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1 Introduction

Antichains and, hence, maximal antichains, in a product of n chains (formally,
in the poset {1, . . . ,m}n) are of interest in many domains. For instance in game
theory, Hsiao and Raghavan (1992) define a multichoice cooperative game as a real-
valued mapping on {1, . . . ,m}n, where n is the number of players and {1, . . . ,m}
denotes the set of ordered actions that each player can take. A profile in such a
game is a vector x = (x1, . . . , xn) ∈ {1, . . . ,m}n and represents the actions taken
by each agent. A winning profile is such that the value of the game at that profile
is 1. A winning profile x is minimal if there is no other winning profile y such that
y ≤ x. If a game is monotone, then the set of all minimal winning profiles is an
antichain. Besides, Grabisch (2016) shows that antichains in {1, . . . ,m}n play an
important role in the analysis of these multichoice cooperative games.
In Hsiao and Liao (2008), a generalization of multichoice cooperative games is pre-
sented by considering that the set of actions available to agent i is {1, . . . ,mi}. A
multichoice cooperative game thus becomes a real-valued mapping on

∏n
i=1{1, . . . ,mi}.

Applications of multichoice cooperative games in various domains (cost allocation,
voting, . . . ) can be found in Branzei, Llorca, Sánchez-Soriano, and Tijs (2014),
Freixas (2020). A very simple example1 of multi-choice cooperative game is as
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follows. Consider a voting situation in a parliament in which the players are the
political parties, mi represents the number of seats of party i, a winning profile
is such that the proposal obtains enough votes to be approved, and there is no
voting discipline in political parties. In this setting, minimal winning profiles are
antichains and they are interesting because they give information about how to
approve a proposal.
Our interest for maximal antichains arised from our analysis (Bouyssou et al., 2023)
of a multicriteria classification method known as the pseudo-disjunctive Electre
Tri-nB method (Fernández, Figueira, Navarro, and Roy, 2017). We wanted to
count the number of maximal antichains in a product of an arbitrary number of
finite chains. We did it for products of chains of small cardinality. In the case
of a product of two chains of equal sizes, a search in the On-line Encyclopedia
of Integer Sequences (OEIS, 2024) led us to Sequence A171155. Surprisingly, we
found no mention of maximal antichains in the various mathematical structures
mentioned on the site as counted by this sequence. This motivated us to establish
the links between maximal antichains and some of these structures.

This is what we do in Section 2, which establishes correspondences (bijections)
between maximal antichains in products of two finite linear orders and other math-
ematical objects.

Section 3 gathers what is known regarding the number of maximal antichains in
products of two finite linear orders and establishes new results.

Some proofs and numerical results are deferred to an Appendix.

The rest of the present section introduces definitions and some preliminary results.
We refer to Caspard, Leclerc, and Monjardet (2012) for notions related to order
relations.

1.1 Dominance orders

Let [m] denote the integer set {1, . . . ,m}. We consider the sets [m1] and [m2]
linearly ordered by the natural order ≥ on the integers N. We use >,<,≤ as
expected.

Two natural partial orderings can be defined on the product set [m1]× [m2].

The dominance order >∗ is defined as (x, y) >∗ (z, w) iff x ≥ z, y ≥ w, and at
least one inequality is strict; it is an irreflexive, asymmetric and transitive
relation ;

The strong dominance order ≫∗ is defined as (x, y) ≫∗ (z, w) iff x > z and
y > w; it is also an irreflexive, asymmetric and transitive relation.

2



1.1.1 Chains and antichains

A chain in [m1]× [m2] is a set of distinct elements {(xi, yi), i ∈ I}, where I = [k]
for some integer k, such that, ∀i ̸= j ∈ I, xi > xj entails yi ≥ yj. It is thus a chain
w.r.t. the dominance order >∗. In other words, ∀i, j ∈ I, we may not have xi > xj

and yi < yj.

Note that, w.l.o.g., we may number the elements of a chain in a way that respects
the lexicographic order on the elements, i.e., xi > xi−1 or [xi = xi−1 and yi > yi−1],
for all i.

A strict chain {(xi, yi), i ∈ I} is a chain w.r.t. the strong dominance order ≫∗,
i.e., ∀i ̸= j ∈ I, we have [xi > xj and yi > yj] or [xi < xj and yi < yj]. This
implies that [xi ̸= xj and yi ̸= yj] for all i ̸= j.

We may number the elements of a strict chain in such a way that xi > xj, for all
i > j.

An antichain in [m1]× [m2] is a set of elements {(zi, wi), i ∈ I} such that, for all
i ̸= j, we have either [zi > zj and wi < wj] or [zi < zj and wi > wj]. In other
words, all pairs of elements in an antichain are incomparable w.r.t. the dominance
order >∗. In an antichain {(zi, wi), i ∈ I}, for all i ̸= j, we have zi ̸= zj and
wi ̸= wj.
A notion of weak antichain can be dually defined. The set {(zi, wi), i ∈ I} is a
weak antichain if its elements are incomparable w.r.t. the strict dominance order
≫∗. Explicitly: for all i ̸= j, if zi > zj then wi ≤ wj.

A maximal antichain (resp. maximal strict chain, maximal weak antichain, max-
imal chain is an antichain (resp. strict chain, weak antichain, chain) that is not
properly included in another antichain (resp. strict chain, weak antichain, chain).

2 Correspondences

In this section, we establish links between (maximal) chains and antichains in
products of two finite chains and other mathematical structures mentioned in
relation with sequence A171155 from OEIS (2024). We slightly more generally
deal with products of two finite chains possibly of unequal lengths [m1]× [m2].

2.1 Antichains and strict chains

We have the following correspondence (in products of two chains).

Proposition 1
There is a bijection between strict chains and antichains in [m1]× [m2].
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Proof. If {(xi, yi), i ∈ I} is a strict chain in [m1]× [m2], {(xi,m2+1−yi), i ∈ I}
is an antichain. Conversely, if {(zi, wi), i ∈ I} is an antichain in [m1] × [m2],
{(zi,m2 + 1− wi), i ∈ I} is a strict chain. 2

This bijection also defines a bijection between maximal strict chains and maximal
antichains.

In a similar way, there is a bijection between chains (resp. maximal chains) and
weak antichains (resp. maximal weak antichains) in [m1]× [m2].

2.2 Noses of a step matrix; augmentation matrix

Any antichain in [m1] × [m2] can be associated with two m1 ×m2 step matrices.
Consider for example the antichain {(2, 4), (4, 2)} in [5]× [6]. We represent these
two pairs by a boldface “0” in the matrix in Table 1. We also represent by a “0”
in the matrix all pairs that are >∗-dominated by an element in the antichain. The
remaining pairs can be assigned the value “1” (not represented in Table 1). This
matrix is a step matrix (whether looking at the 0’s or to the 1’s). The elements
in the antichain, i.e., the boldface “0” pairs, have been called the noses of the
“0” step matrix (Pirlot and Vincke, 1997, p. 77). They are the non >∗-dominated
pairs in the set of “0”-valued pairs in the matrix.

