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Abstract

Refinements of Nash equilibrium hinge on the question: what inferences does a

player draw about her opponent’s future behavior or his type at an information set

that has zero prior probability under the equilibrium. We address this question by

adding, in the spirit of Harsanyi (IJGT, 1973), shocks to the payoffs of each player

at every terminal node, that are independent across players and across nodes, that

have a sufficiently large support, and have a continuous distribution. A behavior

strategy profile b of the unperturbed game is purifiable if there exists some sequence of

distributions, converging weakly to Dirac measures on 0, with a sequence of Bayes Nash

equilibria whose aggregates converge to b. Strategy profile b is strongly purifiable if it

is purifiable for every converging sequence of distributions. If the shocks are restricted

to be also identically distributed for for each player (i.e. they are i.i.d), this yields the

notions of symmetric purification and symmetric strong purification.

First we consider finite games of perfect information with generic payoffs, with a

unique backwards induction (BI) strategy profile. If each player moves at most once

along any path, then the backwards induction strategy profile is strongly purifiable,

and no other strategy profile is purifiable. However, if a player moves more than

once along some path, as in the centipede game, then there may exist purifiable Nash

equilibria that are not subgame perfect. For example, in the perturbed centipede

game, if player 1 does not play the backwards induction action at her initial node, then

player 2 cannot conclude that player 1 will play her backward induction action with

high probability at a subsequent node, even if the payoff shocks are independent and

arbitrarily small. Furthermore, the backwards induction strategy profile is not strongly

purifiable. However, every purifiable profile induces the backwards induction outcome.
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We next consider signaling games. We focus on symmetric purification, and also

assume that our sequence of distributions have thin tails. In the beer-quiche game,

pooling on beer is symmetrically purifiable, while pooling on quiche is not. In gen-

eral, symmetric purification is neither stronger nor weaker than D1. Also, symmetric

purification cannot justify forward induction arguments.

Keywords: Equilibrium refinements, Purification, backward induction, signaling, D1, for-

ward induction.

Preliminary and Incomplete!

0



1 Introduction

Refinements of Nash equilibrium hinge on the question: what inferences does a player draw

about her opponent’s future behavior or his type at an information set that has zero prior

probability under the equilibrium. Classical approaches to this question assume that players

“tremble” in their strategy choices (Selten (1975), Kreps and Wilson (1982), Myerson (1978),

Kohlberg and Mertens (1986)). We address this question by adding, in the spirit of Harsanyi

(1973), shocks to the payoffs of each player at every terminal node, that are independent

across players and across nodes, that have a sufficiently large support, and have a continuous

distributions. We assume that each player observes, at the outset, her vector of shock

realizations but not those of any other player. A strategy for player i, σi, is a mapping from

the space of possible payoff realizations to a (pure) behavior strategy in the unperturbed

game. The aggregate corresponding to σi is the (mixed) behavior strategy b̃i that is obtained

by integrating over i’s payoff shocks. A behavior strategy profile b of the unperturbed game

is purifiable if there exists some sequence of payoff shock distributions F n, converging weakly

to Dirac measures on 0, with a sequence of Bayes Nash equilibria σn whose aggregate profiles

b̃n converge to b. Strategy profile b is strongly purifiable if it is purifiable for every converging

sequence of distributions F n. Our large support assumption implies at any information set,

a player chooses all her actions with positive probability. Since the shocks have a continuous

distribution, a player has a essentially unique best response to any profile of aggregates

b−i played by her opponents. Furthermore, her own aggregate is a continuous function of

b−i, ensuring the existence of a Bayes Nash equilibrium in any finite extensive form game.

Standard arguments ensure the existence of a purifiable strategy profile (but not necessarily

a strongly purifiable one).

Our analysis begins with finite games of perfect information, which can be solved by

backwards induction. Assume generic payoffs, so that no player has equal payoffs at different

terminal nodes. Such games have a unique backwards induction strategy profile, and the

strategic form is dominance solvable. 1 If each player moves at most once along any path, we

find that the backwards induction strategy profile is strongly purifiable, and no other strategy

profile is purifiable. However, if a player moves more than once along some path, as in the

centipede game, then there may exist purifiable Nash equilibria that are not subgame perfect.

For example, in the perturbed centipede game, if player 1 does not play the backwards

induction action at her initial node, then player 2 cannot conclude that player 1 will play

1That is, the backwards induction profile is the unique survivor also of the process of iteratively deleting
weakly dominated strategies.
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her backward induction action with high probability at a subsequent node, even if the payoff

shocks are independent and arbitrarily small. Furthermore, there exist shock sequences such

that the backwards induction strategy profile is not the limit of the equilibrium sequence, and

hence it is not strongly purifiable. However, every purifiable profile induces the backwards

induction outcome.

The negative result for the strong purifiability of the backward induction strategy pro-

file leads us to consider the more restrictive notion of symmetric purification, where the

shocks for a player are also identically distributed across terminal nodes. We can similarly

define strong and weak versions of symmetric purification. We conjecture (but have not

yet proved) that the the backwards induction strategy profile is uniquely symmetrically pu-

rifiable profile (and is hence strongly symmetrically purifiable). Generalizing the class of

games to allow players to move simultaneously, we find that symmetric purification does

not support forward induction arguments. That is, a subgame perfect equilibrium that does

not satisfy forward induction (or the iterative elimination of weakly dominated strategies) is

symmetrically purifiable. However, it is not strongly purifiable.

We next consider signaling games, and on focus on symmetric purification. Our clean-

est results are obtained when we also assume that the distributions of payoff shocks have

thin tails, so that larger shock realizationa become infinitely less likely than smaller shock

realizations as the distribution converges. In the beer-quiche game, pooling on beer is sym-

metrically purifiable, while pooling on quiche is not. In general, symmetric purification is

neither stronger nor weaker than D1 (Banks and Sobel (1987), Cho and Kreps (1987)). In-

deed, it involves considerations that are very different from refinements in signaling games

that place restrictions on beliefs at unreached information sets that are motivated by hypo-

thetical speeches by the deviating type.

2 The model

Our set up covers finite extensive form games with perfect recall which we denote by Γ.

Since the set up is standard, we will be economical in our formalization, and refer the reader

to standard texts such as van Damme (1991) for more details. Let N denote the finite set

of players, and X the finite collection of information sets, each of which contains finitely

many nodes. The collection {Xi}i∈N is partition of X so that exactly one player moves at

each information set. Let W denote the set of terminal nodes and ui : W → R, the payoff

function for player i, is defined for each ı ∈ N . Let Ai denote the set of actions for player i.
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This is partitioned into the sets {Ai(x)}x∈Xi
, so that Ai(x) is the set of actions available at

information set x. A behavior strategy for i, is a function bi : Xi → ∆(Ai), where at each xi,

bi(x) assigns positive probability only to the available actions. The set of behavior strategies

for i is Bi, and b = (bi)i∈N is a behavior strategy profile.

