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Abstract

Weather-induced agricultural productivity risk reduces farmers’ incomes, and is
amplified by climate change. Short-to-medium-range rainfall forecasts (0-to-15 days
ahead) can help farmers optimize within-season decisions to mitigate such risk—provided
they accurately interpret, trust, and act on the forecasts. Using incentivized lab-in-the-
field and real-world experiments with a voice-call weather forecast service, we study
how farmers in India update their beliefs following forecasts and forecast outcomes.
While farmers have high demand for forecast services, their trust in forecasts decreases
after erroneous predictions, with less frequent use after errors. Accuracy in initial
interactions mitigates this effect, highlighting the importance of early successes for
building longer-term trust in a new technology. Notably, when climate change is made
salient, farmers are more likely to use forecasts, and are more tolerant of forecast
errors—underscoring the value of forecasts in climate adaptation.
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1 Introduction

Weather patterns across the world are becoming increasingly variable (Krishnan et al., 2020;

Roxy et al., 2017; Auffhammer and Carleton, 2018, in India) due to global warming (Ha et al.,

2020; Seneviratne et al., 2021). This amplifies agricultural production risk (Bezner Kerr

et al., 2022; Hultgren et al., 2022), which reduces farmers’ incomes: ex post, when unan-

ticipated weather lowers yields or leads to increased costs, and ex ante, when farmers forgo

profitable investments that may be riskier (Rosenzweig and Binswanger, 1993; Dercon, 1996;

Morduch, 1999), or are unable to plan ahead. Smallholder farmers in developing countries are

particularly vulnerable, making improved adaptation tools necessary for climate resilience.

Weather forecasts (at sub-seasonal and seasonal timescales) are one such technology whose

skill has been steadily improving (Linsenmeier and Shrader, 2023; Haiden et al., 2023), and

which is scalable at low marginal costs. When skillful, forecasts can help farmers form more

accurate weather expectations to make better-informed decisions. However, this requires

that farmers correctly interpret forecast information and trust the forecast service. In this

paper, we study how farmers form beliefs about such new climate adaptation tools as they

begin to use them. We focus on a new voice-call rainfall forecast service for coffee farmers in

rural Karnataka, which provides farmers with accurate, granular, (short-to-)medium-range

forecasts.1 Such forecasts can help farmers better time agricultural activities, plan labor

and input allocation, and take precautionary measures against rainfall shocks. They are

especially valuable for perennial crops like coffee, which farmers commit to cultivating over

multiple years.

This paper seeks to answer four main questions: First, how do farmers form beliefs about

weather, based on forecast information and forecast outcomes? Second, how do farmers form

beliefs about forecast accuracy, as they observe repeated forecasts and realizations? Third,

can light-touch informational treatments providing training to interpret probabilities and

probabilistic forecasts impact these beliefs? Finally, does vulnerability to climate change

affect these beliefs?

We study this through a set of three experiments. (1) A lab-in-the-field experiment, in

which 1,212 coffee farmers play experimental games, relying on hypothetical rainfall fore-

casts to make incentivized decisions. Prior to the games, farmers are randomly assigned to

watch a video highlighting the relevance of weather forecasts in the context of a changing

climate (‘climate change salience video’ or ‘CC’), an additional video tutorial on interpreting

probabilistic information (‘probability training video’ or ‘PT’), or a placebo video.

1We refer to forecasts with lead times of between 0 and 15 days as medium-range forecasts rather than
short-to-medium-range forecasts for ease of exposition going forward. The American Meteorological Society
defines short-range forecasts as those provided 0 - 2 days ahead, and medium-range forecasts as those
provided between 2 and 15 days ahead. Source: https://www.ametsoc.org/index.cfm/ams/about-ams/ams-
statements/archive-statements-of-the-ams/weather-analysis-and-forecasting/
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We then partner with the Coffee Board of India to provide a real-world rainfall forecast

service to over 27,000 farmers in Karnataka, most of whom already receive voice-call based

agronomic advice from an existing agricultural advisory service, lending credibility to the new

forecast service.2 We rely on (2) evidence from a natural experiment in this real-world service,

which arises as farmers are sent forecasts which end up being incorrect at random; and (3)

from a randomized information experiment (or A/B test) in the real-world service, where

391 villages that receive probabilistic forecasts are randomized into an experimental arm

receiving additional voice-calls with information on how to interpret probabilistic forecasts

(‘forecast interpretation treatment’ or ‘FI’), and second arm which receives forecasts alone.3

We have three main sets of findings. First, we find that farmers exhibit high demand for voice-

call based rainfall forecasts, both when elicited as willingness-to-pay using a Becker et al.

(1964) (‘BDM’) mechanism prior to the launch of the real-world service, and when measured

as take-up of the real-world service. Farmers who were willing to pay higher amounts for the

service prior to the service’s launch are also more likely to have high engagement with the

service (i.e., answer more than 50% of forecast calls sent to them). On average, farmers are

willing to pay INR 25.55 per month (or USD 0.30 per month in 2024) for access to rainfall

forecasts over voice-calls, which is significantly higher than the average cost of delivering

forecasts to farmers in an at-scale service, INR 8 per month.4 Farmers also update their

weather expectations upon receiving weather forecasts. In hypothetical scenarios, farmers are

more likely to expect rain and update their priors about the likelihood of rain occurring when

rainfall forecasts communicate higher probabilities of rain. Suggestive real-world evidence

indicates that weather expectations are more accurate for farmers who receive forecasts

through the forecast service than for those who do not.