1 2 3 4 5 6

1 0 0 0 0
2 0 0 0 0
3 0 0
4 0 0
5

Table 1: The antichain {(2, 4), (4, 2)} in [5] × [6] and the elements in [m1] × [m2]
that are >∗-dominated by an element in the antichain are represented by a “0”
value.

The properties of such a matrix representation are general. The “0” corresponding
to the elements of an antichain and to the elements that are >∗-dominated by one
of them form a step matrix. More precisely, it is a North-West step matrix (NW
step matrix, in the sequel) The elements of the antichain correspond to the noses
of this step matrix, since they are maximal w.r.t. >∗ in the set of elements that
do not dominate an element in the antichain.

A second step matrix can be associated with an antichain by writing a “0” in
all positions corresponding either to an element of the antichain or an element
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>∗-dominating an element of the antichain. For the example of the antichain
{(2, 4), (4, 2}) in [5]× [6], we get the matrix in Table 2.

1 2 3 4 5 6

1
2 0 0 0
3 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

Table 2: The antichain {(2, 4), (4, 2)} in [5] × [6] and the elements in [m1] × [m2]
that >∗-dominate an element in the antichain are represented by a “0” value.

This matrix is also a step matrix. It is a South-East step matrix (SE step matrix in
the sequel). The elements in the antichain correspond to the noses of this matrix
(the minimal elements w.r.t. >∗ in the set of elements dominating an element in
the antichain).

2.2.1 Augmentation matrix of an antichain

Putting together the two step matrices associated with an antichain, i.e., writing
a 0 in a new matrix whenever there is a 0 in one of the two step matrices, we get a
representation of the elements that cannot be added to the antichain because they
are either dominated or dominate an element in the antichain.

We call augmentation matrix associated with an antichain in [m1] × [m2], the
binary m1 ×m2 matrix obtained by assigning the value 0 to the elements in the
antichain and those that >∗-dominate or are >∗-dominated by an element in the
antichain; the value 1 is assigned to the remaining positions in the matrix2. The
1’s in the matrix, if any, correspond to pairs in [m1] × [m2] that can be added to
the antichain (one at a time), making it a larger antichain.

In the example of the antichain {(2, 4), (4, 2)} in [5] × [6] above, this yields the
augmentation matrix in Table 3. This matrix indicates that [(1, 5) or (1, 6)] and
(3, 3) and (5, 1) can be added to the antichain without losing the antichain property.

Let us recall the following definition (see e.g., Fulkerson and Gross, 1965). A 0-1
matrix has the consecutive ones property in rows (resp. columns) if, in each row
(resp. column), there is no 0 between two 1’s.

2We assume that the matrix rows (resp. columns) are labelled by the elements of [m1] (resp.
[m2]) in increasing natural order.
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1 2 3 4 5 6

1 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0

Table 3: Augmentation matrix of the antichain {(2, 4), (4, 2)} in [5] × [6]. The
non-zero positions correspond to elements that can be added to the antichain
while keeping the antichain property.

Proposition 2
The augmentation matrix of an antichain has the consecutive ones property in rows
and columns.

Proof. The fact that ones in each row (resp. column) of the matrix appear
all together (i.e., without 0 between two ones) results from the fact that a one
appears in the augmentation matrix when there is a one at the same position in
the two step matrices associated with the antichain. In step matrices, a 0 never
appears between two 1’s in the same row or the same column. 2

The following characterization of maximal antichains obviously results from the
definition of the augmentation matrix.

Proposition 3
An antichain is maximal iff its augmentation matrix is the null matrix.

2.2.2 Step matrices and augmentation matrix for strict chains

By duality (Proposition 1), two step matrices and an augmentation matrix can be
associated with any strict chain. For illustration purposes, consider the strict chain
{(2, 3), (4, 5)} in [5]× [6] which is in bijection with the antichain in the examples
above. The first associated step matrix has 0’s corresponding to the elements of
the strict chain and in the positions associated with elements not better on the
first dimension and better on the second than an element in the strict chain. These
positions cannot be used to augment the strict chain. The 0’s form a North-East
(NE) step matrix. The ones form a South-West (SW) step matrix. The second
associated step matrix has 0’s corresponding to the elements of the strict chain
and in the positions associated with elements better on the first dimension and not
better on the second than an element in the strict chain. These positions cannot be
used to augment the strict chain. The 0’s form a SW step matrix. The ones form
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1 2 3 4 5 6

1 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0

Table 4: Augmentation matrix associated with the strict chain {(2, 3), (4, 5)} in
[5] × [6]. Boldface 0’s represent the elements in the strict chain. Ones take place
in the empty cells.

a NE step matrix. The augmentation matrix associated with the strict chain has
a one iff the two step matrices have a one in the same position. Only the elements
corresponding with a one in the augmentation matrix can be used to extend the
strict chain into a larger strict chain. The augmentation matrix corresponding
to the strict chain ({2, 3), (4, 5)} is represented in Table 4. Propositions 2 and 3
transpose immediately to strict chains.

2.3 Alignments of two strings

An alignment of a sequence of m1 letters and a sequence of m2 letters is “a way
of pairing up elements of the two strings, optionally skipping some elements but
preserving the order” (Covington, 2004).

Alignments can be represented as follows. Consider for instance a sequence of 4
letters A, B, C, D and a sequence of 3 letters X, Y, Z. An example of an alignment
is given in Table 5.

A − B C − D
− X Y − Z −

Table 5: An alignment of strings ABCD and XYZ matching only B and Y

Letters in the same column are matched (or paired up). A letter in the same
column as “−” is unmatched. The sign “−” denotes a skip (Covington, 2004), for
obvious reasons. In the example of Table 5, only B and Y are matched.

Another alignment that matches the same letters is represented in Table 6.
In the sequel, we shall consider alignments that match the same subsets of letters
as equivalent. This corresponds to the “different middle set” of alignments in
Covington (2004, Section 7). In other words, we call assignment a function a from
a subset of [m1] to a subset of [m2] respecting the orders on [m1] and [m2], i.e., if
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− A B − C D
X − Y Z − −

Table 6: Another alignment of strings ABCD and XYZ also matching only B and
Y

x, y belong to the domain of a and x < y, then a(x) < a(y). Note that the latter
property implies that the function is injective.

Remark 1
With such a definition of an assignment, note that the only thing that matters
for describing an alignment is the set of matched pairs of letters. The represen-
tation in Table 5 is conventional: one starts by putting a “−” sign in the column
of unmatched letters in the first string preceding a matched pair, then we do the
same for unmatched letters in the second string. Adopting this convention of rep-
resentation, we may thus unequivocally describe an alignment by the assignment
function a, i.e., by listing the pairs it matches. For instance, the alignment in
Table 5 is {(B, Y )}. •

2.3.1 Alignments and strict chains

In the alignment example in Table 5, the only pair that is matched is (B,Y),
the second letter in the string ABCD with the second in the string XYZ. Let us
interpret the pair (B,Y) as a strict antichain in the Cartesian product of the set
of string letters, ordered alphabetically. We may alternatively code the letters as
numbers : [4] coding the letters A, B, C, D; [3] coding the letters X,Y,Z. Since we
consider (2, 2) = (B,Y) as the only pair in the strict chain, we have that a pair
incomparable to (2, 2) may not be added to the strict chain; such pairs correspond
to illegal matchings given that B and Y are matched. Such pairs are represented
by a 0 in the matrix in Table 7. The 0’s in this matrix are the union of the 0’s in
the NE and the SW step matrices associated with the strict chain.