Now consider the perturbed game. The payoffs of each player i at each terminal node w

are augmented by random shock ziw. Each player observes his own vector of shock realiza-

tions at the beginning of the game and does not observe his opponents’ shock realizations.

Shocks for player i have support Zi ⊂ R|W |. We assume that the shock distributions satisfy

the following conditions:

• Independence, across players and terminal nodes.

• They have sufficiently large support, so that all actions have positive probability.

• They are continuous, i.e. have no mass points.

Let F = (Fiw)i∈I,w∈W denote the collection of distributions in the perturbed game, which

we denote by Γ̃(F ) or Γ̃. A behavior strategy for player i in Γ̃ is σi : Xi×Zi → Ai. Since the

support of payoff shocks is large enough, this implies any σi that is not strictly dominated

takes every available action with strictly positive probability at each decision node. σi defines

an aggregate: a completely mixed behavior strategy b̃i ∈ Bi. Our solution concept for Γ̃ is

Bayes Nash equilibrium, which suffices since every decision node inX is reached with positive

probability.

Let 0 denote the null-vector in R|W |×|N |. The unperturbed game Γ corresponds to degen-

erate payoff shocks given by a Dirac measure on 0.

Definition 1. A strategy profile b of the unperturbed game is:

• Purifiable if there exists some sequence of distributions F n, converging weakly to the

Dirac measure on 0, and a sequence of equilibria σn whose aggregates b̃n converge to b.

• Strongly purifiable if for every sequence of distributions F n , that converge weakly to

the Dirac measure on 0, there exists a sequence of equilibria σn whose aggregates b̃n

converge to b.

Existence of purifiable strategy profiles in general finite extensive form games is straight-

forward, and follows from the following proposition.
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Theorem 2. Let Γ be a finite extensive form game. For any sequence F n of distributions

that converge to a Dirac measure on 0, there exist a convergent subsequences (F nk
, σnk

) such

that the aggregates b̃n
k
converge to b, where b is a Nash equilibrium of Γ.

Proof. Fix payoff perturbations for player i, and let σ̂i(b) denote (the essentially unique)

best response to a behavior strategy profile b in Γ. This defines an aggregate best response

map b̂(b), that is continuous since the shocks are atomless. Brouwer’s fixed point theorem

ensures the existence of a Bayes Nash equilibrium in any perturbed game. Since the space

of behavior strategies is compact, the existence of a convergent subsequence of equilibria

follows. Finally, the limit profile is a Nash equilibrium since the weak inequalities defining

an equilibrium hold in the limit. ■

The existence of strongly purifiable equilibria is an open question. Recall that Harsanyi

(1973) showed that in any strategic form game with generic payoffs, every Nash equilibrium

is strongly purifiable. Of course, any non-trivial extensive form games gives rise to payoff

ties in the strategic form, so that Harsanyi’s theorem is not applicable.

3 Games of perfect information

We now specialize to finite games of perfect information, where each information set is a

singleton decision node and a single player moves at each such node. That is X is the set

of decision nodes. We will focus on games without any payoff ties. That is, if w and w′

are distinct terminal nodes, then ui(w) ̸= ui(w
′) for every player i ∈ N . It is well known

that in the absence of payoff ties, Γ has a unique backwards induction strategy profile b∗.

Furthermore, the strategic form of the game is dominance solvable, so that the iterated

elimination of weakly dominated strategies gives us b∗ as the unique solution.

3.1 Simple games

Our first result is for simple games of perfect information where along any path of play, each

player moves at most once.

Proposition 3. Let Γ be a perfect information game where along any path of play every

player moves at most once. The backwards induction strategy profile is strongly purifiable.

Moreover, no other strategy profile is purifiable.

Proof. The proof is by backwards induction. Fix a penultimate node x, and suppose

that player i has to move at this node. Let w∗ denote the terminal node induced by i’s
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(unique) optimal action and let W (x) denote the set of sub-optimal terminal nodes that are

reachable from x. For w ∈ W (x), let ∆(w) > 0 be the payoff difference for player i between

node action w1 and node w. Since player i has not, by assumption, moved previously on

the path to node x, the probability of this node being reached is independent of i’s payoff

shocks. Let F̃iw denote the distribution of the difference ziw∗ − ziw. Thus the probability

that i chooses the optimal action at node x is Πw∈W (x)F̃iw(∆(w)), which converges to 1 as

Fi converges to zero.

Now consider any decision node x where player i has to move. Suppose, by the induction

hypothesis, that at every successor node x′, the backwards induction continuation path is

played with a probability close to 1. It follows that player i strictly prefers the backwards

induction continuation strategy, in the absence of any shocks to his payoffs. Thus when Fi

is close to zero, she plays the action corresponding to the backwards induction action with

a probability close to one. ■

Note that the proof is by backwards induction. Since any player moves at most once

along a path of play, and since the payoff shocks are independent across players, no inferences

regarding the behavior of other players can be drawn from an unlikely move by some player

i. Along the backwards induction continuation path from any decision node, each player

has strict preferences in the unperturbed game for complying with her backwards induction

strategy given that others do so. Consequently, when payoff shocks are small, each player is

very likely to continue with the backwards induction strategy.

The following example, and the one that follows, illustrate our result, and elucidates the

differences between our assumptions and those of Dekel and Fudenberg (1990).

1
A1

D1

0,−1, 0

2 A2

D2

−1, 1,−2

3 A3
1, 2, 2

D3

2, 0, 3

The backward induction profile is (D1;D2;D3), with the choices corresponding to 1, 2

and 3, respectively. In the perturbed game, player 3’s decision node is reached with positive

probability. Since the shocks of players 1 and 3 are independent, from player 2’s point

of view, the conditional distribution of player 3’s shocks equals the ex ante distribution.

Consequently, player 2 believes that player 3 will play D3 with high probability, leading

her to play D2 with high probabililty. This in turn implies that 1 must play D1 with high

probability.
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Dekel and Fudenberg (1990) analyze strategic form games and allow the shocks for dif-

ferent players to be correlated. They study strong convergence. This delivers S∞W , i.e.

one round of elimination of weakly dominated strategies, followed by iterated strict dom-

inance. This procedure eliminates A3 for player 3, but no further elimination is possible.