Second, we find that farmers update their subjective beliefs about forecast accuracy (‘per-

ceived forecast accuracy’) after experiencing erroneous forecasts—farmers trust and rely on

forecasts less, as though ‘discouraged’, both in the experimental games and in the real-world

service. Following a round where a forecasted event fails to materialize in the lab-in-the-

field experiment, farmers are less likely to choose the more accurate option when given a

choice between two forecasts, updating their beliefs about the likelihood of an event to a

2Many farmers who participated in the lab-in-the-field experiment were not previously on the advisory
service. Both the existing advisory service, and the new forecast service are run by Precision Development
(PxD) and the Coffee Board of India. The existing agricultural advisory service sends voice-calls to farmers
containing educational messages designed by agronomists. There are over 120,000 coffee farmers on the
service across South India.

3The experimental sample also consists of a small control group of villages where farmers receive no
forecasts, and from whom we gather data on weather expectations. Randomization is stratified at the
forecast-grid level, which is the geographical unit receiving the same forecast. Forecast grids have multiple
villages in them.

4Back-of-the-envelope cost calculations are for providing the service to 50,000 farmers, which is the target
scale of the service. At the take-up implied by the pricing the service at the average WTP, costs would be
INR 15.69 per farmer
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lesser extent. Conditional on probabilities in the forecasts, farmers are less certain that a

forecasted event will occur following incorrect forecasts. Farmers have similar responses in

the real-world service too. Farmers are 15% less likely to answer a forecast-call if they last

received a forecast that ended up being a false alarm, i.e., an incorrect forecast where rain

was predicted but did not occur, and are less likely to report having relied on the service’s

forecasts to make decisions recently. This reduction in engagement persists both in the sub-

sample of farmers who receive probabilistic forecasts and those who receive deterministic

forecasts, indicating that it is not only the probabilistic information that contributes to the

effect.

The reduction in engagement with the forecast-service is more pronounced for farmers who

are risk averse, for those who grow a more weather-sensitive coffee variety, and for those

with no working irrigation facilities—indicating that perceived forecast accuracy is more

important for farmers who are more vulnerable to weather risks. And importantly, while

these effects persist over repeat interactions with the forecast service, they are strongest

when early experiences with the forecasts are error-laden. When farmers experience accurate

forecasts early on, they are less likely to be discouraged by incorrect forecasts in later use—

resulting in a 36% lower ‘discouragement effect’ of incorrect forecasts.

Our results also suggest that informational interventions to improve understanding of the

uncertainty associated with weather forecasts may mitigate the discouraging effects of incor-

rect forecasts. The light-touch forecast interpretation (‘FI’) voice-call treatment did reduce

the ‘discouraging’ effect of incorrect forecasts on engagement with the forecast-service. How-

ever, this came at the cost of (3%) lower overall engagement, likely due to ‘call fatigue’, with

not only the forecast service, but also the standard educational advisory service—suggesting

that other modes or media for such awareness efforts might prove more beneficial.

Finally, we find that an awareness of increasing weather variability makes forecasts more

valuable to farmers. Among farmers who participated in the lab-in-the-field experiment,

those who were randomly assigned to receive the climate change salience video treatment

were 3 percentage points more likely to later begin using the real-world service. In addition,

in the larger sample of farmers with access to the the forecast-service, those who resided in

regions with high recent-historical rainfall variability (i.e., between 2000 and 2022) were less

likely to reduce their engagement with the forecast-service following incorrect forecasts.

Overall, our findings indicate that medium-range rainfall forecasts are a beneficial climate

change adaptation tool for farmers. In addition, farmers’ consistent use of the real-world

forecasts service, along with their high willingness-to-pay relative to costs of providing the

service indicates substantial value to investing in providing improved, customized forecasts

for farmers. However, the perceived accuracy or trust in a forecast-service is an important

determinant of continued use of forecasts, regardless of objective skill, with early forecast
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successes boosting trust. These findings make two main contributions.

First, our findings demonstrate that the salience of climate change and weather variability

increases farmers’ use of forecasts, highlighting the value of medium-range forecasts as a

climate adaptation tool. This contributes to the growing climate economics literature on

the importance of climate adaptation (Hultgren et al., 2022), particularly regarding the role

of forecasts as an adaptation tool in agriculture (Burlig et al., 2024). Moreover, our results

show that farmers actively integrate forecast information into their weather expectations

and use it to inform decision-making. This contributes more broadly to the literature on the

role of forecasts in managing weather risk in developing countries: while Burlig et al. (2024);

Rosenzweig and Udry (2019); Lybbert et al. (2007) demonstrate the impact of seasonal

forecasts on farmer behavior, investment choices and planting strategies, Fosu et al. (2018);

Rudder and Viviano (2023); Yegbemey et al. (2023) demonstrate the impact of short-range

forecasts on farmer beliefs and behavior.