The alignment above is not maximal. It can be augmented by matching A with X
and C with Z or D with Z.

Conversely, we may interpret any strict chain as an alignment. Consider e.g., the
strict chain {(2, 3), (4, 5)} in [5] × [6]. Interpreting [5] (resp. [6]) as the string
ABCDE (resp. UVWXYZ), the strict chain {(2, 3), (4, 5)} can be interpreted as
the alignment in Table 8.

The augmentation matrix in Table 9 indicates that the alignment {(B,W), (D,Y)}
can be augmented by matching A with U or V, matching C with X, and matching
E with Z.
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X Y Z
1 2 3

A 1 0 0
B 2 0 0 0
C 3 0 0
D 4 0 0

Table 7: Augmentation matrix associated with an alignment (represented by bold-
face 0). The empty cells correspond to possible positions for augmenting the align-
ment.

A − − B C − D E −
− U V W − X Y − Z

Table 8: Alignment corresponding to the strict chain {(2, 3), (4, 5)}

U V W X Y Z
1 2 3 4 5 6

A 1 0 0 0 0
B 2 0 0 0 0 0 0
C 3 0 0 0 0 0
D 4 0 0 0 0 0 0
E 5 0 0 0 0 0

Table 9: Augmentation matrix corresponding with alignment in Table 8

2.3.2 Alignments without alternate skips and maximal strict chains

Covington (2004) considered different types of restrictions on alignments. Among
them, the “small set” of alignments consists of alignments without alternate skips.
Alternate skips are a succession of two skips, denoted by a − sign, one letter
skipped in the first string followed by one in the second string.

For example, in the alignment in Table 8, A is skipped and U is skipped just after.
Similarly, C and X are successively skipped, as well as E and Z. The corresponding
alignment thus does not belong to the “small set”. In terms of strict chains, the
existence of alternate skips means that the chain can be augmented by adding the
pair of consecutive skipped elements from the two strings; this strict chain is not
maximal. Conversely, if a strict chain is not maximal, it can be augmented, which
implies the existence of alternate skips. Indeed, by the representation convention
of alignments using skips (“−”), before the first matching (resp. between any two
consecutive matchings, after the last matching), all skipped letters from String 1
are first listed, then all skipped letters from String 2 are listed. The absence of
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alternate skips means that only letters of one string are skipped before the first
matching (resp. between any two consecutive matchings, after the last matching).
This implies that the alignment cannot be augmented. This proves the following
proposition.

Proposition 4
An alignment can be augmented iff there are alternate skips.

Proposition 5
An alignment has no alternate skips iff the corresponding strict chain is maximal.

Proof. By the previous proposition, an alignment is maximal iff it has no alter-
nate skips. Clearly, a maximal alignment corresponds to a maximal strict chain. 2

Remark 2
A direct correspondence between alignments and antichains is obtained by num-
bering the elements of one of the strings in reverse order. For instance, in the
example in Table 8, we may number Z (resp. Y, X, W, V, U) by 1 (resp. 2, 3, 4, 5,
6). The alignment BW and DY thus corresponds to the antichain {(2, 4), (4, 2)}. •

2.4 Words using an alphabet of three letters

We consider words composed by using three distinct letters. Let us use the letters
h, v, d (for reasons that will become clear later).

2.4.1 Alignments and words

An alignment can be bijectively associated with a word based on an alphabet of
three letters h, v, d. Each column (in the representation illustrated in Table 5) is
coded as a letter: v (resp. h) represents a column with a letter in the first (resp.
second) row and a skip “−” in the second (resp. the first) row; letter d represents
a column matching two letters. The example in Table 5 is thus represented by the
word vhdvhv. The one in Table 8 is represented by the word vhhdvhdvh.

The alignments corresponding to a word without consecutive vh or hv are called
alignments without alternate skips ; they form the “small set” of alignments accord-
ing to Covington (2004). They are alignments in which an unmatched letter in the
first sequence is not followed by an unmatched letter in the second sequence and
vice versa. The above observations are summarized in the following proposition.

Proposition 6
Alignments in Covington’s “different middle set” are uniquely represented by a
word composed of the letters h, v, d. The letter d represents a matched pair in the
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two sequences, while h (resp. v) means that a letter from the first (resp. second)
string is skipped. In order to guarantee that the representation of an alignment by
a word is unique, it is agreed that between two consecutive occurrences of d, all the
v’s come first followed by all the h’s; the same holds before the first (resp. after
the last) occurrence of a d. The number of letters in the word is the sum of the
numbers of unmatched letters in the two strings and the number of matched pairs
of letters.

Alignments in Covington’s “small set” are uniquely represented by a word composed
of the letters h, v, d in which the sequences hv and vh never show up.

2.4.2 Strict chains and words via grid lines

Consider the matrix of a strict chain such as {(2, 3), (4, 5)} in [5]× [6], represented
in Figure 1. Looking at the grid containing the elements of the matrix, we aim
to describe a grid line starting from the grid’s NW corner, ending up in the grid’s
SE corner, and separating the cells with first coordinate not smaller and second
coordinate not larger than those of an element in the chain, i.e., the elements in
the SW region determined by the chain, from the other cells. We may describe
the line as a sequence of vertical downward moves and horizontal rightward moves,
which we denote by v and h, respectively. The sequence corresponding to the line
delimiting the SW region delimited by the strict chain {(2, 3), (4, 5)} in Figure 1
is vhhhvvhhvvh. For turning the “corner” determined by an element of the strict
chain, the line performs a h-move followed by a v-move. We substitute all hv sub-
sequences with a d-move, which can be interpreted as a diagonal move crossing
the cell containing an element of the strict chain. This yields the following word
describing the line represented in Figure 1: vhhdvhdvh.

Figure 1: Matrix of strict chain {(2, 3), (4, 5)} represented in Table 9. The boldface
grid line separates the SW region determined by the chain from the other cells.

The following proposition is easy to prove.
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Proposition 7
Any strict chain in [m1]×[m2] determines a SW step matrix formed of the elements
of [m1]×[m2] that have first coordinate not smaller and second coordinate not larger
than those of an element in the chain. Conversely, any SW step matrix corresponds
to a strict chain of [m1]× [m2]. The elements of the strict chain are the noses of
the SW step matrix.

The grid line separating the SW step matrix associated with a strict chain is
uniquely described by a word composed of the letters h, v, d, in which the sequence
hv does not appear. The d’s correspond to the elements of the strict chain (and the
noses of the step matrix). This means that between two consecutive occurrences
of d’s all v’s come first, followed by the h’s; the same holds before the first (resp.
after the last) occurrence of a d.

Proposition 8
A strict chain is maximal iff its associated (h, v, d)-word does not contain the se-
quence vh.