Our analysis differs in three dimensions. We rule out correlation of shocks, and we study

payoff uncertainty in the extensive form, so that the dimensionality of the set of payoffs is

lower than in the corresponding strategic form. This allows us to prove a stronger result

even though we only require weak convergence of payoffs. Indeed, if we allowed uncertainty

about the payoffs in the corresponding strategic form, we would not be able to get even one

round of elimination of weakly dominated strateges, as the entry deterrence example shows.

Entrant

Out

0

4

Incumbent

In

Fight

−3

−1

Accommodate

1

1

Proposition 3 implies that the backward induction strategy profile (IN ;A) is strongly

and uniquely purifiable. Now consider the corresponding strategic form.

A F

IN 1, 1 −3,−1

OUT 0, 4 0, 4

Suppose that we perturb payoffs at each profile in {IN,OUT} × {A,F}. Let Let G =

(G1, G2, G3, G4) denote the shock distributions for player 2, and let Ĝ denote the distribution

of the difference in shock values between (OUT,A) and (OUT, F ). Assume that Ĝ has

median 0. Then the equilibrium (OUT, p(F ) = 0.5) is purifiable. Let When the entrant plays

OUT with a probability close to 1, the incumbent plays F with a probability ≈ Ĝ(0) = 0.5.

This implies that it is optimal for the entrant to stay OUT with high probability. In other

words, we cannot eliminate weakly dominated strategies in non-generic strategic form if we
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only require weak convergence. However, since we perturb extensive form payoffs, the payoff

of the incumbent when the entrant plays OUT does not depend on the incumbent’s choice

between A and F . This implies that the incumbent’s choice between A and F only matters

when the entrant chooses IN, implying that the incumbent chooses A with a probability

close to one.

This example also suggests a route to studying non-generic extensive form games. We

can partition terminal nodes W into sets of player-specific outcomes, so that the payoffs of

i are generic on outcomes, but constant at same outcome. We shall explore this idea, which

builds on ideas in Mailath, Samuelson, and Swinkels (1993), later.

3.2 Not so simple games

Things are more complicated when a player moves more than once along some path of play.

To illustrate this, the minimal example is one where player 1 moves twice and player 2 moves

once, as in the simplest version of the centipede game. Player 1 moves first choosing between

D1, yielding payoffs (0,−1) and A1. In the latter event, player 2 chooses betweenD2, yielding

(−1, 1), and A2. In the latter event, player 1 moves choosing between D3 (yielding (2, 0))

and A3, which yields (1, 2).

1
A1

D1

0,−1

2 A2

D2

−1, 1

1 A3
1, 2

D3

2, 0

3.2.1 One-dimensional shocks

Let us first consider an illustrative example of payoff shocks where we shock the payoff of

each player at a single terminal node. Player 1 has a shock ϵ3, which has cdf F3 at the

terminal node that follows A3. Player 2 has a shock η at the terminal node following D2,

with distribution G. If η < −1, D2 is strictly dominated for player 2 and thus he plays A2

with probability at least G(−1). Thus, if ϵ3 is large enough, 1 must play A1, and continue

with A3. However, if A1A3 is played with positive probability and A1D3 is never played,

then 2 will find it optimal to play A2 for any η < 1, i.e. with high probability G(1), which

is greater than 2/3 if shocks to 2’s payoff are small. But this implies that 1 will play A1
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for every shock value, i.e. even if ϵ3 < 1, so that she will continue with D3 at her second

decision node. We conclude therefore that in any equilibrium, 1 must play A1 with positive

probability when ϵ3 < 1, which also implies that she plays A1 for sure if ϵ3 > 1. Let η̄ be the

value of player 2’s shock where he is indifferent between D2 and A2, and let µ = Pr(A1A3)
Pr(A)

.

Since player 1 must be indifferent between A1 and D1 when her shock value is low (and

she therefore intends to play A3), G(η̄) = 2
3
, and 1 + η̄ = 2µ. Furthermore, as F3 converges

weakly to zero, Pr(D1) converges to zero, and as G converges weakly to zero, η̄ converges

to zero and µ converges to 0.5. In other words, as the shocks vanish, we converge to the

following behavior strategy profile b̂:

• Player 1 plays D1 with probability one at her first decision node, and randomizes with

equal probability between her two actions at her second decision node.

• Player2 plays D2 with probability 2/3 at his single decision node.

Observe that b̂ is a Nash equilibrium that is not subgame perfect. Since every perturbed

game in the sequence has a unique equilibrium, which converges to b̂ we conclude that b̂ is

purifiable but that the backwards induction strategy profile is not purifiable for this sequence

of shocks. Of course, since we have only shocked one payoff for each player, this example is

merely suggestive.

3.2.2 Shocks at all terminal nodes

We now consider shocks to both at every terminal node. Our analysis of the centipede will

assume throughout that the shocks for player 1 at the terminal node following A3, with

distribution F3, along the sequence, are more dispersed, along the sequence, than the shocks

at her other terminal nodes. Our first result is the following:

Proposition 4. Fix a sequence of convergent shock distributions for player 1 at the terminal

node following A3. There exist convergent sequences of shocks for player 1 at the other nodes

such that the non-backward induction strategy profile b̂ is always a limit, regardless of the

shock sequence for player 2.

Proof.Observe that for any player, we can normalize the payoff shock at one of the

terminal nodes to zero, by differencing it out. Accordingly, we normalize the shock value for

player 1 at the terminal node following D3 to zero, by differencing out this value from each

terminal node shock value. With this normalization, we have independent shocks to player

1’s payoff at the nodes resulting from D1, D2 and A3. Let ϵ1 and ϵ2 denote the shock values
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and F1 and F2 the distributions for the first two shocks. As before, let ϵ3 and F3 denote

values and distribution for the third shock, at A3.

Let q denote the probability that 2 plays D2. Player 1 will play D3 at her second decision

node if ϵ3 ≤ 1, an event that has probability F3(1). Given this, she will play A1 only if

ϵ2 − 1
q
ϵ1 ≥ 3− 2

q
. Thus the probability that she plays strategy A1D3 is

Pr(A1D3) = Pr

{
ϵ1 − qϵ2 < 2− 3q

}
F3(1). (1)

Now suppose that ϵ3 > 1, so that player 1 will play A3 if her second decision node is

reached. She will play A1 at her first decision node if ϵ2 − 1
q
ϵ1 ≥ 3− 1+ϵ

q
. Thus the probability

that she plays strategy A1A3, conditional on ϵ3, is

Pr(A1A3|ϵ3) = Pr

{
ϵ1 − qϵ2 < (1 + ϵ3)(1− q)− q

}
. (2)

Thus the total probability that 1 plays A1A3 is

Pr(A1A3) =

∫ ∞

1

Pr(A1A3|ϵ3)F3(ϵ3)dϵ3. (3)

Observe that both the above equations 1 and 3 describe player 1’s best response to q,

the probability that 2 plays D2. Let Pr(A) := Pr(A1D3)+Pr(A1A3) be the probability that

1 plays action A.