The value of forecasts as a climate adaptation tool arises from their ability to shape the

beliefs farmers form. An emerging literature considers how individuals form environmental

and climate beliefs, learn from signals around them, and learn from experiences (Kala, 2019;

Patel, 2024). Our findings contribute to this by showing how experiences shape not only

environmental beliefs but also trust in the information used to form these beliefs. This insight

extends to beliefs about digital agricultural extension (whose impacts are studied in Fabregas

et al., 2019; Cole and Fernando, 2020, and which impact farmer decision-making) and other

information sources more broadly; and are critical for designing effective information and

forecast services that foster trust and support adaptive decision-making.

Second, we present novel experimental evidence on how experiences shape the formation

of subjective beliefs about the accuracy of new information services, specifically weather

forecasts, in a developing country setting. Existing research shows that individuals are

more likely to use weather forecasts with higher predictive skill across contexts (Song, 2024;

Rosenzweig and Udry, 2019), yet usage is often hindered by concerns over (perceived) forecast

accuracy (reviewed in Mase and Prokopy, 2014). Perceived accuracy correlates with trust in

forecasts (Shafiee-Jood et al., 2021; Ripberger et al., 2015; Morss et al., 2016), and studies

measuring trust directly find that individuals are more likely to act on forecast information

when trust is higher (Ripberger et al., 2015; Morss et al., 2016). Together, this suggests

that beliefs about forecast accuracy strongly influence forecast use, evolving as users gain

experience (modeled in Shafiee-Jood et al., 2021; Millner, 2008). Our findings contribute

to this literature by experimentally demonstrating how trust and forecast use respond to

forecast outcomes in both real and hypothetical scenarios.

This also aligns with findings in behavioral finance, where individuals form inflation expecta-

tions based on personal experiences, which then shape their economic choices (Malmendier
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and Nagel, 2016; D’Acunto et al., 2021; Malmendier, 2021). We find that farmers’ expe-

riences with correct or incorrect forecasts impacts their trust in, and use of, the forecast

service. Consistent with findings about inflation in Malmendier and Nagel (2016), we also

find that early experiences have a larger impact on trust and use of the service. This also

relates to the literature on learning and technology adoption among farmers in developing

countries (Conley and Udry, 2010), where farmers especially learn from the successes of their

“information-neighbors” during the early stages of new crop cultivation.

2 Background

2.1 Study Setting

This study focuses on coffee farmers in Karnataka, India. Coffee is a perennial crop that

thrives in relatively cool, tropical weather. India is the sixth-largest coffee producer in the

world, and over 70% of India’s coffee is cultivated in Karnataka, our study setting.5 Precision

Development (PxD) and the Coffee Board of India operate a voice-call based agricultural

advisory service, Coffee Krishi Taranga (CKT), for coffee farmers in Karnataka.6 Around

70% of all coffee farmers in Karnataka are registered on the CKT service, and Table 1

describes characteristics of users, who were profiled in 2018.

Sixty percent of CKT’s user-base is small-holder farmers, who cultivate coffee on fewer than

5 acres; while 71% of our farmers in the lab-in-the-field experiment sample are small-holders

Table A1. Forty-seven percent of the CKT user-base are educated a higher secondary level or

higher, while 40.9% of our study sample has attained the same level of education. In 2018,

45% of CKT-user farmers had access to a smartphone, and this is presumably far higher

in 2023.7 In the lab-in-the-field experiment sample, 68.9% of farmers reported access to a

smartphone, despite a larger share of small-holders and smaller share of farmers with high

levels of education, which are correlates of household wealth.

5Statistics from the Coffee Board of India, accessed at https://coffeeboard.gov.in/
6More details about CKT are in the appendix.
7The GSMA The Mobile Economy 2023 report indicates that this is the case.
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Table 1: Coffee Krishi Taranga Users in 2018

Mean (SD) Obs

(1) (2)

Is female 0.117 42023
(0.321)

Age when profiled 51.032 42012
(13.212)

Area cultivated with coffee (acres) 8.801 42007
(23.896)

Educated to higher secondary level or above 0.475 30042
(0.499)

Cultivates Arabica 0.474 42022
(0.499)

Cultivates Robusta 0.782 42022
(0.413)

Has access to a smartphone in 2018 0.451 42020
(0.498)

2.2 Weather in Karnataka

Coffee is mainly grown in the Western Ghats region of Karnataka (in the districts of Chik-

magalur, Hassan and Kodagu). The region receives three times the average rainfall in India

(Varikoden et al., 2019), with definite changes in the characteristics of the monsoon rainfall,

extreme rainfall, and dry spells in the region (Sreenath et al., 2022; Varikoden et al., 2019;

Chandrashekhar and Shetty, 2017b; Ha et al., 2020) Some of these changes vary between

the northern and southern Western Ghats (Varikoden et al., 2019). As a result, monsoon

rainfall patterns in the region are likely harder for farmers to predict without high-quality

weather forecasts. In addition, spatial variability of rainfall within the region is large Fig-

ure 1, making weather forecasts of finer granularity more useful for farmers as they adapt to

the changing climate in the region.
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Figure 1: Daily rainfall amount and variability in Karnataka
Notes: The larger outline is the state of Karnataka. The three districts outlined within are Kodagu, Chikmagalur and Hassan.
Analysis provided by Climate Forecasts Action Network (CFAN)

2.3 Weather Forecasts

In our study sample, 49% of farmers reported typically accessing weather forecasts via tele-

vision, radio, newspaper, or Kisan Call Centers. Forecasts on these media are provided by

the Indian Meteorological Department (IMD), and the IMD’s rainfall forecasts are deter-

ministic predictions of expected rainfall. Publicly available IMD weather forecasts are at

the weather-station level. However, weather station coverage varies from multiple per city

in large metropolises, to 1 per district in other regions.8 Forecasts are presented to farmers

at the district or the block levels in different media.