Proof. If the word associated with a strict chain contains the sequence vh, this
sequence can be replaced by d. The corresponding cell in the matrix is an element
that can be added to the chain. Indeed, assume that the sequence vh occurs
between two consecutive d’s. Let the smallest (resp. largest) of the d’s correspond
to the chain element of coordinates (x1, x2) (resp. (y1, y2)). The presence of the
sequence vh in between implies that y1 ≥ x1 + 2 and y2 ≥ x2 + 2. Therefore,
adding (x1+1, x2+1) to the chain yields a longer chain. A similar reasoning holds
in case vh occurs before (resp. after) the first (resp. last) d in the word.
Conversely, if the strict chain is not maximal, an element can be added between
two consecutive elements of the chain (or before the first one or after the last
one). Using the same reasoning as above, in reverse order, shows that the grid line
associated with the chain must contain a vh sequence. 2

2.4.3 Antichains and words via grid lines

The grid line associated with an antichain separates the cells either belonging
to the antichain or corresponding to elements >∗-dominating an element in the
antichain from the rest of the elements of [m1] × [m2]. For the example of the
antichain {(2, 4), (4, 2)} in [5] × [6], the grid line is represented in Figure 2. It
separates the SE region determined by the antichain from the complementary NW
region. The grid line starting from the NE corner ends up in the SW corner of
the grid. It can be described by a (h, v, d)-word where h represents a leftward
horizontal move, v a downward vertical move, and d an anti-diagonal move. In the
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case of the example illustrated in Figure 2, the grid line is represented by the word
vhhdvhdvh. This is exactly the same word as that representing the dual strict
chain {(2, 3), (4, 5)}, but the meaning of h and d is different.

Figure 2: Matrix of antichain {(2, 4), (4, 2)} in [5] × [6]. The boldface grid line
separates the SE region determined by the chain from the other cells.

In a similar way as for strict chains, we have the following proposition.

Proposition 9
An antichain is maximal iff its associated (h, v, d)-word does not contain the se-
quence vh.

2.5 Walks on a grid

In the previous section, words of two or three letters were associated to strict
chains or antichains. This is done by constructing matrices associated with chains
or antichains and considering lines separating some sets of cells in the matrix (grid
lines). In this section, we analyze the relationships between certain walks on a grid
(or lattice paths3 strict chains or antichains in a product of chains. In contrast
with the previous section we directly consider grids and certain walks on grids,
without referring to matrices.

3Lattice paths have been studied for a long time (see, e.g., Mohanty, 1980). A lattice path in
the d-dimensional integer lattice Zd with steps in the set S, is a sequence of vectors v0, v1, . . . , vk ∈
Zd such that each consecutive difference vi − vi−1 lies in S (Stanley, 2011, p.21). Various
additional constraints can be imposed on the considered lattice paths. For instance, a Dyck path
is a lattice path starting in (0, 0), ending in (n, n), composed of (1, 0) and (0, 1) steps, which
never crosses the diagonal y = x but may touch it. Dyck paths are counted by the Catalan
numbers (see, e.g., Stanley, 1999).
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2.5.1 Walks and strict chains

Consider the integer grid from (0, 0) to (m1,m2). We are interested in walks
starting from (0, 0) and ending up in (m1,m2) with the property that each step in-
creases one coordinate by one unit while leaving the other coordinate unchanged.
A step may thus be denoted by h′ (resp. v′) if it increases the first (resp. sec-
ond) coordinate by one unit (we use a different notation in order to avoid con-
fusion with the h, v used before; the relationships between these notations will
be analyzed below). For example, Figure 3 displays a grid walk from (0, 0)
to (6, 5), which reads h′v′v′h′h′v′h′v′h′h′v′. Clearly, the sequence of endpoints
of the walk steps forms a chain in [m1] × [m2]. In Figure 3, this sequence is
{(1, 0), (1, 1), (1, 2), (2, 2), (3, 2), (3, 3), (4, 3), (4, 4), (5, 4), (6, 4), (6, 5)}. We have the
following result.

Proposition 10
The endpoints of all subsequences h′v′ in a walk from (0, 0) to (m1,m2) define a
strict chain in [m1]× [m2]. Such a strict chain is maximal iff no subsequence v′h′

disjoint from the h′v′ subsequences appears in the walk .

Proof. Let (xi, yi), i ∈ [k], for some integer k, be such endpoints numbered in
the order in which the corresponding h′v′ subsequences occur in the walk. Each
such endpoint ≫∗-dominates the previous one and is ≫∗-dominated by the next
one. If a v′h′ subsequence occurs in the walk, then the endpoint of the subsequence
v′h′ can be added to the strict chain making it a strict chain with more elements.
Conversely, if the strict chain (xi, yi), i ∈ I is not maximal, an element (x, y) can
be added to the chain. The number x is in one of the following three positions:
1) x < x1; 2) xi < x < xi+1 for some i ∈ [k − 1]; 3) xk < x. Let us consider the
second case (the others are dealt with similarly). Since xi < x < xi+1, we must
have yi < y < yi+1, otherwise, (x, y) would be incomparable either to (xi, yi) or to
(xi+1, yi+1). As a consequence, we have xi+1 ≥ xi+2 and yi+1 ≥ yi+2. Therefore,
there is at least one subsequence v′h′ between the h′v′ subsequences corresponding
to (xi, yi) and (xi+1, yi+1). 2

Figure 3 displays an example of a grid walk from (0, 0) to (6, 5). The endpoints
of h′v′ subsequences form the strict chain {(1, 1), (3, 3), (4, 4), (6, 5)}. This chain
is not maximal, since (2, 2) could be added to the chain. This element is the
endpoint of a v′h′ subsequence in the walk, namely (1, 1), (1, 2), (2, 2). The dashed
lines mark the h′v′ subsequences in the walk. These subsequences could be replaced
by a diagonal move d′, playing a similar role to the d in the words of three letters
described in Section 2.4.1. The walk in Figure 3 could be described by the word
d′vhd′d′hd′.
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(1, 1)

(3, 3)

(4, 4)

(0,0) 1 2 3 4 5 6

1

2

3

4

5
(6,5)

Figure 3: A grid walk from (0, 0) to (6, 5). The strict chain
{(1, 1), (3, 3), (4, 4), (6, 5)} is not maximal because it has a v′h′ subsequence
(namely (1, 1), (1, 2), (2, 2)) disjoint from all h′v′ subsequences.