Now consider player 2. We normalize his payoff shock after D3 is played to zero and let

η1 denote his payoff shock after D2 is played and η2 the shock after A3 is played.2 Playing

D2 is optimal at player 2’s single decision node if

(1 + η1) >
Pr(A1A3)

Pr(A)
(2 + η2). (4)

Thus the probability that player 2 chooses strategy D2 is

q = Pr

{
(2 + η2) Pr(A1A3) > Pr(A)(1 + η1)

}
. (5)

This defines player 2’s best response to Pr(A1D3),Pr(A1A3).

An equilibrium of the perturbed game consists of a triple of probabilities (Pr(A1A3),Pr(A1D3), q)

2The payoff shock after D1 is played is irrelevant.
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that solve the system of equations 1,3 and 5. Since 1 and 3 depend only on q and q depends

only on (Pr(A1A3),Pr(A1D3)), we define the composition of best responses, q̃(q). An equi-

librium is a fixed point of the function q̃. However, our goal is to construct an equilibrium

that converges to σ, the non backwards induction Nash equilibrium, which corresponds to

q = 2
3
and Pr(A1D3)

Pr(A)
= 1

2
. Consequently we define a function q†, with domain and range [q, q̄],

where q < 2
3
< q̄.

q†(x) =

max{q̃(x), q} q̃(x) ≤ q̄

min{q̃(x), q̄} q̃(x) ≥ q.
(6)

Fix a distribution F3 such that F3(1) >> 1−F3(1). At q, 3− 2
q
< 0. Thus the probability

of the event defined in curly brackets in equation 1 tends to one as F1 and F2 converge weakly

to zero, and Pr(A1D3) → F3(1). On the other hand, Pr(A1A3) is bounded above by 1−F3(1),

so that Pr(A1A3)
Pr(A)

<< 1
2
. Consequently, q̃(q) is close to one if the shocks to player 2’s payoffs,

G, are small enough, implying that q†(q) = q̄.

Now consider q̄, where 3− 2
q̄
> 0. The probability of the event defined in curly brackets in

equation 1 tends to zero as F1 and F2 converge weakly to zero, and Pr(A1D3) → 0. However,

Pr(A1A3) is bounded away from zero, for a fixed F3. Pick a ∆ > 0 such that 3 − 1+∆
q̄

> 0.

Thus Pr(A1A3|ϵ3) → 1 as F1 and F2 converge weakly to zero, so that Pr(A1A3) converges

to K ≥ 1−F3(1 +∆). Consequently, q̃(q̄) is close to zero if the shocks to player 2’s payoffs,

G, are small enough, implying that q†(q̄) = q).

Finally, since the shocks have a continuous distribution, without mass points, Pr(A1A3)

and Pr(A1D3) are continuous in q,and the expression for q in 5 is continuous in Pr(A1A3)

and Pr(A1D3). Thus q
† is a continuous function, and the intermediate value theorem ensures

the existence of a fixed point in the interval [q, q̄] that contains 2
3
. Since this interval can be

taken to be arbitrarily small, and since we can now take a sequence of F3 converging weakly

to zero, this ensures that the equilibrium σ, where player 1 plays D1 at her first information

set and randomizes equi-probably at her second information set, while player 2 plays D2

with probability 2
3
, is purifiable. ■
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The above figure illustrates the argument. We depict q, the probability that player 2

plays D2, on the horizontal axis, and µ, the conditional probability that player 1 chooses

A3 at her second decision node on the vertical axis. The green curve depicts player 2’s best

response q̂(µ), which is a smooth strictly decreasing function close to a “step function” that

is horizontal at µ = 0.5 when the shocks to 2’s payoffs are small. The red curve depicts

µ̂(q), that is derived from player 1’s best response. When q ≤ 2/3, most types of player 1

choose A1, so that µ is small, being close to the unconditional probability that A3 is better

than D3, 1 − F3(1). When q > 2/3 but is close to it, the payoff from the strategy A1D3 is

strictly negative in the unperturbed game, and thus the probability of this strategy can be

made arbitrarily small by choosing F1 and F2 sufficiently close to 0. However, if player 1 has
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a large shock value of ϵ3, say 2, she will still finds it profitable to choose A1 for most (ϵ1, ϵ2)

values, so that Pr(A1A3) ≈ 1−F3(2). This implies that µ̂(q̄) > 0.5, ensuring an intersection

between the two best responses.

Our next proposition implies that the backwards induction strategy profile is not strongly

purifiable. Recall that G denotes the distribution of shocks for player 2.

Proposition 5. Fix shock sequence G converging weakly to zero. There exists a converging

sequence F n of player 1’s shocks such that the backwards induction strategy profile is not a

limit of any sequence of equilibria.

Proof. Fix a distribution G for player 2’shocks. This defines q̄ := q̂(1), the probability

that player 2 plays D2 when µ = 1. Since q̂ is increasing in µ, q̄ is an upper bound for q.

Let q ∈ (2/3, q̄]. We show that for any q ∈ [q, q̄], there exists a distribution of ϵ = (ϵ1, ϵ2, ϵ3)

such that µ(q) = Pr(A1A3)
Pr(A1)

≈ 1, so that 2’s best response is q ≈ 0.

From equation 1, Pr(A1D3)→ 0 for any q ∈ [q, q̄] as F 1 and F 2 converge weakly to 0.

Choose ϵ̄ > q̄
1−q̄

− 1. For any ϵ3 > ϵ̄ and any q ≤ q̄, Pr(A1A3|ϵ3) → 1 as F1 and F2 converge

weakly to 0, so that Pr(A1A3) converges to a value greater than 1 − F3(ϵ̄). Thus µ(q) ≈ 1,

implying that 2’s best response is q ≈ 0. Thus there is no equilibrium with q > q. ■

Proposition 6. Fix any shock sequence F n = (F n
1 , F

n
2 , F

3
n) converging weakly to zero. There

exists a sequence of player 2 shocks Gn converging to zero, such that the backwards induction

strategy profile is a limit of some sequence of equilibria of the games Γ̃n.

