ < 0 is sustained.
As α increases further, the only equilibrium that survives is the {0,1}
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equilibrium with q̄ > 0 if and only if α ≥ α2 (l, c). If l < 2
3 , then for all

c > l
4 + 1

3 , the equilibrium with

s∗
i (qi) =

{
0 for qi ∈ [−1, q̄ (l, c)]
1 for qi ∈ (q̄ (l, c) , 1]

exists if and only if α ≥ α2 (l, c). Thus, the chance of parties sending
the extreme signal indicative of majority specific public good preference
is higher when the size of the majority is large.

When parties attach high value to electoral loss, for middling signaling
cost, an equilibrium with the parties sending the signal indicative of
preference for minority specific public good preference, as mentioned
before is counter-intuitive and exists only when the sizes of the majority
and minority are relatively close. As parties care more about electoral
loss, the range of values for which an extreme signal is sent increases. By
doing so a party, given its ideal position, ensures that minority voters
preferring group-specific public good and those preferring neutral public
good also vote for the party. However, to win a party needs simple
majority, which implies that because of the higher range of values the
cutoff now takes, the majority voters who prefer neutral public good
expect the party’s ideal position to be closer to 0, also vote for the
party. The equilibrium with signal indicative of preference for majority
specific public good preference exists irrespective of the relative sizes
of the two groups. When the size of the minority is not large enough,
the equilibrium where an extreme signal indicating minority bias is sent
gets knocked out, because sending such costly signals leads to higher
expected loss for the party, hence not an optimal choice. Therefore,
when the size of the majority and minority groups are not close, to
win, a party must woo the majority voters and send costly signals to
that end– indicating majority bias. Hence, the only extreme signal that
would be sent in equilibrium besides the neutral signal would be the one
representing majority bias. Lastly, when signaling cost is high, sending
an extreme signal, indicating majority bias is optimal for a party if and
only if the size of the majority is sufficiently large, consolidating whose
support justifies the huge costs incurred.

Pooling Equilibria
Given that our signal space is restricted to three signals, the three
candidates for pooling equilibria are {−1, −1}, {0, 0} and {1, 1}. To
see, if these can be sustained as pooling equilibria, we need to define
our off-equilibrium beliefs. Here, again we use the criterion of universal
divinity.

Our first candidate for pooling equilibria is {1, 1}. Any deviating
party can send either a signal si= -1 or si= 0. Checking if a party
has incentive to deviate to either one of them is enough to knock this
candidate pooling equilibrium out. Suppose a party deviates to signal
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0, then under universal divinity the voters believe that all parties are
equally likely to deviate to signal si=0. This is because except for type
qi=1, deviating to 0 allows all parties to save on the signaling cost.
However, since all parties are equally likely to deviate to 0, the winning
probability is same for all parties, since in expected terms a party’s ideal
qi can be anywhere between -1 and 1. We show that because of the
positive cost of sending an extreme signal in our model, under universal
divinity, a party would have incentive to deviate to signal si=0. This
knocks out the {1, 1} equilibrium.

The second candidate for pooling equilibria {−1, −1} is even more
difficult to sustain. A deviating party would send either a signal si=1 or
si=0. We show that following the same line of argument as before, a
party would have incentive to deviate to signal si=0 (instead of deviating
to signal si=1) , thereby also knocking this equilibrium out.

Our last candidate for pooling equilibria is {0, 0}. A deviating party
can send either signal si=-1 or si= 1. Again, it is obvious why a party
would not deviate to signal -1, as under universal divinity no majority
voter would vote for it, thus making deviation sub-optimal. Therefore,
we check if a party has incentive to deviate to signal 1. What makes
this case particularly interesting is that the majority voter has a kinked
payoff function, hence his utility from the expected position of the party
in the two ranges [−1, 0) and (0, 1] is different. We show that under
universal divinity, this equilibrium will not survive if α ≥ 3

4 .

Proposition 3 Under universal divinity, the only pooling equilibrium
that survives is the {0, 0} equilibrium if and only if α < 3

4

Given that under universal divinity, upon defection to si=1 voters
believe a party to be of the extreme majoritarian type, i.e, qi=1, this
type actually has incentive to deviate (since the cost of signaling is zero
for it, same as that of sending the zero signal) if and only if the share of
the majority in the population is large enough.

Characterization of semi-pooling and pooling
equilibria
Characterization of equilibria is important to understand which kind
of equilibrium exists under different parametric configurations. In the
following pictures, we show, for different values of l, the parametric zones
in the (c, α) space where different types of equilibria are possible. We
plot two pictures for the cases l ≤ 2

3 and l > 2
3 . From Proposition 3,

we know that a pooling equilibrium with {0,0} signal exists if and only
if α < 3

4 in both cases. This is shown in the figure by the PE zone to
the left of the α = 3

4 (green) line. Therefore, we have a PE zone for all
values of c as long as α is below a critical value.
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To identify the parameter ranges in the said space where the semi-
pooling equilibria may arise, we need to distinguish between two cases
l ≤ 2

3 and l > 2
3 .