Remark 3
In Proposition 10, we associate a strict chain to a walk by focusing on the endpoints
of h′v′ subsequences. Alternatively, we could focus on the endpoints of v′h′ subse-
quences. They define another strict chain which is maximal iff the walk has no h′v′

subsequence disjoint from the v′h′ subsequences. In Figure 3, the strict chain asso-
ciated with endpoints of v′h′ subsequences is {(2, 2), (4, 3), (5, 4)}. There are two
h′v′ subsequences disjoint from the v′h′ subsequences : {(0, 0), (1, 0), (1, 1)} and
{(5, 4), (6, 4), (6, 5)}. Two elements can be added to the strict chain {(2, 2), (3, 3), (4, 4)},
namely, (1, 1) and (6, 5). Note also that any strict chain can be associated with a
walk by adopting one or the other convention. For instance, the strict chain repre-
sented by the blue bullet points in Figure 3 can alternatively be obtained by apply-
ing the other convention to another walk : the walk obtained by replacing each h′v′

subsequence by a v′h′ subsequence and conversely for the subsequences v′h′ disjoint
from the h′v′ subsequences. The walk (0, 0), (0, 1), (1, 1), (2, 1), (2, 2), (2, 3), (3, 3),
(3, 4), (4, 4), (4, 5), (5, 5), (6, 5) determines the strict chain represented by the blue
bullet points in Figure 3 if we consider the endpoints of the v′h′ subsequences of
the walk. •

Remark 4
The moves represented by the letters h (resp. v) and h′ (resp. v′) in Figures 1 and 3
are the same. The points in the grids are just numbered in different ways in these
figures. Therefore, the grid walks in Figure 1 start from the NW corner and end
up in the SE corner while in Figure 3, they start from the SW corner and end up
in the NE corner. •
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2.5.2 Walks and antichains

Consider a walk starting from (0,m2) and ending up in (m1, 0). Moves h′ (resp.
v′) increase (resp. decrease) the first (resp. second) coordinate by one unit. A walk
in [m1]× [m2] is described by a sequence of h′ and v′ moves. The endpoints of h′v′

subsequences form an antichain in [m1] × [m2]. Such an antichain is maximal iff
the walk has no v′h′ subsequence disjoint from the h′v′ subsequences. This result
is established as Proposition 10. A similar result holds if we define the elements
of an antichain as the endpoints of v′h′ subsequences of a walk.

(1, 4)

(3, 2)

(4, 1)

(0,0)

(0,5)

1 2 3 4 5 6

1

2

3

4

5
(6,5)

(6,0)

Figure 4: A grid walk from (0, 5) to (6, 0). The antichain {(1, 4), (3, 2), (4, 1), (6, 0)}
is not maximal because it has a v′h′ subsequence

Figure 4 represents the grid walk obtained from that in Figure 3 by replacing the
second coordinate x2 of its points with its complement to m2, i.e., 5 − x2. The
elements of the associated antichains are the endpoints of the h′v′ subsequences.
The antichain is not maximal; it can be augmented with (1, 3), the endpoint of
the sole v′h′ subsequence that is disjoint from the h′v′ subsequences.

2.6 Summary

The present section has established correspondences between antichains (resp.
maximal antichains) in the product of two chains and a number of different objects.
Table 10 summarizes these correspondences.
We established such correspondences with most mathematical objects listed in
relation with Sequence A171155 in OEIS (2024) up to September 1, 2024. In
order to prove these correspondences, we introduced some new (as far as we know)
mathematical objects such as the augmentation matrix of an antichain or of a
strict chain (Sections 2.2.1 and 2.2.2. We reused the notion of nose of a step
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Object Additional property
antichain maximal
strict chain maximal
alignment of two strings without alternate skips
(h, v, d)-words without hv without vh
set of noses of a step matrix grid line has no vh
endpoints of h′v′ subsequences in a walk without v′h′ subsequence disjoint

from the h′v′ subsequences

Table 10: Correspondences

matrix (which plays an important role in the numerical representation theory of
semiorders (Balof, Doignon, and Fiorini, 2013, Pirlot, 1990), associating them
with elements of a strict chain (Proposition 7), with d-letters of words representing
certain alignments, or with diagonal d-moves in grid lines (Section 2.4.3).

There is a mathematical object mentioned in relation with OEIS sequence A171155
for which we have no correspondence, namely, “the number of walls of height 1 in
bargraphs with semiperimeter n ≥ 2” (see Blecher, Brennan, and Knopfmacher,
2017, for definitions). Bargraphs are a special type of lattice paths. A single
bargraph may have several walls of height one (or none). Hence, if a correspondence
does exist with the sort of lattice paths or the sort of words we considered, it cannot
be one-to-one. We do not investigate this issue further here.
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3 Counting maximal antichains in products of

two chains

The number of antichains is well-known. We recall one way of enumerating them in
Section 3.1. Counting maximal antichains is more difficult. In this section, we pro-
vide different ways of counting antichains (resp. maximal antichains) in products
of two chains, by using some of the correspondences described in Section 2.

3.1 Number of antichains

We denote the number of antichains in [m1] × [m2] by dE(m1,m2). Clearly,
dE(m1,m2) = dE(m2,m1). This number is equal to the number of walks in Z2

from (0,m1) to (m2, 0). Any such walk has m1 horizontal steps h
′ and m2 vertical

steps v′. Therefore, the number of such walks is

dE(m1,m2) =

(
m1 +m2

m1

)
(1)

When m1 = m2, this is sequence A000984 in OEIS (2024). One can find there a
large number of mathematical objects that can be counted by the above formula
with m1 = m2 = m.

3.2 Number of maximal antichains

We denote by dF (m1,m2) the number of maximal antichains in [m1] × [m2]. As
for antichains, this function is symmetric in its two variables.

3.2.1 Heinz’s expression

An expression (stated by Alöıs P. Heinz) for the number dF (m,m) can be found in
the On-line Encyclopedia of Integer Sequences OEIS (2024), Sequence A171155:
for all m ∈ N,

dF (m,m) =
1

m
[(4m− 3)dF (m− 1,m− 1)− (2m− 5)dF (m− 2,m− 2)

+ dF (m− 3,m− 3)− (m− 3)dF (m− 4,m− 4)]. (2)

This expression is computationally efficient, but, unfortunately, no proof is avail-
able4.

4Heinz (2021) wrote us that he most probably found this formula by using computer programs.
He doesn’t know of a formal proof
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3.2.2 An explicit expression

The following formula is obtained by counting the (h, v, d)-words of 2m letters
without hv nor vh subsequences. By Proposition 9, this number is equal to the
number of maximal antichains.

Proposition 11
For m ∈ N,

dF (m,m) =1 + 2

⌊ 2m−1
3

⌋∑
k=1

k∑
t=1

(
m− k − 1

⌊ t
2
⌋

)(
m− k − 1

⌊ t−1
2
⌋

)(
2m− k − t

k − t

)

+ 2
m−1∑

k=⌊ 2m−1
3

⌋+1

2m−2k−1∑
t=1

(
m− k − 1

⌊ t
2
⌋

)(
m− k − 1

⌊ t−1
2
⌋

)(
2m− k − t

k − t

)
.

(3)

Proof. See Appendix A for a proof of this formula. 2

We illustrate the use of Formula (3) for m = 7 in Appendix B. This expression is
probably not very efficient from a computational viewpoint. Note that a similar
expression has been provided by Thomas Baruchel (November 9, 2014) on OEIS
(2024), seq. A171155.

3.2.3 A double recurrence for dF (m1,m2)

Let dhF (m1,m2) denote the number of walks in Z2 from (0,m1) to (m2, 0) such that
the first step is h. Such walks consist of h, v and d moves with the constraint that
an h move cannot be followed by a v move and a v move cannot be followed by a
h move.