Proof. Consider the composition of best responses for player 2, q̃(q). Shocks to player

2’s payoffs implies q̂(µ) is bounded above by q̄ < 1, where q̄ := q̃(1) is close to one if G is

close enough to zero. At q = 1, player 1’s decision to play A1 is independent of ϵ3 and only

depends upon (ϵ1, ϵ2). Thus, µ̂(1) = 1 − F3(1) ≈ 1. Let F be sufficiently close to zero such

that µ̂(q̄) > 3/4. By choosing G sufficiently concentrated, we can make q̂(µ) > q̄∀µ ≥ 3/4.

Thus q̃(q̄) > q̄. Thus there must be a fixed point of the composition q̃(q) in the interval

(q̄, 1). Since q̄ converges to 1 as G converges weakly, this suffices to prove the proposition.

■

The following two pictures illustrate the two cases. Player 2’s best response is plotted

in green, while that of player 1 is in red. in the first graph, player 2’s shocks are relatively

dispersed relative to player 1’s shocks, and there is no fixed point close to the backwards

induction profile. In the second figure. we have kept player 1’s shocks unaltered but made

those of two more concentrated, and this ensures an equilibrium close to the backwards

induction strategy profile.
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3.3 Stong purifiability of outcomes

Definition 7. The outcome of a strategy profile is the distribution over terminal nodes

induced by it. An outcome ω ∈ ∆(W ) is strongly purifiable if for every converging sequence

F n, there exists a sequence of behavior strategy profiles bn whose outcomes converge to ω.

Proposition 8. Let Γ be a generic game of perfect information, without payoff ties. If b is

a purifiable strategy profile, then it induces the backwards induction outcome. The backwards

induction outcome is strongly purifiable.

Proof.(Sketch) We will show that any path that is not the backward induction path

has a probability that converges to zero as the shocks vanish. In the case of outcomes, we

can base the argument on ex ante probabilities rather than conditional ones. We illustrate

the argument in the context of the centipede game. In the perturbed game, the ex ante

probability that the terminal node following A3 is reached is small, being no greater than

1 − F3(1). Thus the ex ante probability that player 2 plays A2 must be small, since his

14



ex ante expected payoff from playing A2 is strictly less than the payoff from D2, in the

unperturbed game. This in turn implies that the ex ante probability that player 1 plays A1

must be small. The general argument is similar: at any penultimate node, the probability of

any choice other than the uniquely optimal one must have a small ex ante probability. The

rest of the argument follows by backwards induction. ■

3.4 Symmetric purification

Our results imply that it if wants strong purifiabilty to deliver sequential rationality of

strategy profiles, we must restrict the type of perturbations. We now investigate this by

requiring that for any player, the shock distributions are the same at all terminal nodes. In

addition to our already stated assumptions, we now invoke:

Assumption 9. The shock distributions satisfy symmetry if every player i, Fiw = Fiw′ for

every pair of terminal nodes w and w′.

Definition 10. A convergent sequence of distributions F n has thin tails if ∀x > y > 0

lim
n→∞

1− F n(x)

1− F n(y)
= 0,

lim
n→∞

F n(−x)

F n(−y)
= 0.

A sequence of mean-zero normal distributions with the variances converging to zero is

thin tailed.

We will invoke these twin assumptions (symmetry and thin tails) together. This allows

us to define symmetric purification and strong symmetric purification, by which we mean

that the shock sequences satisfy both assumptions.

We now investigate the implications of symmetric purification in the context of the cen-

tipede game. It will be convenient to adopt a new normalization. For player 1, set the shock

following D2 to zero and let ϵ1 be the shock at the terminal node following D1, ϵ3 the shock

following A3 and ϵ4 the shock following D3.

Conditioning on a realization of ϵ3, the probability that A1A3 is played is

Pr(A1A3|ϵ3) = F1(−q + (1− q)(1 + ϵ3))F4(ϵ3 − 1). (7)

Conditioning on a realization of ϵ4, the probability that A1D3 is played is
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Pr(A1D3|ϵ4) = F1(−q + (1− q)(2 + ϵ4))F3(ϵ4 + 1). (8)

Invoking the assumption that the distributions are the same,

Pr(A1A3) =

∫
F (−q + (1− q)(1 + ϵ))F (ϵ− 1)f(ϵ)dϵ. (9)

Pr(A1D3) =

∫
F (−q + (1− q)(2 + ϵ))F (ϵ+ 1)f(ϵ)dϵ. (10)

Now for any ϵ, F (−q+(1−q)(2+ϵ) ≥ F (−q+(1−q)(1+ϵ). Furthermore, as F converges

weakly to the Dirac measure on 0,

• For any ϵ ∈ (−1/2, 1/2), F(ϵ− 1) → 0 and F(ϵ+ 1) → 1.

• F (−1/2) and 1− F (1/2) → 0.

We conjecture but have not yet proved the following.

Conjecture 11. In any generic game of perfect information, the unique symmetrically pu-

rifiable strategy is the backwards induction strategy profile b∗. b∗ is therefore strongly symm-

metrically purifiable.

3.5 Simultanenous moves

We now consider games where more than one player moves at the same time.3 That is, at

any decision node, more than one player can move, and players have perfect information on

all past moves (including those by nature). Let us consider the following example.

3These are called games of perfect information by Osborne and Rubinstein (1994), but the terminology
is not universal, and so we shall avoid it.
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Observe that (LT, ℓ) and (RB, r) are subgame perfect equilibria. The profile (LT, ℓ) does

not satisfy forward induction or iterative elimination of weakly dominated strategies.

Observe first that (LT, ℓ) is symmetrically purifiable. To see this, suppose that player 1

believes that that player 2 will play ℓ with probability one. Then, since the payoff loss in the

base game when choosing RT is 1, while the loss from choosing RB is 2, player 1 is infinitely

more likely to choose RT than RB, implying that player 2 will play ℓ with probability close

to one. This ensures that there is a fixed point close to the profile (LT, ℓ).

However, the profile (LT, ℓ) is not strongly purifiable. Suppose that player 1’s shocks ϵ1

at (LT, r) are much more variable than the shocks ϵ2 at (LT, ℓ). For example, let the shocks

be normally distributed, with the standard deviations σ1 and σ2, with σ2 = Mσ1, M > 2.

Then as σ1 → 0, player 1 is infinitely more likely to choose RB rather than RT , so that

player 2 must play r.