Case I: l ≤ 2
3

The only semi-pooling equilibrium we have in this case is the {0,1}
equilibrium which is valid only if c > l

4 + 1
3 and α ≥ α2 (l, c)3. Figure 2

shows that the SPE(0,1) zone lies to the right of the black curve and
above the c = l

4 + 1
3 (red) line.

Therefore, two kinds of equilibria can exist in the zone above the
c = l

4 + 1
3 line and in between the black curve and the green line under

universal divinity: PE(0,0) and SPE(0,1)

Figure 2: Characterization of equilibria for l ≤ 2
3

Case II: l > 2
3

From Lemma 1 we know that for the SPE with {-1,0} to exist, c ∈(
l
4 + 1

3 , l
2 + 1

6

]
and α ≤ α1 (l, c)4. Figure 3 shows that the SPE(-1,0)

3This critical value of α, α2 (l, c) is derived from the prerequisite q̄ (l, c) < 2α−1
2(1−α)

4This critical value of α, α1 (l, c) is derived from the prerequisite q (l, c) > 2α−1
2(1−α)
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zone lies below the black curve and between the c = l
2 + 1

6 (red) and
c = l

4 + 1
3 (blue) lines. It is easy to verify that at the lower bound of c,

c = l
4 + 1

3 , α1 (l, c) < 3
4 for all l < 8

3 . However, for l ≥ 8
3 , α1 (l, c) = 3

4 at
c = l

4 + 1
3 .

The second equilibrium under this category is the {0,1} equilib-
rium with q̄ < 0. It holds for all values of α, α > 1

2 as long as
c ∈

(
l
4 + 1

3 , l
2 + 1

6

]
. Thus we have the zone for the SPE(0,1) with

q̄ < 0 lying between the c = l
2 + 1

6 (blue) and c = l
4 + 1

3 (red) lines for
all values of α > 1

2 . Another zone for SPE(0,1) for q̄ > 0 will lie to the
right of the q̄(l, c) = 2α−1

2−2α curve and above the blue line.

Thus, under universal divinity, three kinds of equilibria can exist in the
triangular area below the downward sloping black curve and in between
the red and blue lines : PE(0,0), SPE(-1,0) and SPE(0,1) with q̄ < 0.
Again, two kinds of equilibria exist in the area enclosed between the
upward and downward sloping black curves and the green line: PE(0,0),
SPE(0,1) with q̄ < 0 and SPE(0,1) with q̄ > 0

Figure 3: Characterization of equilibria for l > 2
3
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From the above discussion we can draw the following conclusions
regarding equilibrium violence:

1. For α > 3
4 and a given l, as the cost of signaling crosses a certain

threshold i.e, c > l
4 + 1

3 , we always have an SPE with extreme
majoritarian signal.

2. For a given c, at low values of l and α (i.e, the size of the two
communities is very close), we do not have an SPE with majoritarian
violence for any c.

3. For a given c, as l increases and reaches a threshold such that c falls
below l

4 + 1
3 , we no longer have an SPE with violence (majoritarian

or minority-specific) for any value of α.
4. The range of values c, given any l, for which we have an SPE with

minority-specific violence is less than the range for which we have
an SPE with majoritarian violence.

5. As l increases, that is parties are more office-motivated, given any
c, the chance of sending an extreme (majoritarian and minority-
specific) signal increases.

Conclusion
In different electoral democracies around the world we have seen rhetoric
against ethnic minority being used as an election strategy by parties
representing ethnic majorities. Manifestation of such strategies range
from hate speech to different forms of violence. The target groups of
such violence are context specific – in some cases they are immigrants
while in some others, they are the religious minorities. In the recent past,
it has been acknowledged that such strategies have been successful in
mobilizing electoral support in different countries. Nevertheless, it is not
very clear why a rational, utility maximizing ethnic majority voter would
vote for a party that incites violence against the minority community.
This is so because such a strategy does not directly contribute to the
consumption bundle of a typical member of the majority community.
We reckon that such acts of violence work as signals to the voters; they
signal the ethnic bias of the party and its intent to provide ethnicity
specific public good if it wins the election. In many countries such as
India, electoral promises are considered to be mere cheap talk which does
not entail any commitment from the parties. In such a set up, costly
signal such as violence works as a credible signal of a party’s intent.