The context for this study is a new CKT weather forecast add-on service, which we offer to

farmers in the willingness-to-pay exercise described in Section 3. The weather forecasts we

consider are short-to-medium range (i.e., at lead times of 0 to 15 days) precipitation forecasts

provided by the Climate Forecast Applications Network (CFAN). CFAN calibrates forecasts

generated from the European Centre for Medium-Range Weather Forecasts (ECMWF) en-

semble model for increased accuracy in the study region (with three grid-cells per block,

where IMD provided forecasts at the block or district levels). Apart from forecasts from the

IMD, farmers may also have access to weather forecasts available online or on mobile-phone

apps, and 39% of farmers in our study sample report that they do access such forecasts.

8https://mausam.imd.gov.in/imd˙latest/contents/imd-dwr-network.php
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These forecasts are typically probabilistic. However, Figure 2 shows that, at least in some

cases, websites and apps provide forecasts for the nearest weather station location rather

than the actual town. In such cases, forecasts may be perceived by farmers to have finer

granularity than they actually do. Overall, CFAN’s forecasts provide finer granularity, richer

forecast information, and longer lead times. As part of the CKT service, raw forecasts can

also be customized to be contextually relevant for coffee farmers. Such forecasts could help

farmers better cope with weather variability, better allocate factor inputs, and minimize

adverse consequences of weather shocks by allowing them to take precautionary actions and

thus also avoid working in hazardous conditions.

Figure 2: A forecast for Somwarpet in Karnataka, India on Weather Underground

Notes: The figure indicates that the forecast that is presented as one for Somwarpet, Karnataka, India, is actually for the
nearest weather station in Kannur International Airport, which is in the neighboring state of Kerala.

3 Experimental Design

This study consists of three experiments, with the timeline of activities described in Figure 3.

First, prior to the design and launch of a real-world service, we designed and implemented

a lab-in-the-field experiment with 1,212 farmers. Farmers who were willing to take-up a

real-world service at the end of the lab-in-the-field experiment were then onboarded in a

real-world voice-call based weather forecast service (phase 0), along with two other cohorts

(phases 1, 2)—a total of over 27,000 farmers. Second, a natural experiment arises at forecasts

end up being correct or incorrect at random as weather is realized. Third, an information

experiment in the real-world service treated some farmers with additional information about

how to interpret uncertainty associated with forecasts.

3.1 Lab-in-the-Field Experiment

Sample and Randomization. We randomly selected twenty-one gram panchayats (GPs)

in two blocks in Chikmagalur and Kodagu, two coffee-growing districts in Karnataka. In

9



Figure 3: Timeline of study activities (including on-going data collection)

Jul ’23 Apr ’24 Jul ’24 Aug ’24 Sep ’24 Dec ’24 Jan ’25

Climate change

salience,

probability

training video

treatments

Lab-in-the-field

experiment

Phase 0

Launch

Phase 1

Launch

Phase 2

Launch

Forecast interpretation

audio treatment

Phone surveys with farmers

Forecast realization natural experiment

Service engagement data

Notes: This figure presents a timeline of study activities. The lab-in-the-field experiment was conducted in-person in July
and August, 2023. The service launched for the 1,212 farmers who participated in the lab-in-the-field experiment in April,
2024. The next cohort of 12,598 farmers began receiving forecasts in July, 2024; and the final cohort in our sample, of 13,410
farmers, began receiving forecasts in August, 2024. The forecast interpretation audio treatment runs between mid-August and
mid-October, 2024. Phone surveys with phase 0 and phase 2 farmers arre conducted between September and December, 2024.
Engagement data will be recorded until the end of January, 2025.

these GPs, 1,212 farmers were randomly sampled from the rosters of small- and medium-

holder coffee farmers from the Coffee Board of India and existing users of Coffee Krishi

Taranga. Farmers were randomized on-the-spot to receive light-touch video information

treatments, stratified at the gram panchayat level—(1) a climate change salience treatment

(T1); (2) a climate change salience and probability training treatment (T1 + T2); (3) a

control group (C)—prior to playing the two experimental games.9

Table A1 describes the characteristics of the sample that completed the study. Overall,

1,212 farmers completed the study across the 21 GPs, with a low attrition rate of about

2% that did not significantly differ by group. The distribution of participants across the

experimental groups closely matched the intended proportions of 42%, 29%, and 29% for each

treatment arm, indicating successful on-the-spot randomization. The study’s participants

had an average age of 48, with the majority (86%) being the primary decision-makers for

their agricultural operations. Most farmers (70%) manage coffee farms of 5 acres or less,

while the rest operate farms ranging from 5 to 18 acres. Smartphone access or ownership

is common among 69% of the farmers, yet only 32% utilize WhatsApp for communication.