Proposition 12
For m1,m2 ∈ N,{

dF (m1,m2) = dhF (m1,m2) + dhF (m2,m1) + dF (m1 − 1,m2 − 1);
dhF (m1,m2) = dF (m1 − 1,m2)− dF (m1 − 1,m2 − 1) + dhF (m1 − 1,m2 − 1).

(4)

Proof. Proposition 12 is established in Appendix C. 2

This double recurrence is computationally less (resp. more) efficient than Heinz’s
expression (resp. Expression (3)). In Appendix D, Table 12 (resp. Table 13) dis-
plays dF (m1,m2) (resp. d

h
F (m1,m2)) up to m1,m2 = 8.
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3.2.4 A simple recurrence for dF (m1,m2)

For all m1,m2 ∈ N,

dF (m1,m2) = dF (m1 − 1,m2 − 1) +

m1−2∑
i=0

dF (i,m2 − 1) +

m2−2∑
i=0

dF (m1 − 1, i). (5)

Proof. Let A be the set {(1, i) : i ∈ [m2]} ∪ {(i,m2) : i ∈ [m1]} Let us first
prove that a maximal antichain in [m1] × [m2] necessarily intersects A. Suppose
for contradiction that s is a maximal antichain not intersecting A. Notice that
(1,m2) ∈ A is incomparable to all elements in s. Then the set s ∪ {(1,m2)} is
also an antichain and, hence, s is not maximal. This proves our claim. Since all
elements of A are comparable, each maximal antichain in [m1]× [m2] contains only
one element of A. Moreover, it is easy to see that each element of A is contained
in at least one maximal antichain.

Since each maximal antichain contains one and only one element of A, we can
partition the set of maximal antichains according to the element of A that they
contain. This partition has m1+m2−1 elements. In order to count the number of
maximal antichains, we can add the number of maximal antichains in each element
of the partition. Consider any a ∈ A. There are three exclusive possible cases.

• a = (1,m2). The set of elements incomparable to (1,m2) is [2,m1]× [1,m2−
1], where [a, b] = {i ∈ N : a ≤ i ≤ b}. The number of maximal antichains
containing a is therefore the number of maximal antichains in the poset
[2,m1] × [1,m2 − 1] which is also the number of maximal antichains in the
poset [m1 − 1] × [m2 − 1], that is dF (m1 − 1,m2 − 1). This corresponds to
the first term in (5).

• a = (a1,m2) with a1 ∈ [2,m1]. The set of elements incomparable to (a1,m2)
is [a1 + 1,m1] × [1,m2 − 1]. The number of maximal antichains containing
a is therefore the number of maximal antichains in the poset [a1 + 1,m1] ×
[1,m2 − 1] which is also the number of maximal antichains in the poset
[m1 − a1] × [m2 − 1]. Depending on a1, this varies from dF (0,m2 − 1) to
dF (m1 − 2,m2 − 1). This corresponds to the second term in (5).

• a = (1, a2) with a2 ∈ [m2− 1]. The set of elements incomparable to (1, a2) is
[2,m1]× [1, a2−1]. The number of maximal antichains containing a is there-
fore the number of maximal antichains in the poset [2,m1]× [1, a2−1] which
is also the number of maximal antichains in the poset [m1 − 1] × [a2 − 1].
Depending on a2, this varies from dF (m1 − 1, 0) to dF (m1 − 1,m2 − 2). This
corresponds to the third term in (5). 2
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4 Asymptotic result

This section uses Heinz’s result (2) for which no proof is available.

The ratio dF (m+1,m+1)/dF (m,m) lies between 3 and 3.2 for m ∈ {5, 6, 7}. More
generally, for all l ≥ 3 and m ∈ {l−2, l−1, l}, the ratio dF (m+1, 2)/dF (m, 2) lies
between some reals al and bl. Put differently, for all l ≥ 3 and m ∈ {l− 2, l− 1, l},

dF (m+ 1,m+ 1)/bl ≤ dF (m, 2) ≤ dF (m+ 1, 2)/al.

So, using Heinz’s expression, we can write an upper bound for mdF (m,m), for all
m ≥ 3:

mdF (m,m) = (4m− 3)dF (m− 1,m− 1)− (2m− 5)dF (m− 2,m− 2)

+dF (m− 3,m− 3)− (m− 3)dF (m− 4,m− 4)

≤ (4m− 3)dF (m− 1,m− 1)− (2m− 5)dF (m− 1,m− 1)/al

+dF (m− 1,m− 1)/b2l − (m− 3)dF (m− 1,m− 1)/a3l

=

(
(4m− 3)− 2m− 5

al
+

1

b2l
− m− 3

a3l

)
dF (m− 1,m− 1).

This implies

dF (m,m)

dF (m− 1,m− 1)
≤ 4m− 3

m
− 2m− 5

mal
+

1

mb2l
− m− 3

ma3l

and

lim
m→∞

dF (m,m)

dF (m− 1,m− 1)
≤ 4− 2

al
− 1

a3l
.

This expression provides the tightest upper bound for dF (m,m)/dF (m− 1,m− 1)
when al is as small as possible. This occurs when

al = 4− 2

al
− 1

a3l
.

This equation has two real roots: 1 and

ρ =
1

3

(
3 +

3

√
54− 6

√
33 +

3

√
6(9 +

√
33)

)
.

The first root is not a solution to our problem because it would imply that dF (m,m)
does not grow with m. So, the only feasible solution is ρ.
If we write a lower bound for mdF (m,m) and follow the same reasoning as above,
we obtain also ρ for bl. We can therefore conclude that

lim
m→∞

dF (m,m)

dF (m− 1,m− 1)
= ρ ≈ 3.38.
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For the number of antichains, we can also compute the ratio dE(m + 1,m +
1)/dE(m,m). It is equal to(

2(m+1)
m+1

)(
2m
m

) =
(2m+ 2)(2m+ 1)

(m+ 1)2
.

In the limit, this ratio is equal to 4. We can therefore conclude that

lim
m→∞

dF (m,m)

dE(m,m)
= 0.

Provided Heinz’s formula is correct, this shows that the number of maximal an-
tichains is much less than the number of antichains, for large m.

Appendix

A Proof of Proposition 11

Proposition 9 implies that the number of maximal antichains dF (m,m) in a prod-
uct of two chains [m]× [m] is equal to the number of words involving three letters
d, h, v with the constraint that hv and vh are forbidden sequences of two consec-
utive letters. Such words involve k letters d and an equal number l of h and v
letters with 2k + 2l = 2m or k + l = m. How many words of that type are there
for fixed m?

We distinguish (and will count) the words by grouping them in subsets involving
the same numbers of each of the three letters. A subset of this type is described
by a formula such as k × d+ l × h+ l × v.