We have motivated our paper by suggesting that violence is a costly
signal that is sent by ethnic parties to signal their ideal position. However,
our theory is general enough to accommodate signals sent by parties
which care about any group of people and not necessarily ethnic groups.
One such example would be the use of costly signals by left ideological
parties which care about class identities. If there are many parties which
compete for votes of poor people and voters do not know the ideological
position of the parties, the parties will resort to costly activities to signal
their ideological positions. Such signals may include violence, vandalism
and other costly protest activities.
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We show that in equilibrium, besides the neutral signal only one other
extreme signal indicating majority or minority bias is sent. We also show
that the signal representing minority bias is sent only when the size of
the majority and minority groups are sufficiently close. The chance of
an extreme signal being sent increases as the parties care relatively more
about electoral loss (than their ideal policy position being implemented)
and decreases with the cost of signaling. In the presence of high cost
of signaling with less-office motivated parties, a semi-pooling equilibria
exists, in which an extreme signal indicating majority bias is sent if and
only if the size of the majority group is sufficiently large. Restricting
our off-equilibrium belief with the criterion of university divinity, we
find that all of our three candidates of semi-pooling equilibria can be
sustained. However, the only pooling equilibrium that can be sustained
is {0,0}, where both parties do not send any signal, only if the size of
the majority is smaller that a critical value.

Our paper is mainly a contribution to the theories of positive political
economy that analyze behavior of voters, candidates and parties. There
is no direct policy implication of our theory. But we argue that ethnic
parties engage in costly violence to signal their position on ethnic bias.
They need to signal their ethnic bias using violence because there is no
credibility behind one’s promise to build or provide ethnicity-specific
public good. Given this mechanism, our theory implies that if there are
institutional arrangements such that parties implement their electoral
promises, there should be no reason to send costly signals such as ethnic
violence. Consequently, ethnic violence around elections would go down.
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Appendix
Tables

Table 2: Party 1’s Vote Share and Expected Loss for Different
Signal Profiles

Signal Profile Vote share of Party 1 Expected loss of party 1

Case I: q ≤ q ≤ 0

s1 = 0, s2 = −1 1+α
2 0

s1 = 1, s2 = −1 α + (1 − α) max
{
0, γ1

2
}

0

s1 = 1, s2 = 0
α min

{
1, 1 − γ2

2
}

0 if γ2 < 2α−1
α

+ (1 − α) max
{
0, γ3

2
} 1

2

[
l +

∫ q̄
q (q − q1)2 f

(
q|q≤q2≤q̄

)
dq
]

if γ2 = 2α−1
α[

l +
∫ q̄

q (q − q1)2 f
(
q|q≤q2≤q̄

)
dq
]

if γ2 > 2α−1
α

Case II: 0 ≤ q ≤ q

s1 = 0, s2 = −1
α min

{
1, 1 − γ4

2
}

0 if γ4 < 2α−1
α

+ (1 − α) max
{
0, γ5

2
} 1

2

[
l +

∫ q

−1 (q − q1)2 f
(
q|q2<q

)
dq
]

if γ4 = 2α−1
α[

l +
∫ q

−1 (q − q1)2 f
(
q|q2<q

)
dq
]

if γ4 > 2α−1
α

s1 = 1, s2 = −1 α min
{
1, 1 − γ6

2
} 0 if γ6 < 2α−1

α
1
2

[
l +

∫ q

−1 (q − q1)2 f
(
q|q2<q

)
dq
]

if γ6 = 2α−1
α[

l +
∫ q

−1 (q − q1)2 f
(
q|q2<q

)
dq
]

if γ6 > 2α−1
α

s1 = 1, s2 = 0 α
2

[
l +

∫ q̄
q (q − q1)2 f

(
q|q≤q2≤q̄

)
dq
]

Case III: q ≤ 0 ≤ q

s1 = 0, s2 = −1 α + (1 − α) max
{
0, γ7

2
}

0

s1 = 1, s2 = −1
α min

{
1, 1 − γ8

2
}

0 if γ8 < 2α−1
α

+ (1 − α) max
{
0, γ9

2
} 1

2

[
l +

∫ q

−1 (q − q1)2 f
(
q|q2<q

)
dq
]

if γ8 = 2α−1
α[

l +
∫ q

−1 (q − q1)2 f
(
q|q2<q

)
dq
]

if γ8 > 2α−1
α

s1 = 1, s2 = 0 α min
{
1, 1 − γ10

2
} 0 if γ10 < 2α−1

α
1
2

[
l +

∫ q̄
q (q − q1)2 f

(
q|q≤q2≤q̄

)
dq
]

if γ10 = 2α−1
α[

l +
∫ q̄

q (q − q1)2 f
(
q|q≤q2≤q̄

)
dq
]

if γ10 > 2α−1
α
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Derivation of optimal voting strategies
We need to analyze voter’s strategies for three separate possiblities in
our search for equilibrium - (i) q̄ ≤ 0, (ii) q ≥ 0 and (iii) q ≤ 0 ≤ q̄. We
take up each case subsequently.