Trust in available weather forecasts is relatively low, with only 35% of farmers expressing

9The experiment was designed to have 42% of the sample in the climate change salience arm, 29% of the
sample in the climate change salience and probability training arm, and 29% of the sample in the control
group. This design maximizes power to detect the effect of probability training when added to climate
change information (T2 = (T1 + T2) - T1) (Muralidharan et al., 2023), while maintaining similar levels of
power on the other outcomes of interest, (T1 - C), ((T1 + T2) - C). This is similar to power when compared
with a 1

3 ,
1
3 ,

1
3 design which maximizes power on (T1 - C), ((T1 + T2)-C).
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Figure 4: Lab-in-the-Field Experiment Design

Coffee farmers

(N = 1,212)

18 ≤ age ≤ 65;

0 < land ≤ 18 acres

Experimental Arm 2

(N2 = 351)

T1 + T2:

Climate Change Salience
and Probability Training

Experimental Arm 1

(N1 = 511)

T1:

Climate Change Salience

Control

(Nc = 350)

Placebo

Probabilistic Weather
Forecast Experimental Games

Willingness-To-Pay Elicitation

Notes: This figure presents the design for the lab-in-the-field experiment. The study is conducted in-person, and farmers are
randomized into one of three experimental arms (climate change salience video treatment; climate change salience and probability
training video treatment; control). After watching the short information treatment videos, farmers play two experimental games,
and finally participate in an incentive-compatible willingness-to-pay elicitation (Becker et al., 1964).

confidence in them. The sample is well-balanced on the list of pre-specified farmer and farm

characteristics with significant imbalance in the climate change salience arm on only whether

coffee is the main source of income. A joint F-test confirms that these characteristics do not

predict treatment assignment, affirming the randomization’s integrity.

Information Treatments. In the climate change salience experimental arm, farmers watch

a 5.5-minute video detailing climate change effects on coffee cultivation in Karnataka, In-

dia. The video highlights challenges like rising temperatures, unpredictable rainfall, and

extreme weather over the past decade, featuring firsthand accounts from farmers and pre-

senting strategies that emphasize the importance of weather forecasts in agricultural planning

and climate resilience. Farmers in the climate change salience and probability training arm

watch a comprehensive 13.5-minute video that combines the climate change content with

an explainer on probability concepts. Using relatable examples and visual aids, the video

clarifies probability and the concept of reference classes in probabilistic predictions (Gigeren-

zer et al., 2009), connecting these ideas to understanding rainfall forecasts. Finally, control

group farmers watch a brief video about the origins and spread of coffee farming in India.

Experimental Games. The experimental games focus on understanding whether farmers

understand and act on probabilistic forecasts of events, how they update their beliefs about

the likelihoods of events following probabilistic forecasts, and how these beliefs are impacted
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by the eventual realization of the events being forecasted.

In the first experimental game, the ‘market-choice game’, farmers are given forecasts for two

different villages, and choose a village in which to engage in an action whose payouts depend

on realized rainfall. This game is adapted from Stephens et al. (2012), with additional

design features to eliminate biases that may arise due to risk aversion, that may be specific

to forecast formats, and that may arise when farmers conflate a quantity of rain in a forecast

with the likelihood of rainfall occurring. Rounds also randomly vary the probabilities in

forecasts, the order in which rounds appear to farmers, and whether the payoffs are higher

with ‘wet’ or ‘dry’ weather.

Farmers play five incentive-compatible game-rounds (Figure 5), each set up to assist a hy-

pothetical vendor choose a market location in which to sell a good (Figure B2, Table A3).10

Goods considered are those such as umbrellas or a cool beverage, whose sales depend on re-

alized weather conditions. Farmers playing the game are presented with probabilistic rainfall

forecasts for each of two market-locations, and asked to recommend the location the vendor

should choose in each round. To assess the certainty farmers associate with their choice of

forecast, farmers also decide how many points between 1 and 5 to put at stake in a round

when they recommend how much the hypothetical vendor should invest. Farmers playing

the game are incentivized to maximize the vendor’s earnings and their own points.

Incentive-compatibility is ensured because the ex ante optimal choice is the market location

or forecast where the ideal weather for a good’s sales is more likely (i.e., if a good sells

better when it is a sunny day, the ideal weather is no rain), and this ex ante optimal choice

always has higher expected earnings and lower outcome variance to remain unaffected by

risk preferences. After farmers make their choices in a game round, the in-game weather

outcome is revealed. The points they staked are doubled if the desired weather occurs, or

and deducted if it does not. Feedback after each round helps farmers understand the impact

of their decisions and the role of chance, enhancing their ability to use forecasts effectively.