Example 1
Let us consider for instance the case m = 7. The following subsets of words may
be distinguished:

• 7d

• 6d+ 1h+ 1v

• 5d+ 2h+ 2v

• 4d+ 3h+ 3v

• 3d+ 4h+ 4v

• 2d+ 5h+ 5v
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• 1d+ 6h+ 6v

There are no legal words involving no d letter. Also it is easy to count the words
of the first type 7d: there is only one. For the six other types, there is a symmetry
between words in which the first non d letter is h or is v. We shall count those
words in which the first non d letter is h and double the count. Therefore, the
counts of the 6 latter types are even numbers. Since there is only one word of the
first type, the total count is always an odd number. 3

We use the following idea for counting words of each type. Ignoring the d letters at
first glance, we count the possible sequences of h and v letters in a word. We call
such a sequence a schema. By hypothesis, we count only the schemas starting with
h letter and we double the count afterwards. We call transition a subsequence of
consecutive hv or vh. In the complete word, each transition must be separated by
a d letter. Therefore, the number of transitions in a word must be at most the
number k of d letters. This number is also bounded by the number of transitions
that can be obtained using l letters h and l letters v, i.e., 2l − 1. The number of
transitions t in a word thus satisfies

t ≤ min(k, 2l − 1). (6)

In the middle of each transition, we need to put a letter d. We then remain with
k− t letters d and we have to count the manners they can be inserted in the word.
This is the counting strategy we apply. We illustrate it with two examples.

Example 2
Let us take for example the type 4d + 3h + 3v for m = 7. There may be up to 4
transitions since 4 = min(k, 2l − 1) = min(4, 5). We count the schemas and the
ways of inserting d’s in the schemas for t = 1, 2, 3, 4 transitions. Remember that
we count the schemas starting with h and then double the count.

1 transition The 3 h must be before the 3 v; there is only one schema: hhhvvv.
One d is used to separate the only transition: hhhdvvv. Then there are 7
positions in which the remaining 3 d’s can be inserted. Several ones can be
inserted in the same position. The formula to be used is that of combinations
with repetitions. We have to chose 3 chocolates from 7 sorts. The number
is
(
7+3−1

3

)
=

(
9
3

)
= 84.

2 transitions To count the schemas, we have to count the number of ways of
inserting 1 h and 2 v’s into hvh without creating additional transitions.
Thus the h must be inserted together with the h’s and the v’s with the v.
There are 2 possibilities for inserting h and 1 for the v’s. In each of the
two possible schemas hhvvvh and hvvvhh, we need 2 d’s for separating the
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two transitions. The number of ways of inserting the two remaining d’s is(
7+2−1

2

)
=

(
8
2

)
= 28. This number multiplied by the number of schemas

makes 56.

3 transitions To insert one h and one v into hvhv, we have 2×2 = 4 possibilities
hence 4 schemas. We use three d’s for separating the transitions. One d
remains to be inserted; there are

(
7+1−1

1

)
=

(
7
1

)
= 7 ways of doing this. The

count for this case is thus 4× 7 = 28.

4 transitions We have to insert one v into hvhvh; there are thus 2 schemas. All
four d’s are used to separate the transitions. The total count is thus 2.

Summing up, we have (84 + 56 + 28 + 2) × 2 = 340 words satisfying the formula
4d+ 3h+ 3v. 3

Example 3
Let us take another example : 5d + 2h + 2v. The number of transitions here is
bounded by min(5, 4− 1) = 3.

1 transition There is only one way of inserting an additional h and an addi-
tional v in the sequence hv. Thus, only one schema : hhvv. One d is used;
we need to count the ways of inserting the remaining four d’s (choosing 4
chocolates). There are 5 possible positions (sorts of chocolates). The number
of possibilities is

(
5+4−1

4

)
=

(
8
4

)
= 70.

2 transitions There is one way of inserting an additional v into hvh. So, one
schema. The number of possibilities for inserting the three remaining d’s is(
5+3−1

3

)
= 35.

3 transitions There is only one schema : hvhv. It uses 3 out of the 5 d’s. There
are

(
5+2−1

2

)
= 15 ways of inserting the remaining 2 d’s.

The total count of the words of the type 5d+2h+2v is (70+35+15)×2 = 240. 3

We now apply our counting strategy in the general case. We want to count the
number of words of type kd + lh + lv. The number of transitions is bounded by
min(k, 2l − 1).

We distinguish the cases in which t is even or odd.

t = 2t′ is even The alternate sequence of h’s and v’s that determine the 2t′ tran-
sitions involves t′+1 letters h and t′ letters v. We have to count the number
of ways of inserting the remaining l − t′ − 1 letters h and the remaining
l − t′ letters v. For the h’s, we have to insert (possibly with repetitions)
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l − t′ − 1 letters in the t′ + 1 positions already held by the h’s. There are(
(l−t′−1)+(t′+1)−1

(l−t′−1)

)
=

(
l−1
t′

)
ways of doing that (note that the chocolates here

are the l− t′−1 remaining h’s, to be chosen among t′+1 sorts of chocolates).
Similarly, there are

(
(l−t′)+(t′)−1

(l−t′)

)
=

(
l−1
t′−1

)
ways of inserting the remaining t′

letters v. The number of schemas is thus(
l − 1

t′

)
×
(
l − 1

t′ − 1

)
.

t = 2t′ − 1 is odd The alternate sequence of h’s and v’s that determine the 2t′−1
transitions involves t′ letters h and t′ letters v. The number of schemas in
this case is thus: (

l − 1

t′ − 1

)
×
(
l − 1

t′ − 1

)
.

The following expression for the number of schemas covers both the cases of t even
and odd: (

l − 1

⌊ t
2
⌋

)
×
(
l − 1

⌊ t−1
2
⌋

)
.

For t transitions, we use t out of the k letters d that are available. The number
of ways of inserting the remaining k − t letters d into the 2l + 1 positions in the
schemas is

(
(2l+1)+(k−t)−1

k−t

)
=

(
2l+k−t
k−t

)
.

The number of words of type kd+lh+lv, with t transitions (1 ≤ t ≤ min(k, 2l−1))
is

2×
(
l − 1

⌊ t
2
⌋

)
×
(
l − 1

⌊ t−1
2
⌋

)
×

(
2l + k − t

k − t

)
.

Since l, k and m are linked by k + l = m, we eliminate l. The above formula
becomes:

2×
(
m− k − 1

⌊ t
2
⌋

)
×
(
m− k − 1

⌊ t−1
2
⌋

)
×
(
2m− k − t

k − t

)
,

for 1 ≤ t ≤ min(k, 2m− 2k − 1).
For k ≤ 2l− 1 = 2m− 2k − 1, the number of transitions t varies from 1 to k. For
larger values of k, t is bounded by 2l− 1. Solving the inequality k ≤ 2m− 2k − 1
yields k ≤ 2m−1

3
. So, the formula for dF (m,m) reads as follows :

dF (m,m) =1 + 2

⌊ 2m−1
3

⌋∑
k=1

k∑
t=1

(
m− k − 1

⌊ t
2
⌋

)(
m− k − 1

⌊ t−1
2
⌋

)(
2m− k − t

k − t

)

+ 2
m−1∑

k=⌊ 2m−1
3

⌋+1

2m−2k−1∑
t=1

(
m− k − 1

⌊ t
2
⌋

)(
m− k − 1

⌊ t−1
2
⌋

)(
2m− k − t

k − t

)