Case I: q ≤ q̄ ≤ 0

Given the equilibrum strategies of the parties, consider the case when
party i sends the signal si = −1. If party i wins, the expected payoff of
a Group A voter with preference parameter γ is

Eqi [uA (qi, γ)] |µ∗
i (qi|si=−1) = 1 +

−1 + q

2

since −1+q

2 < 0. Similarly, the payoff for the same voter after si = 0 and
si = 1 are

Eqi [uA (qi, γ)] |µ∗
i (qi|si=0) = 1 +

q + q̄

2
and

Eqi [uA (qi, γ)] |µ∗
i (qi|si=1) = 1 − q̄2 + 1 − γ

2 (1 − q̄)
respectively. The derivation of the last expression is little bit more
involved than the other two. si = 1 implies that qi ∈ (q̄, 1] with q̄ ≤ 0.
However, the payoff function of the voters have a kink at q = 0 and
hence the expected payoff for group A voters after observing si = 1 is

0 − q̄

1 − q̄

[
1 + q̄

2

]
+ 1 − 0

1 − q̄

[
1 − (1 − γ) 1

2

]
which gives us the above expression.

In case of Group B voters, the expected payoffs are

Eqi [uB (qi, γ)] |µ∗
i (qi|si=−1) = 1 + (1 − γ)

−1 + q

2

Eqi [uB (qi, γ)] |µ∗
i (qi|si=0) = 1 + (1 − γ)

q + q̄

2
and

Eqi [uB (qi, γ)] |µ∗
i (qi|si=1) = 1 − (1 − γ) q̄2 + 1

2 (1 − q̄)
We can now write down the optimal voting strategy for any voter

in either group. We examine the voting strategies for all possible signal
profiles in what follows:

Consider the signal profile s1 = 0, s2 = −1. Since q+q̄

2 >
−1+q

2 ,

r∗
A (s1, s2, γ) = 1

for all γ. In this case,

r∗
B (s1, s2, γ) =


1 if γ < 1
1
2 if γ = 1
0 if γ > 1
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For signal profile s1 = 1, s2 = −1, it is easily verifiable that

r∗
A (s1, s2, γ) = 1

for all γ while

r∗
B (s1, s2, γ) =


1 if γ < γ1
1
2 if γ = γ1
0 if γ > γ1

where γ1 = 1 − 1
(1−q)(1−q̄)−q̄2 ∈ (0, 1).

Finally, for signal profile s1 = 1, s2 = 0,

r∗
A (s1, s2, γ) =


1 if γ > γ2
1
2 if γ = γ2
0 if γ < γ2

where γ2 = 1 + q̄ + q − qq̄ < 1. Notice that if γ2 ≤ 0, r∗
A (s1, s2, γ) = 1

for all γ ∈ [0, 2]. In this case,

r∗
B (s1, s2, γ) =


1 if γ < γ3
1
2 if γ = γ3
0 if γ > γ3

where γ3 = 1 − 1
−q̄−q+qq̄ < 1. Once again, if γ3 ≤ 0, r∗

B (s1, s2, γ) = 0 for
all γ ∈ [0, 2]. Notice that γ2 > 0 iff γ3 < 0.

Case II: 0 ≤ q ≤ q̄

Given the equilibrum strategies of the parties, consider the case when
party i sends the signal si = −1. If party i wins, the expected payoff of
a Group A voter with preference parameter γ is

Eqi [uA (qi, γ)] |µ∗
i (qi|si=−1) = 1 −

1 + (1 − γ) q2

2
(
1 + q

)
Similarly, the payoff for the same voter after si = 0 and si = 1 are

Eqi [uA (qi, γ)] |µ∗
i (qi|si=0) = 1 − (1 − γ)

q + q̄

2

and
Eqi [uA (qi, γ)] |µ∗

i (qi|si=1) = 1 − (1 − γ) 1 + q̄

2
respectively.

In case of Group B voters, the expected payoffs are

Eqi [uB (qi, γ)] |µ∗
i (qi|si=−1) = 1 −

(1 − γ) + q2

2
(
1 + q

)
Eqi [uB (qi, γ)] |µ∗

i (qi|si=0) = 1 −
q + q̄

2
and

Eqi [uB (qi, γ)] |µ∗
i (qi|si=1) = 1 − 1 + q̄

2
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Once again, if the signals of the parties match, the probability of voting
for either party is 1

2 . As in the earlier case, we can derive voting strategied
for different signal profiles.

For signals s1 = 0, s2 = −1,

r∗
A (s1, s2, γ) =


1 if γ > γ4
1
2 if γ = γ4
0 if γ < γ4

where γ4 = 1 − 1
q̄+q+qq̄ < 1. If γ4 < 0, r∗

A (s1, s2, γ) = 1 for all γ ∈ [0, 2].
For group B voters,

r∗
B (s1, s2, γ) =


1 if γ < γ5
1
2 if γ = γ5
0 if γ > γ5

where γ5 = 1 −
(
q̄ + q + qq̄

)
< 1. If γ5 < 0, r∗

B (s1, s2, γ) = 0 for all
γ ∈ [0, 2]. Also that γ4 > 0 iff γ5 < 0.