Finally, note that (RB, r) is strongly purifiable. No matter what the distributions of

player 1’s shocks, if they are small, there exists an equilibrium of the perturbed game where

player 1 plays RB with probability close to one and player 2 plays r with probability close

to one. Indeed, it seems that this is generally true: any equilibrium where every information

set is reached is strongly purifiable.

Consider now an alternative extensive form representation of the above game, where both

players move simultaneously, with action sets {L, T,B} and {ℓ, r}, and the payoffs after 1

plays L are (2, 0), independent of player 2’s choice. Assume that the payoff shocks after L

are one-dimensional for each player, i.e. the shock realization is identical regardless of player

2’s action. The analysis of the perturbed version of this game is identical to that of the

previous extensive form, and thus the same results apply.
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This example raises the following questions.

• In games of perfect information with only one player moving at a time, every subgame

perfect equilibrium (backwards induction) outcome is always strongly purifiable. The

forward induction example shows that this is not true for games with simultaneous

moves.

• Strong purifiability of outcomes, in this example, corresponds to the outcome given by

iterated elimination of weakly dominated strategies. This is also true in the perfect

information case.

• Finally, is there a relation between strongly purifiable outcomes and strategically sta-

ble outcomes in (i.e. outcome in a strategically stable set of a generic game)? One

conjecture is that the two are equivalent.

3.6 Strategy trembles vs payoff shocks

The main approaches to refining Nash equilibria rely on strategy trembles. Extensive trem-

bling hand perfection is based on trembles that are independent across information sets.

The same is true of sequential equilibrium, where beliefs are derived as the limit of those in-

duced by independent trembles. Our analysis of the centipede game shows that payoff shocks

that are independent across terminal nodes do not deliver trembling hand perfect/sequential

equilibrium. In simple games, where along every path of play any player moves at most

once, then payoff perturbations induce independent trembles. This would seem to ensure

that any purifiable equilibrium is also trembling hand perfect, not just in games of perfect

information, but other such games, such as signaling games.

Strategic stability relies on trembles to the normal form strategies, not to choices at each

decision node. This allows for arbitrary correlation of choices across information sets. It also

requires robustness (of a set of strategies) to all possible trembles. A natural conjecture is

that any strategically stable outcome is also a strongly purifiable, since the possible strategy

trembles that one can derive from independent payoff shocks is a subset of those that are

possible when requiring strategically stability. This remains to be proven. Finally, strategic

stability is a normal form concept. This is also the case for purification, since we obtain

limits of Bayes Nash equilibria, without any direct reference to sequential rationality.

Our examples suggest that the relationship between strong purifiability and strategic

stability is close:
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• In the centipede game, we have shown that the backwards induction strategy profile

(D1;D2;D3) and the profile (D1; 2/3 × D2, 1/3 × A2; 1/2 × D3, 1/2 × A3) are both

purifiable, and neither is strongly purifiable. The strategically stable set in this game

defines strategies only in the reduced normal form, and has (D1;D2) and (D1; 2/3 ×
D2, 1/3 × A2) as its elements. In other words, the purifiable strategy profiles, when

restricted to the reduced normal form, coincide with elements of the strategically stable

sets.

• In the forward induction example, strategically stability and strong purification yield

identical conclusions, regarding strategy profiles (and therefore, of outcomes).

Finally, the reader may wonder why we analyze extensive form games, since Bayes Nash

equilibria in perturbed games can be defined without requiring sequential rationality explic-

itly. The reason is that the extensive form allows us to consider lower dimensional payoff

perturbations. Essentially, when payoff assignments are identical at two strategy profiles (in

the strategic form), the realization of payoff shocks is identical for all players. Of course, one

could impose this assumption directly in the strategic form, and obtain identical conclusions.

The weaker requirement that whenever the payoffs of a player at two strategy profiles (or two

terminal nodes) are equal, the realized payoffs of that player are identical in the perturbed

game, would allow us to also non-generic extensive form games, where a player obtains equal

payoffs at two terminal nodes.

3.7 Games with payoff ties

We now consider games of perfect information with payoff ties. In the example below,

players 1 and 2 are investors in an project. At date 0 player 1, the senior partner, must

decide whether to retain the decision rights on the project or to transfer the rights to player

2, an option that is labelled delegation. At date 1, the person who has the decision rights

must decide whether to continue with the project, C or liquidate it, L, and the project is

profitable for both partners. Players only care about whether the project is continued or

liquidated, and not per’se about the allocation of decision rights. This game has a continuum

of subgame perfect equilibria, where player 1 delegates with a probability p ∈ [0, 1], and the

decision maker always chooses C. Each of these equilibria is trembling hand perfect. In

particular, the equilibrium where player 1 delegates with probability 1 is uniquely selected

when player 1 is more likely to tremble than player 2 at date 1.
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Observe that the set of terminal nodes can be partitioned into two subsets: one where

the project is continued, which yields both players a payoff of 2, and the complement where

it is liquidated, yielding payoff 0 to both. Let us add payoff shocks (ϵC , ϵL) for player 1 and

(ηC , ηL) for player 2. We now argue that there is a unique purifiable equilibrium, where

player 1 keeps the decision rights. In the perturbed game, when player 1 liquidates the

project, it is in her interest to do so, since liquidation only occurs is ϵL ≥ ϵC + 2. However,

when player 2 liquidates the project, this decision is independent of player 1’s shock value,

and hence is always costly for player 1. In other words, purification selects quasi-perfect

equilibria (van Damme (1984)) in this example, not trembling hand perfect ones.

Now consider a different example, with only a single player, who can decide at date 0 to

give up the right to liquidate the project at date 1, so that the project must continue, or to

retain this right.

I

Retain C

2

2

I

C

2

2

L

0

0
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The unique trembling hand perfect equilibrium has the player giving up the right to

liquidate, to protect herself against trembles by her future self. Purification is agnostic on

this question since we assume identical payoff shock realizations at both terminal nodes that

correspond to project continuation. If ϵC − ϵL > −2, the player is indifferent between giving

up the right today or retaining it, since she will continue in both instances.

4 Symmetric purification in signaling games

Let Γ =< Θ,M,A, u, v > be a finite signaling game, where Θ is the set of sender types,

M the set of messages, A the set of receiver actions and u and v are payoff functions for

sender and receiver respectively. For simplicity, we assume that the set of available receiver

actions A does not depend upon m, the message sent by the sender, an assumption that is

without loss of generality. We will use s to denote the sender’s strategy, and r to denote the

receiver’s strategy.