In the second experimental game, the ‘agricultural decision-making game’, farmers rely on a

probabilistic rainfall forecast to make hypothetical agricultural decisions (Figure B3). Farm-

ers play six incentive-compatible game rounds (Figure 6),11 this time set up to assist a

hypothetical farmer decide whether to take an agricultural action or not, at a specific time

of year, based on probabilistic rainfall forecasts. The agricultural decisions are (1) whether to

irrigate coffee plants or wait for rain prior to coffee flower blossoming in the spring (March);

(2) whether to apply fertilizer when there is no heavy rain or wait in the pre-monsoon period

(May). The formats in which forecasts are presented vary across rounds, the probabilities in

10Scored rounds are played after two practice rounds to make sure farmers understand the game’s rules
and scoring system.

11Scored rounds are played after a practice round.
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Figure 5: Illustrative flow of one game-round for a scenario in Experimental Game 1:
Market decision to sell tea based on expected weather

Kishore is a vendor who sells hot tea . Next Sunday, there
are markets in two nearby villages.

Kishore will be able to sell more tea when it rains.

Pick the market where you think it is more likely to rain
so Kishore makes more profit.

The weather forecasts for the two locations are:

Village Market 1

60% chance of any rain

Village Market 2

90% chance of any rain

Your score for this round is, Score

Score is +Stake if it rains; −Stake if it does not rain
Respondent farmer chooses village market location

Feedback is provided based on choice and realization

You provided good advice. Well done, it rained!

or

You provided good advice, but it did not end up raining
that day!

or

This forecast predicted a lower chance of rain than the other
forecast. However, on this occasion, it rained!

or

This forecast predicted a lower chance of rain than the other
forecast. Unfortunately, it did not rain.

If it does not rain, Kishore will not be able to sell any tea,
and the milk will go bad.

Depending on how certain you are about your choice, you
may advise Kishore how much milk he should purchase to
make tea. Milk costs Rs. 30 per liter, and Kishore makes
Rs. 10 as profit per liter. How many liters of milk should
Kishore purchase?

Your score will depend on Kishore’s profit or loss.

Weather is realized at chosen village market location

Realization for village 1:
Draw a random number, u
∼ U(0, 1).
If u < 0.6, the event occurs;
and if u ≥ 0.6, the event
does not occur.

Realization for village 2:
Draw a random number, u
∼ U(0, 1).
If u < 0.9, the event occurs;
and if u ≥ 0.9, the event
does not occur.

Respondent farmer chooses points to put at stake

Stake ∈ {1, 2, 3, 4, 5}
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the rainfall forecast in each round randomly vary between 10% and 90%, and the order in

which farmers play scenarios and rounds within scenarios is randomized.

In each scenario, farmers play two rounds with a forecast, and one round where are are

asked to rely on historical rainfall patterns in their village (their priors for rainfall in that

time-period). This allows us to assess whether farmers update their beliefs from their priors

based on the probabilities in the forecast in forecast rounds. In each round, farmers select

whether to take the relevant action or not, based on their prior beliefs about the likelihood

of rain, or their posterior beliefs once they see the forecast.

The rounds are incentive-compatible since the ex ante optimal action is to choose the action

appropriate for rain when rain is expected (with ≥ 50% probability), and vice versa. Once a

decision is made, weather for the round is realized, and farmers are awarded 5 points if the

action they chose was ex post appropriate for realized weather, and 5 points are deducted

otherwise. As in the preceding game, feedback is provided after each round to help farmers

assess the optimality of their decisions and the influence of chance on the outcomes

Weather forecasts and realizations. Weather forecasts in the games are designed to be

realistic for the study-region, in consultation with meteorologists at CFAN. Quantities in the

forecasts are from historical weather realizations for the month in the hypothetical scenarios,

and probabilities vary randomly. Realizations are drawn from the probability distribution

described by the forecast, following the approach in Stephens et al. (2019). So, if a forecast

indicate an 80% chance of rain, then 80% of participants who get that forecast will get a

‘rain’ realization, while 20% will get a ‘no rain’ realization (Figure 7).12

Incidence of incorrect forecasts. The experimental games are designed so that realiza-

tions are randomly drawn, and forecasts may be correct or wrong. This induces random

variation is whether farmers encounter an incorrect forecast in a given round.

12In meteorology, a ‘reliable’ forecast is one where there is consistency between the forecast probabilities
and the observed frequencies of weather events (Noted by the Collaboration for Australian Weather and
Climate Research).
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Irrigation or spring showers for blossoming of
coffee flowers

• It is March first week, but there has been no rain
yet

• Irrigation of around 1-2 inches of rainfall neces-
sary over one week

• Irrigation is costly, but can’t be avoided if there
is no rain

Help farmers decide to (1) irrigate or (2) not. Use the
weather information provided in the round

Scoring

• If irrigation is applied and it does not rain:
coffee plants get sufficient water. (+5 points)

• If irrigation is applied and it rains: coffee plants
get too much water, costs incurred. (-5 points)

• If irrigation is not applied and it rains: coffee
plants get sufficient water. (+5 points)

• If irrigation is not applied and it does not rain:
coffee plants do not get sufficient water. (-5
points)

Farmer Lokesh receives the following forecast.

[audio forecast]

There is a 30% chance that rainfall will be between
1 and 2 inches of rainfall in the upcoming week.