In case s1 = 1, s2 = −1,

r∗
A (s1, s2, γ) =


1 if γ > γ6
1
2 if γ = γ6
0 if γ < γ6

where γ6 = 1 − 1
(1+q̄)(1+q)−q2 < 1. If γ6 < 0, r∗

A (s1, s2, γ) = 1 for all
γ ∈ [0, 2]. In this case r∗

B (s1, s2, γ) = 0.
Finally, for s1 = 1, s2 = 0,

r∗
A (s1, s2, γ) =


0 if γ < 1
1
2 if γ = 1
1 if γ > 1

while r∗
B (s1, s2, γ) = 0.

Case III: q ≤ 0 ≤ q̄

In this case,

Eqi [uA (qi, γ)] |µ∗
i (qi|si=−1) = 1 +

−1 + q

2

Eqi [uA (qi, γ)] |µ∗
i (qi|si=0) = 1 −

q2 + (1 − γ) q̄2

2
(
q̄ − q

)
and

Eqi [uA (qi, γ)] |µ∗
i (qi|si=1) = 1 − (1 − γ) 1 + q̄

2
while

Eqi [uB (qi, γ)] |µ∗
i (qi|si=−1) = 1 − (1 − γ)

1 − q

2

Eqi [uB (qi, γ)] |µ∗
i (qi|si=0) = 1 −

(1 − γ) q2 + q̄2

2
(
q̄ − q

)
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and
Eqi [uB (qi, γ)] |µ∗

i (qi|si=1) = 1 − 1 + q̄

2
For signals s1 = 0, s2 = −1, r∗

A (s1, s2, γ) = 1 for all γ while

r∗
B (s1, s2, γ) =


1 if γ < γ7
1
2 if γ = γ7
0 if γ > γ7

where γ7 = 1 − q̄2

q̄−q−qq̄ ∈ (0, 1).
In case s1 = 1, s2 = −1,

r∗
A (s1, s2, γ) =


1 if γ > γ8
1
2 if γ = γ8
0 if γ < γ8

and

r∗
B (s1, s2, γ) =


1 if γ < γ9
1
2 if γ = γ9
0 if γ > γ9

where γ8 = 1 − 1−q

1+q̄ and γ9 = 1 − 1+q̄
1−q respectively.

Finally, for s1 = 1, s2 = 0,

r∗
A (s1, s2, γ) =


1 if γ > γ10
1
2 if γ = γ10
0 if γ < γ10

where γ10 = 1 − q2

q̄−q−qq̄ while r∗
B (s1, s2, γ) = 0 for all γ.

Proof of Lemma 1
Suppose party 2 adopts the strategy described in (5). We show that in
each of the cases q ≤ q̄ ≤ 0, 0 ≤ q ≤ q̄ and q ≤ 0 ≤ q̄, one of the signals
is never sent by party 1 for any q1 ∈ [−1, 1].

Consider q ≤ q̄ ≤ 0. Suppose party 1 sends s1 = −1. Then, from
Table 2, the expected loss of party 1 (ignoring the signaling cost) is given
by

EL1 (s1 = −1, s2 (q2) , q1)

= Pr
[
q2 < q

]
.
1
2ϕ
(
−1, q; q1

)
+ Pr

[
q ≤ q2 ≤ q̄

]
.ϕ
(
q, q̄; q1

)
+ Pr [q̄ < q2] ϕ (q̄, 1; q1)

If party 1 sends s1 = 0, then party 1’s expected loss is

EL1 (s1 = 0, s2 (q2) , q1)
= Pr

[
q2 < q

]
.0

+ Pr
[
q ≤ q2 ≤ q̄

] 1
2ϕ
(
q, q̄; q1

)
+ Pr [q̄ < q2] ϕ(1)
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where

ϕ(1) =


0 if γ2 > 2α−1

α
1
2ϕ (q̄, 1; q1) if γ2 = 2α−1

α
ϕ (q̄, 1; q1) if γ2 < 2α−1

α

Whatever the value of γ2, it is easy to see EL1 (s1 = 0, s2 (q2) , q1) <
EL1 (s1 = −1, s2 (q2) , q1) for all q1 ∈ [−1, 1]. Hence, party 1 never sends
s1 = −1 in equilibrium.

Now consider q ≤ 0 ≤ q̄. In this case,

EL1 (s1 = −1, s2 (q2) , q1)

= Pr
[
q2 < q

]
.
1
2ϕ
(
−1, q; q1

)
+ Pr

[
q ≤ q2 ≤ q̄

]
.ϕ
(
q, q̄; q1

)
+ Pr [q̄ < q2] ϕ(2) (l, q̄)

where

ϕ(2) =


0 if γ8 > 2α−1

α
1
2ϕ (q̄, 1; q1) if γ8 = 2α−1

α
ϕ (q̄, 1; q1) if γ8 < 2α−1

α

Similarly,

EL1 (s1 = 0, s2 (q2) , q1)
= Pr

[
q2 < q

]
.0

+ Pr
[
q ≤ q2 ≤ q̄

] 1
2ϕ
(
q, q̄; q1

)
+ Pr [q̄ < q2] ϕ(3)

where

ϕ(3) =


0 if γ10 > 2α−1

α
1
2ϕ (q̄, 1; q1) if γ10 = 2α−1

α
ϕ (q̄, 1; q1) if γ10 < 2α−1

α

It is easy to verify that γ10 ≥ γ8 for any q ≤ 0 ≤ q̄. Hence,
EL1 (s1 = 0, s2 (q2) , q1) < EL1 (s1 = −1, s2 (q2) , q1) for all q1 ∈ [−1, 1].
Hence, party 1 would never choose s1 = −1.