First, we define a partial assessment, (s, r̄; µ̄). This consists of a complete strategy for

the sender, s : Θ → ∆(M), and a partial strategy for the receiver, r̄, that is defined with

reference to s. Let M̄ denote the set of messages that are sent with positive probability

by some sender type, M̄ := {m ∈ M : ∃θ ∈ Θ : s(m|θ) > 0}. A partial strategy for the

receiver is a function r̄ : M̄ → ∆(A). Finally, µ̄(m) assigns, via Bayes rule, receiver beliefs

µ(m) ∈ ∆(Θ) for any m ∈ M̄ . Observe that the pair (s, r̄) suffices to define a payoff vector

for each sender type, u := (u∗
θ)θ∈Θ, and a payoff for the receiver, v∗. We will restrict attention

to partial strategy profiles which satisfy twin properties:

• For each θ ∈ Θ, s(θ) is optimal given r̄ when the sender is restricted to messages in

M̄ .

• r̄(m) is optimal for the receiver at every m ∈ M̄ , when beliefs are given by µ̄.

It remains to assign receiver beliefs µ(m) ∈ ∆(Θ) and receiver best responses r(m) to

messages in M̄C , the complement of M̄ , to complete the partial assessment (s, r̄, µ̄). Our

focus will be on purifiable sequential equilibria, when the shocks for the sender have the

same distribution at each terminal node, and also have thin tails.

First, we set out a sufficient condition for purifiable sequential equilibria when the receiver

is restricted to point beliefs regarding the type who sends a deviating message.
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4.1 P-completion

Definition 12. Let ∆v denote the vertices of the set of ∆(Θ). These correspond to beliefs

that assign probability one to single type, and we will denote of a typical element of ∆v, by

θ (by which we mean the Dirac measure on θ). Assume that the receiver has a unique best

response to each element of ∆v, an assumption that is satisfied generically.

A partial assessment (s, r̄; µ̄) can be P-completed if for every m ∈ M̄C, there exists

θ̂(m) ∈ Θ, such that the receiver’s best response to belief θ̂(m) ∈ ∆v, BR(θ̂(m)) is such that

• ∀θ ∈ Θ, u(θ,m,BR(θ̂(m))) < u∗
θ, and

• θ̂(m) is the unique value of θ that maximizes u(θ,m,BR(θ̂(m)))− u∗
θ.

If a partial assessment can be P-completed, we complete it by assigning belief θ̂(m) and

receiver best response r(m) to every m ∈ M̄C .4 The resulting assessment will be called a

P-equilibrium. The first condition in definition 12 ensures that the completion is a sequential

equilibrium. The second part ensures purifiability, as we will show.

Proposition 13. Let (s, r, µ) be a P-completion of a partial assessment. Assume that s is

a pure strategy and that the payoff shocks of the sender have the same distribution at each

terminal node, and have thin tails. Then for almost all payoff assignments to terminal nodes,

the profile (s, r, µ) is purifiable.

Proof. Since s is a pure strategy, this implies that for generic values of the receiver’s

payoffs and the prior, the receiver will have a unique strict best response at any m ∈ M̄ .

Furthermore, for generic sender payoffs, each sender type is strictly worse off by choosing

a message m ∈ M̄,m ̸= s(θ). Furthermore, by the first condition in the definition of P-

completion (cf. definition 12), each type of sender has strict incentives to not deviate to

any message in M̄C . The only difficulty pertains to the receiver having strict incentives

at messages in M̄C . Under the two assumptions on payoff shocks (that the sender has

identically distributed shocks at each terminal node, and that the shocks have thin tails),

the limit beliefs at m ∈ M̄C equal µ(m), i.e.they assign probability one to θ̂(m). Thus

both players have strict incentives at each information set, implying that the equilibrium is

purifiable. ■

Remark 14. The condition that s is a pure strategy is probably superfluous, and is made

only in order to ensure that we have a sequentially strict equilibrium. If s is a mixed strategy,

4There maybe multiple P-completions (or none).
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then one would probably have to show that it regular, so that standard proofs of purification

(Harsanyi (1973), Govindan, Reny, and Robson (2003)) can be used.

Now, let us consider non-degenerative beliefs which assign positive probability to multiple

types after a deviating message.

4.2 M-completion

Definition 15. A partial assessment (s, r̄; µ̄) can be M-completed if for every m ∈ M̄C, there

exists a subset of types T ⊂ Θ, a belief µ(m) ∈ ∆(T ), and a receiver mixed best response to

µ(m), r(m) ∈ ∆(S), where S ⊂ A, such that

• ∀θ ∈ Θ, u(θ,m, r(m)) < u∗
θ,

• T = argmaxθ[u(θ,m, r(m))− u∗
θ],

• S = argmaxa[v(m,µ(m), a)].

If a partial assessment can be M-completed, we complete it by assigning belief µ(m) and

receiver best response r(m) to every m ∈ M̄C . The resulting assessment will be called a M-

equilibrium. The first condition in definition 15 ensures that the completion is a sequential

equilibrium. The second part ensures purifiability.

Proposition 16. Let (s, r, µ) be a M-completion of a partial assessment. Assume that s is

a pure strategy and that the payoff shocks of the sender have the same distribution at each

terminal node, and have thin tails. Then for almost all payoff assignments to terminal nodes,

the profile (s, r, µ) is purifiable.

Proof. To be completed. ■

Conjecture : if a partial assessment cannot be M-completed, then no completion of the

assessment is purifiable.
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4.3 Examples

4.3.1 Beer-Quiche and P-completion

s

0.6

Quiche
Duel 1,−1

No 3, 0

Beer
Duel2,−1

No4, 0

w
0.4 Quiche

Duel 2, 1

No 4, 0

Beer
Duel1, 1

No3, 0

22 0

Our first example is the Beer-Quiche game from Cho and Kreps (1987). The partial

assessment corresponding to the pooling on beer equilibrium is where both players choose

Beer, and the receiver does not Duel. It can be P-completed as follows. The receiver believes

that a deviant to Quiche is the weak type, and chooses Duel after Quiche. It is easy to verify

that neither type wants to deviate to Quiche, and also that the type with the largest deviation

incentive is the weak type. Thus the equilibrium is purifable.

Pooling on Quiche cannot be P-completed, nor can it be M-completed. For any response

by the sender at Beer, the strong type has strictly smaller loss from playing Beer than the

weak type, and hence is infinitely more likely to choose Beer in the perturbed game. Thus

the limit beliefs assign probability one to strong at Beer, so that the unique best response is

to not Duel.