Blossom irrigation or showers must take place in
the upcoming week. Do you advise Lokesh to:

Irrigate Don’t Irrigate Lokesh followed your advice and
chose to [irrigate/not irrigate]

Weather realization occurs

Realization:

Draw a random number from a uniform distribution u ∼
(0, 1). If u ≤ 0.3, the event occurs; if u > 0.3, it does not
occur.

Score depends on the farmer re-
spondent’s choice and realization

Figure 6: Illustrative flow of one game-round for a scenario in Experimental Game 2: Decision
to irrigate or not prior to coffee flower blossoming based on expected weather
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Between 3 and 6 inches of rain is expected in the
upcoming 10 days. There is a 60% chance that

rainfall will exceed 2.5 inches on at least one day.

Quantities from historical
weather realizations for that
month for a 10 day period.

Experimenters choose
a % chance that varies
across participants.

2.5 inches is the heavy rain
cut-off defined by IMD.

Realization is drawn from a distribu-
tion where the event being predicted
occurs 60% of the time, and does not
occur 40% of the time.

No nuance on the ”non-events” to
reduce complexity (Stephens et al.,
2019).

Artificial forecasts created with input
from meteorologists

Forecasts designed to be “relevant”
for the agricultural practice in the
scenario.

Figure 7: An example of a cumulative forecast used in experimental game 2

Scores and Payoffs. The scoring system incentivizes farmers to make decisions that max-

imize ex ante expected earnings/points. The rules are kept simple for ease of understanding

(Haaland et al., 2023; Conlon et al., 2022), but do not constitute ‘proper scoring rules’ (Pal-

frey and Wang, 2009). Farmers earn monetary incentives equal to their total points, with

a maximum possible earning of |110. In addition to game earnings, participants are also

compensated with an in-kind benefit valued at |150 for their involvement in the study.

Willingness-to-Pay. Once farmers play the two hypothetical decision-making games, we

elicit their demand for a real-world audio probabilistic weather forecast service using an

incentive compatible (Becker et al., 1964) mechanism. An english translation of what is

communicated to farmers in this exercise is below.

“The service being offered today is voice-call based rainfall forecasts from October 2023 to May

2024. In this service, rainfall forecasts will be provided via voice-call for the upcoming week,

and will also convey the likelihood of rainfall in % chance (in addition to the quantity). The

forecasts are more accurate and for a smaller (geographic) area than existing forecasts that

are available here. In the last 6 years, the forecasts correctly predicted rain in the upcoming

week [92% in Chikmagalur]/ [96% in Kodagu] of the time.”13

13Due to administrative delays, farmers eventually began receiving forecasts only in April, 2024. However,
this was communicated to farmers in October, 2023. The granularity of forecasts is communicated as “for
a smaller area than existing forecasts” because while the new forecast service has more granular forecasts
than existing forecasts from the IMD (which are provided at the district or block level), the geographic area
covered by a forecast grid-cell does not have a geographic analogue. In addition, in interviews with farmers,
it became clear to us that farmers’ perception was that these block or district-level forecasts were village
level forecasts because certain platforms labeled them with the village’s name. We discuss the change in
timing of forecast delivery in Section 4. Finally, forecasts in the real-world service are for an upcoming 5-day
period, rather than a week. This is because the skill of a a 5-day forecast had higher than the skill of the
7-day forecast. This change too was communicated to farmers prior to the launch of the service. The text
of the introductory message sent to farmers to board them onto the service is in Figure B6.
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3.2 Real-World Forecast Service

Service roll-out. Farmers who participated in the lab-in-the-field experiment and ‘took-

up’ the service in the BDM exercise began receiving forecasts in April, 2024. Following this,

the forecast-service was then rolled out in a staggered manner across blocks in Karnataka,

onboarding farmers who were already registered on the CKT advisory service. Farmers in

five blocks, Somwarpet, Mudigere, Sakleshpura, Belur and Alur,14 were assigned to phase 1,

and received access to the forecast-service from July, 2024 (phase 1); while farmers in six

other blocks, Chikmagalur, Koppa, Narasimharajapura, Madikeri, Arkalgud, Sringeri were

assigned to phase 2, and received access to the forecast-service from August, 2024. A total of

27,120, in 21 forecast-grid-cells15 in 11 blocks are part of the sample of farmers considering

in this study.

Phase 0. All 1,212 farmers, across 8 forecast-grid-cells in two blocks are onboarded onto

the service. In this sample, villages (with at least 5 farmers) are randomly assigned into one

of two experimental arms, stratified at the forecast-grid-cell level—(1) probabilistic forecasts

only; (2) probabilistic forecasts, along with additional forecast interpretation voice-calls.

This is a total of 1,145 farmers in 65 villages.