Finally, consider 0 ≤ q ≤ q̄. In this case,

EL1 (s1 = 0, s2 (q2) , q1)
= Pr

[
q2 < q

]
ϕ(4)

+ Pr
[
q ≤ q2 ≤ q̄

]
.
1
2ϕ
(
q, q̄; q1

)
+ Pr [q̄ < q2] .0

where

ϕ(4) =


0 if γ4 < 2α−1

α
1
2ϕ
(
−1, q; q1

)
if γ4 = 2α−1

α

ϕ
(
−1, q; q1

)
if γ4 > 2α−1

α
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Similarly,

EL1 (s1 = 1, s2 (q2) , q1)
= Pr

[
q2 < q

]
ϕ(5)

+ Pr
[
q ≤ q2 ≤ q̄

]
.ϕ
(
q, q̄; q1

)
+ Pr [q̄ < q2] 1

2ϕ (q̄, 1; q1)

where

ϕ(5) =


0 if γ6 < 2α−1

α
1
2ϕ
(
−1, q; q1

)
if γ6 = 2α−1

α

ϕ
(
−1, q; q1

)
if γ6 > 2α−1

α

Once again it is easy to verify that γ4 < γ6 for all 0 ≤ q ≤ q̄. Hence,
EL1 (s1 = 0, s2 (q2) , q1) < EL1 (s1 = 1, s2 (q2) , q1) for all q1 ∈ [−1, 1].
Hence, party 1 would never choose s1 = 1.

Proof of Lemma 2
For existence of such a semi-pooling equilibrium, i.e, {-1,0}, it must be
the case that given that player j plays a strategy as described in (6),
player 1’s expected loss from sending signal si = −1 is less than its
expected loss from sending signal si = 0 if and only if qi ∈ [−1, q) for
some q ≥ 0. Party i’s expected loss from si = −1, if q ≥ 0, is

ELi (si = −1, sj (qj) , qi) + c (1 + qi)

= Pr
[
qj < q

]
.
1
2ϕ
(
−1, q; qi

)
+ Pr

[
q ≤ qj

]
.ϕ−1

i + c (1 + qi)

where

ϕ−1
i =


0 if γ4 > 2α−1

α
1
2ϕ
(
q, 1; qi

)
if γ4 = 2α−1

α

ϕ
(
q, 1; qi

)
if γ4 < 2α−1

α

Similarly,

ELi (si = 0, sj (qj) , qi)

= Pr
[
qj < q

]
.ϕ0

i

+ Pr
[
q ≤ qj

]
.
1
2ϕ
(
q, 1; qi

)
where

ϕ0
i =


ϕ
(
−1, q; qi

)
if γ4 > 2α−1

α
1
2ϕ
(
−1, q; qi

)
if γ4 = 2α−1

α

0 if γ4 < 2α−1
α

If γ4 ≤ 2α−1
α ,

ELi (si = 0, sj (qj) , qi) < ELi (si = −1, sj (qj) , qi) + c (1 + qi)
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for all qi. So we cannot have an equilibrium where si = −1 is sent by
some types. However, for γ4 > 2α−1

α ,

ELi (si = 0, sj (qj) , qi) ≤ ELi (si = −1, sj (qj) , qi) + c (1 + qi)

if and only if

Pr
[
qj < q

]
.ϕ
(
−1, q; qi

)
+ Pr

[
q ≤ qj

]
.
1
2ϕ
(
q, 1; qi

)
≤ Pr

[
qj < q

]
.
1
2ϕ
(
−1, q; qi

)
+ c (1 + qi)

After some manipulation, the above inequality simplifies to

h (l, c, qi) = l + 1
3 − 2c (1 + qi) + q2

i ≤ 0

For existence of our proposed equilibrium, we need this inequality to
hold if and only if qi ∈

[
q, 1
]

for some q ≥ 0. Given the convexity of h (.)
in qi and the fact that h (l, c, −1) > 0, the equilibrium exists if and only
if h (l, c, 1) < 0 and h (l, c, 0) ≥ 0, i.e.

c >
l

4 + 1
3

and
c ≤ l

2 + 1
6

A prerequisite for both conditions to be met simultaneously is l > 2
3 .