4.3.2 Example of M-completion

θ1

0.5

m2

T 0, 2

B 4, 0

m1
3, 0

θ2

0.5 m2

T 6, 0

B 0, 1

m1
3, 0

20

There is a unique sequential equilibrium outcome. The set of sequential equilibria has

pooling on m1. After the unsent message m2, there is a unique belief, µ(θ1|m2) = 1/3,
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but multiple receiver best responses, r(T ) ∈ [1/4, 1/2]. If we choose r(T ) = 2/5, this is a

M-completion, and hence purifiable.

4.3.3 NWBR, D1 & purification

θ1 m2

T −1, 3

M
1, 2

B −1, 0

m1
0, 0

θ2

m2

T 1, 0

M
1, 2

B −2, 3

m1
0, 0

20

This example is from Cho and Kreps (1987). The sequential equilibrium with pooling on

m1, µ(θ2|m2) = 1, r(m2) = B satisfies D1. However, this violates NWBR. Cho and Kreps

state: “we cannot suggest an intuitive inferential process” for NWBR in this game. However,

symmetric purification justifies eliminating this equilibrium. If player 2 plays B with high

probability, then type θ1 has the smallest deviation loss. Thus θ1 is infinitely more likely to

play m2 than θ2 is in perturbed game.

4.3.4 Violates Equilibrium dominance but purifiable

θ1 m2

T −2, 0

B 1, 1

m1
0, 0

θ2

m2

T −1, 1

B −1, 0

m1
0, 0

20

The sequential equilibrium with pooling on m1, µ(θ2|m2) = 1, r(m2) = T is a P-

completion. The payoff loss to deviating to m2 is 1 for θ2, and 2 for θ1. Hence θ2 is

infinitely more likely to deviate to m2 than θ1 in perturbed game, and thus the equilibrium

is symmetrically purifiable. This is even though m2 is strictly dominated for θ2 but not

equilibrium dominated for θ1.
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4.4 Discussion

We briefly discuss the thin tails assumption and the logic of purification versus refinements

based on belief restrictions.

4.4.1 Without thin tails

If we do not make the thin tails assumption, then we will not get extremal beliefs, and thus

P-completion will not be the relevant notion. Let us consider the beer-quiche game, and

assume symmetric shocks, but without thin tails. Suppose that the prior, π := π(s), is large.

Consider the partial assessment where both types pool on quiche. If the receiver observes

Beer, then µ(s|B) > π and so the receiver will not duel. Thus there cannot be a purifiable

equilibrium with pooling on Quiche. In other words, we do not need to assume thin tails to

refine away pooling on beer.

Now consider pooling on Beer. If the receiver observes Quiche, then µ(s|Q) < π, but

this may be greater than 0.5. Thus, it may seem that an equilibrium with pooling on Beer

may not also work. However, this conclusion is premature. In the sequence of perturbed

game, we could have a sequence of equilibria where the receiver’s beliefs converge to 0.5, and

along the sequence, the behavior corresponds to partial separation. I.e. the weak type is

almost indifferent between B and Q in the absence of payoff shocks, and thus plays Q with

much higher probability than the strong type. While this is complicated to show directly,

one can make a more general argument. First, for any sequence of payoff shocks, including

symmetric ones without thin tails, one has a purifiable Nash equilibrium. Second, this Nash

equilibrium must be a sequential equilibrium since we have a game in which each player

moves at most once along any path of play. Since no assessment with pooling on quiche is

purifiable, this ensures the existence of a purifiable assessment with pooling on beer (since

these are the only two types of equilibria in the beer-quiche game).

4.4.2 Purification vs. Belief restriction based refinements

Belief restriction based refinements (equilibrium dominance, intuitive criterion, D1) based on

an implicit speech by sender:I have deviated, and the only reason I have done so is because

I think I can convince you to change your strategy. Ask yourself, which type could I be,

given that I would benefit from you changing your strategy? This rationale is set out most

clearly in Cho and Kreps (1987). Symmetric purification is resolutely equilibrium based.

The receiver asks herself: given that I am playing my equilibrium strategy r, which type (or
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types) are most likely to have sent this unexpected message? That is, purification asks, is r

self-enforcing given the answer to the above question? The question, which types benefit from

receiver changing her strategy, plays no role in the argument. Similarly, forward induction is

based on the same type of reasoning (see Kohlberg and Mertens (1986) or Kohlberg (1990).

Similarly, symmetric purification does not support forward induction.

4.5 Strong purifiability

Let us now reconsider Beer-Quiche and focus on strong purifiability. The Quiche pooling

equilibrium is clearly not strongly purifiable, since it is not symmetrically purifiable. So let

us focus on the set of equilibria with pooling on beer. Since it is symmetrically purifiable,

let us consider shock sequences where the shocks to the strong type are much more variable

than those to the weak type. To keep things simple, we will perturb the payoff of each of

the types of player 1 at a single node, that following (B,No), and not perturb player 2’s

payoffs. More specificlly, consider normally distributed where the weak type has a mean zero

shock at (B,No) that is normally distributed with standard deviation τ , while the strong

type’s shock has standard deviation Kτ , K > 3. Consider the equilibrium where player 2

Duels with probability one at Q. As τ → 0, the limit belief assigns probability one to the

deviant Quiche eater being strong, and thus this equilibrium is not purifiable. However,

there is a purifible equilibrium for these shocks where µ(s|Q) = 0.5 and r(Duel|Q) = 1/2.

Let q denote the probability that player 2 duels at Q. It suffices to show that at any τ ,

there exists a q ∈ (0.5, 1) such that the best responses of player 1 induce µ(s|Q) = 0.5.

Now when q = 1, we have already demonstrated that µ(s|Q) > 0.5 when τ is small. When

q = 0.5, the weak type is indifferent between B and Q in the absence of shocks, and thus

plays Q with probability one-half, independent of τ , while the strong type strictly prefers

B in the unperturbed game, and thus plays Q with probability less than one-half, which

implies µ(s|Q) < 0.5. By continuity, there must be a value of q ∈ (0, 5, 1) that µ(s|Q) = 0.5.

Indeed, one can explicitly calculate q for this example. Denoting the proir on the strong

type by π,

πΦ(
−1− 2q

Kσ
) = (1− π)Φ(

1− 2q

Kσ
),

where Φ denotes the cdf of the standard normal distribution. This has a solution q in (0.5, 1)

that is independent of τ , and is decreasing in K.

This suggests that the outcome of the pooling on beer equilibrium is strongly purifiable.

However, no equilibrium strategy is strongly purifiable.
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Finally, when the shocks are much more variable for the strong type, pooling on quiche

is not purifiable. However, when shocks are more variable for the weak type, then pooling

on Quiche is purifiable.
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