25



B Using Formula (3) for m = 7

We use Formula (3) to compute dF (7, 7) = 817 (Table 11).

k t # words count total ×2

1 1
(
5
0

)(
5
0

)(
12
0

)
1 2

2 1
(
4
0

)(
4
0

)(
11
1

)
11

2
(
4
1

)(
4
0

)(
10
0

)
4 30

3 1
(
3
0

)(
3
0

)(
10
2

)
45

2
(
3
1

)(
3
0

)(
9
1

)
27

3
(
3
1

)(
3
1

)(
8
0

)
9 162

4 1
(
2
0

)(
2
0

)(
9
3

)
84

2
(
2
1

)(
2
0

)(
8
2

)
56

3
(
2
1

)(
2
1

)(
7
1

)
28

4
(
2
2

)(
2
1

)(
6
0

)
2 340

5 1
(
1
0

)(
1
0

)(
8
4

)
70

2
(
1
1

)(
1
0

)(
7
3

)
35

3
(
1
1

)(
1
1

)(
6
2

)
15 240

6 1
(
0
0

)(
0
0

)(
7
5

)
21 42

7 1

817

Table 11: Computation of dF (7, 7) using formula (3). The number of transitions
is limited by 2m− 2k − 1 = 14− 2k − 1 as soon as k > ⌊2m−1

3
⌋ = 4

C Proof of Proposition 12

For all m,n ∈ N, let dhF (m,n) (resp. dvF (m,n), ddF (m,n)) denote the number of
walks starting with a h (resp. v, d) move. Note that for all m,n ∈ N, dF (m,n) =
dF (n,m) and dhF (n,m) = dvF (n,m). We have:

dF (m1,m2) = dhF (m1,m2) + dvF (m1,m2) + ddF (m1,m2).

Since dvF (m1,m2) = dhF (m2,m1) and ddF (m1,m2) = dF (m1 − 1,m2 − 1), we get:

dF (m1,m2) = dhF (m1,m2) + dhF (m2,m1) + dF (m1 − 1,m2 − 1). (7)

We may also write:

dhF (m1,m2) = dF (m1 − 1,m2 − 1)− dvF (m1 − 1,m2)

= dF (m1 − 1,m2 − 1)− dhF (m2,m1 − 1). (8)
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Applying the same idea to dhF (m2,m1 − 1, we get:

dhF (m2,m1 − 1) = dF (m2 − 1,m1 − 1)− dvF (m2 − 1,m1 − 1)

= dF (m2 − 1,m1 − 1)− dhF (m1 − 1,m2 − 1). (9)

Substituting (9) into (8) yields

dhF (m1,m2) = dF (m1−1,m2−1)−dF (m2−1,m1−1)+dhF (m1−1,m2−1). (10)

This establishes Proposition 12.

D Values obtained by means of the double re-

currence (4)

Using the double recurrence (4), we computed the values of dF (m1,m2) and
dhF (m1,m2) for m1,m2 up to 8 displayed in Tables 12 and 13.

dF m2 = 1 m2 = 2 m2 = 3 m2 = 4 m2 = 5 m2 = 6 m2 = 7 m2 = 8
m1 = 1 1 2 3 4 5 6 7 8
m1 = 2 2 3 5 8 12 17 23 30
m1 = 3 3 5 9 15 24 37 55 79
m1 = 4 4 8 15 27 46 75 118 180
m1 = 5 5 12 24 46 83 143 237 380
m1 = 6 6 17 37 75 143 259 450 755
m1 = 7 7 23 55 118 237 450 817 1429
m1 = 8 8 30 79 180 380 755 1429 2599

Table 12: Values of dF (m1,m2) for m1,m2 = 1, . . . , 8
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dhF m2 = 1 m2 = 2 m2 = 3 m2 = 4 m2 = 5 m2 = 6 m2 = 7 m2 = 8
m1 = 1 0 0 0 0 0 0 0 0
m1 = 2 1 1 1 1 1 1 1 1
m1 = 3 2 2 3 4 5 6 7 8
m1 = 4 3 4 6 9 13 18 24 31
m1 = 5 4 7 11 18 28 42 61 86
m1 = 6 5 11 19 33 55 88 136 204
m1 = 7 6 16 31 57 101 171 279 441
m1 = 8 7 22 48 94 176 314 538 891

Table 13: Values of dhF (m1,m2) for m1,m2 = 1, . . . , 8

28



References

B. Balof, J.-P. Doignon, and S. Fiorini. The representation polyhedron of a semiorder.
Order, 30(1):103–135, 2013.

A. Blecher, C. Brennan, and A. Knopfmacher. Walls in bargraphs. Online journal of
analytic combinatorics, 12(06):11, July 2017.

D. Bouyssou, T. Marchant, and M. Pirlot. ELECTRE TRI-nB, pseudo-disjunctive:
axiomatic and combinatorial results. October 18 2023.

R. Branzei, N. Llorca, J. Sánchez-Soriano, and S. Tijs. A constrained egalitarian solution
for convex multi-choice games. TOP, 22:860–874, 2014.

N. Caspard, B. Leclerc, and B. Monjardet. Finite Ordered Sets: Concepts, Results and
Uses. Number 144 in Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2012. ISBN 978-1-107-01369-8.

M. A. Covington. The number of distinct alignments of two strings. Journal of Quan-
titative Linguistics, 11(3):173–182, 2004.

E. Fernández, J. R. Figueira, J. Navarro, and B. Roy. ELECTRE TRI-nB: A new mul-
tiple criteria ordinal classification method. European Journal of Operational Research,
263(1):214–224, 2017. doi: 10.1016/j.ejor.2017.04.048.

J. Freixas. The Banzhaf value for cooperative and simple multichoice games. Group
Decision and Negotiation, 29:61–74, 2020.

D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15:835–855, 1965.

Michel Grabisch. Remarkable polyhedra related to set functions, games and capacities.
TOP, 24(2):301–326, 2016.

A. Heinz. Private comunication, September 12 2021.

C. R. Hsiao and Y. H. Liao. The potential and consistency property for multi-choice
Shapley value. Taiwanese Journal of Mathematics, 12(2):545–559, 2008.

Chih-Ru Hsiao and T. E. S. Raghavan. Monotonicity and dummy free property for
multi-choice cooperative games. International Journal of Game Theory, 21:301–312,
1992.

G. Mohanty. Lattice path counting and applications. Probability and Mathematical
Statistics Monographs. Academic Press, 1980.

OEIS. The On-line Encyclopaedia of Integer Sequences, Sloane, N. J. A. (Ed.). 2024.
URL https://oeis.org.

M. Pirlot. Minimal representation of a semiorder. Theory and Decision, 28(2):109–141,
1990.

M. Pirlot and P. Vincke. Semiorders: Properties, Representations, Applications. Theory
and Decision Library B. Springer Netherlands, 1997. ISBN 9780792346173.

R. P. Stanley. Enumerative Combinatorics. Volume 2. Number 52 in Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1999.

R. P. Stanley. Enumerative combinatorics: Volume 1. Number 49 in Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2nd edition, 2011.

29