If l > 2
3 and c ∈

(
l
4 + 1

3 , l
2 + 1

6

]
, then equilibrium q can be solved from

h
(
l, c, q (l, c)

)
= 0. However, the equilibrium is valid only if γ4 > 2α−1

α

at equilibrium q. But in this case,

γ4 = 1 − 1
1 + 2q (l, c) >

2α − 1
α

⇔ q (l, c) >
2α − 1

2 (1 − α)
⇔ α < α1 (l, c)

For existence of a {0,1} equilibrium with q̄ < 0 and q = −1, it must
be the case that given that player j plays the strategy in (7), player i’s
expected loss from sending signal si = 0 is less than its expected loss
from sending signal si = 1 if and only if qi ∈ [−1, q̄] for some q̄ < 0.
Party i’s expected loss from si = 1, if q̄ < 0, is

ELi (si = 1, sj (qj) , qi) + c (1 − qi)
= Pr [qj ≤ q̄] .ϕ1

i

+ Pr [q̄ < qj ] .
1
2ϕ (q̄, 1; q1) + c (1 − qi)

where

ϕ1
i =


ϕ (−1, q̄; q1) if γ2 > 2α−1

α
1
2ϕ (−1, q̄; q1) if γ2 = 2α−1

α
0 if γ2 < 2α−1

α
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Similarly, party i’s expected loss from si = 0 is

ELi (si = 0, sj (qj) , qi)

= Pr [qj ≤ q̄] .
1
2ϕ (−1, q̄; q1)

+ Pr [q̄ < qj ] .ϕ0
i

where in this case

ϕ0
i =


0 if γ2 > 2α−1

α
1
2ϕ (q̄, 1; q1) if γ2 = 2α−1

α
ϕ (q̄, 1; q1) if γ2 < 2α−1

α

If γ2 ≥ 2α−1
α ,

ELi (si = 0, sj (qj) , qi) < ELi (si = 1, sj (qj) , qi) + c (1 − qi)

for all qi. So we cannot have an equilibrium where si = 1 is sent by some
types. However, for γ2 < 2α−1

α ,

ELi (si = 0, sj (qj) , qi) ≤ ELi (si = 1, sj (qj) , qi) + c (1 − qi)

if and only if

Pr [qj ≤ q̄] .
1
2ϕ (−1, q̄; q1) + Pr [q̄ ≤ qj ] .ϕ (q̄, 1; q1)

≤ Pr [q̄ < qj ] .
1
2ϕ (q̄, 1; q1) + c (1 − qi)

After some manipulation, the above inequality simplifies to

g (l, c, qi) = l + 1
3 − 2c (1 − qi) + q2

i ≤ 0

For existence of our proposed equilibrium, we need this inequality to
hold if and only if qi ∈ [−1, q̄] for some q̄ < 0. Given the convexity of
g (.) in qi and the fact that g (l, c, 1) > 0, the equilibrium exists if and
only if g (l, c, −1) < 0 and g (l, c, 0) > 0, i.e.

c >
l

4 + 1
3

and
c <

l

2 + 1
6

A prerequisite for both conditions to be met simultaneously is l > 4
3 .

If l > 2
3 and c ∈

(
l
4 + 1

3 , l
2 + 1

6

]
, then equilibrium q̄ can be solved from

g (l, c, q̄ (l, c)) = 0. However, the equilibrium is valid only if γ2 < 2α−1
α

at equilibrium q̄. But in this case,

γ2 = 2q̄ (l, c) < 0

Hence, we have this equilibrium for all values of α > 1
2 .

For existence of a {0,1} equilibrium with q̄ ≥ 0 and q = −1, it must
be the case that given that player j plays the strategy in (7), player i’s
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expected loss from sending signal si = 0 is less than its expected loss
from sending signal si = 1 if and only if qi ∈ [−1, q̄] for some q̄ ≥ 0. As
in the earlier case, party i’s expected loss from sending si = 1 is

ELi (si = 1, sj (qj) , qi) + c (1 − qi)
= Pr [qj ≤ q̄] .ϕ1

i

+ Pr [q̄ < qj ] .
1
2ϕ (q̄, 1; q1) + c (1 − qi)

except that in this case

ϕ1
i =


ϕ (−1, q̄; q1) if γ10 > 2α−1

α
1
2ϕ (−1, q̄; q1) if γ10 = 2α−1

α
0 if γ10 < 2α−1

α

Similarly,

ELi (si = 0, sj (qj) , qi)

= Pr [qj ≤ q̄] .
1
2ϕ (−1, q̄; q1)

+ Pr [q̄ < qj ] .ϕ0
i

where

ϕ0
i =


0 if γ10 > 2α−1

α
1
2ϕ (q̄, 1; q1) if γ10 = 2α−1

α
ϕ (q̄, 1; q1) if γ10 < 2α−1

α

Once again, if γ10 < 2α−1
α ,

ELi (si = 0, sj (qj) , qi) ≤ ELi (si = 1, sj (qj) , qi) + c (1 − qi)

if and only if

g (l, c, qi) = l + 1
3 − 2c (1 − qi) + q2

i ≤ 0

For existence of our proposed equilibrium, we need this inequality to
hold if and only if qi ∈ [−1, q̄] for some q̄ ≥ 0. Given the convexity of
g (.) in qi and the fact that g (l, c, 1) > 0, the equilibrium exists if and
only if g (l, c, −1) < 0 and g (l, c, 0) ≤ 0, i.e.

c >
l

4 + 1
3

and
c ≥ l

2 + 1
6

Hence, if c > max
{

l
4 + 1

3 , l
2 + 1

6

}
, then equilibrium q̄ can be solved from

g (l, c, q̄ (l, c)) = 0. However, the equilibrium is valid only if γ10 < 2α−1
α

at equilibrium q̄. But in this case,

γ10 = 1 − 1
1 + 2q̄ (l, c) <

2α − 1
α

⇔ q̄ (l, c) <
2α − 1

2 (1 − α)
⇔ α > α2 (l, c)

Hence, we have this equilibrium for all values of α > α2 (l, c).
This completes the proof of Lemma 1.
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Proof of Proposition 1
Equilibrium I: {−1, 0}

Expected utility of a majority voter from voting for the deviating
party is:

Eqi [uA (qi, γ)] |µ∗
i (qi|si=1) = γ

Expected utility of a majority voter from voting for the party following
the proposed equilibrium will depend on the party’s expected position.
Since q (l, c) > 0, the payoff function for the majority voter is kinked,
depending on where the qi of the party lies. Therefore, we have two
cases:

Case 1: Voter observes si= -1

Eqi [uA (qi, γ)] |µ∗
i (qi|si=−1) = 1

2(1 + q (l, c))+
q (l, c)

1 + q (l, c)

(
1 −

q (l, c)
2 +

γq (l, c)
2

)
Thus, a majority voter will vote for the deviating party iff,

γ >
1 + 2q (l, c) − q2 (l, c)
2 + 2q (l, c) − q2 (l, c) = γc

To win the deviating party needs
α (2 − γc)

2 >
1
2

⇔ γc <
2α − 1

α

However, the equilibrium is valid only if γ4 > 2α−1
α at equilibrium q. We

have,

⇔ 1 − 1
1 + 2q (l, c) >

1 + 2q (l, c) − q2 (l, c)
2 + 2q (l, c) − q2 (l, c)

Solving this we get,
1 − q2 (l, c) < 0

which is not possible since q (l, c) ∈ [0, 1)
Hence, there is no incentive for a party to deviate and send si=1

under universal divinity.

Case 2: Voter observes si=0

Eqi [uA (qi, γ)] |µ∗
i (qi|si=0) = 1 −

1 + q (l, c)
2 +

γ
(
1 + q (l, c)

)
2

A majority voter will vote for deviating party iff,

1 −
1 + q (l, c)

2 +
γ
(
1 + q (l, c)

)
2 < γ

⇔ γ > 1
which means that half of the the majority, i.e, those majority voters

whose γ>1 will vote for the deviating party. This makes the vote share
α
2 which is not enough to win. Therefore, no party has incentive to
deviate to signal 1 when the proposed equilibrium is {−1, 0}
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Equilibrium II: {0, 1}

Taking our second semi-pooling equilibrium {0, 1} with no restriction on
values of α, it is fairly simple to see why a party would not deviate to
signal si= -1. Under universal divinity, any deviation to -1 would make
the voters believe that the party is of type qi=-1 with probability 1, and
as such none of the majority voter would vote for the deviating party.
Hence, no party has the incentive to deviate to signal si= -1. The same
holds for the third proposed equilibrium {0, 1} with α ≥ α2 (l, c) where
α2 (l, c) > 1

2 .

Proof of Lemma 3
The first statement follows directly from δ

δl [h (l, c, q)] > 0, δ
δc [h (l, c, q)] <

0 and h
(
l, c, q (l, c)

)
= 0 since given h (l, c, 1) < 0, δ

δc [h (l, c, q)] < 0 at
q = q (l, c). Similar arguments hold for statements 2 and 3 of the Lemma
as well.

Proof of Proposition 3
Pooling equilibria:{1, 1}

ELi (si = 1, sj = 1, qi) + c (1 − qi) > ELi (si = 0, sj = 1, qi)

for all qi ∈ [−1, 1). Hence, a party will have incentive to deviate to signal
0. This knocks out the {1, 1} equilibrium.

Pooling equilibria:{−1, −1}

ELi (si = −1, sj = −1, qi) + c (1 + qi) > ELi (si = 0, sj = −1, qi)

for all qi ∈ (−1, 1].

Pooling equilibria:{0, 0}

Eqi [uA (qi, γ)] |µ∗
i (qi|si=0) = 1

2(1 − 1
2) + 1

2(1 − 1
2 + γ

2 )

A majority voter would vote for the deviating party iff,

1
4 + γ + 1

4 < γ

⇔ γ >
2
3

Therefore, to win the party would need,

(2 − 2
3)α

2 ≥ 1
2

⇔ α ≥ 3
4

This implies that the {0, 0} equilibrium would not survive under universal
divinity if α ≥ 3

4 .
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