Lab-in-the-field
experiment

study sam-
ple (Phase 0)

1,145 farmers

in

65 villages

in

2 blocks

Forecast grid-cell 1

Forecast grid-cell 2

Forecast grid-cell 3

Forecast grid-cell 4

Forecast grid-cell 5

Forecast grid-cell 6

Forecast grid-cell 7

Forecast grid-cell 8

Probabilistic
Forecasts only

Probabilistic Fore-
casts + Periodic
Nudge Messages

569 farmers
in

34 villages

576 farmers
in

31 villages

8 forecast-grid cells

Villages are randomized
within each grid-cell

Figure 8: Forecast interpretation experiment design for Phase 0

Phase 1. A total of 14,644 farmers in 571 villages across 12 forecast-grid-cells are on the

14In Somwarpet and Mudigere, villages where the lab-in-the-field took place are excluded from this phase
of the service roll-out to maintain the integrity of the willingness-to-pay exercise.

15A forecast-grid cell is a sub-block geographic area, 0.2 ×0.2or18km× 18 km (324 km2), which is the
resolution at which forecasts are currently disseminated. This is an improvement on the resolution at which
widely available forecasts (such as from the IMD) are disseminated, which is at the district or block level.
Blocks in the study region range from 430 km2 to 1654 km2.
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service rosters in the five phase 1 blocks. All phase 0 villages are excluded from this sample.

Villages in this phase were randomized into the one of four experimental arms, stratified

at the forecast-grid-cell level—(1) probabilistic forecasts only; (2) probabilistic forecasts,

along with additional forecast interpretation voice-calls; (3) deterministic forecasts only; (4)

a control group. Farmers in the control group do not receive any forecasts, but continue

receiving standard advisory voice-calls. Table ¡XX¿ describes characteristics of farmers in

this sample.

Phase 1 Sample

14,644 farmers

in

571 villages

in

5 blocks

Forecast grid-cell 1

Forecast grid-cell 2

Forecast grid-cell 3

Forecast grid-cell 4

Forecast grid-cell 5

Forecast grid-cell 6

Forecast grid-cell 7

Forecast grid-cell 8

Forecast grid-cell 9

Forecast grid-cell 10

Forecast grid-cell 11

Forecast grid-cell 12

Probabilistic
Forecasts only

Probabilistic Fore-
casts + Periodic
Nudge Messages

Deterministic
Forecasts only

Control group
(No forecasts)

3,885 farmers
in

160 villages

4,267 farmers
in

166 villages

4,346 farmers
in

167 villages

2,046 farmers
in

78 villages

12 forecast-grid cells))

Villages are randomized
within each grid-cell

Figure 9: Forecast interpretation experiment design for Phase 1

Phase 2. A total of 15,106 farmers in 335 villages across 13 forecast-grid-cells are on the

service rosters in the six phase 2 blocks. Villages in this phase were randomized into the one

of five experimental arms, stratified at the forecast-grid-cell level—(1) probabilistic forecasts

only; (2) probabilistic forecasts with a recommended action (or advisory); (3) deterministic

forecasts only; (4) deterministic forecasts with a recommended action (or advisory); (5)

a control group (which continues receiving only the regular advisory voice-calls). These

farmers are part of the sample considered for the natural experiment (described below), but

we do not analyze differences between these experimental groups in this paper.16 Table ¡XX¿

describes characteristics of farmers in this sample.

Forecasts. Once farmers receive access to the service, they receive an initial onboarding

call explaining the new service. Farmers then begin receiving five-day cumulative rainfall

16These results, comparing outcomes across the different experimental arms—comparing forecasts alone
to forecasts along with recommendations—are described in our companion paper, “Customizing Weather
Forecasts for Climate Change Adaptation in Rural India”
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forecasts over voice calls, once every five days. Upto three call-tries are made to each farmer

scheduled to receive a call. Figure Figure B8 presents the script for each type of forecast

sent to farmers. To ensure comparability, the same underlying forecast is sent to all farmers

in each forecast group. All forecasts present the median value of rainfall in the forecast for

the upcoming five-day period. Probabilistic forecasts, in addition, provide farmers with the

likelihood of rain.17

Forecast Realization Natural Experiment. All 27,120 farmers—across 21 forecast-grid-

cells in 11 blocks—enrolled on the forecast service in phases 0, 1 and 2 are part of the sample

for this pre-registered natural experiment.

Farmers receive forecasts indicating the median rainfall forecasted for the next five-days.

In addition, probabilistic forecasts also indicate the likelihood of rain. Depending on the

eventual realization for that five-day period, the forecast may be correct or incorrect. Since

all the underlying forecasts are probabilistic in nature, whether an individual forecast is

realized or not is as good as random. We rely on the random incidence of incorrect forecasts

to identify their impact on farmers’ subsequent engagement with the forecast service, and

their beliefs about the service or its perceived accuracy.

We consider two types of incorrect forecasts that may occur: (1) a false alarm, where an event

is predicted but does not occur; and (2) a missed event, where an event is not predicted, but

does occur. Since all forecasts also communicate the median forecasted quantity to farmers,

in our analyses, we consider two types of false alarms—one where rain is predicted but

no rain occurs, and the other where rain is predicted but rain below that quantity occurs;

and two types of missed events—one where no rain is predicted, but rain of any magnitude

occurs, and the other where some rain is predicted, but rain far above the predicted quantity

occurs.18

Forecast Interpretation Information Experiment. Farmers receiving probabilistic

forecasts in phase 0 and phase 1, across 12 forecast-grid-cells in 5 blocks, are part of this

pre-registered experiment.

Farmers assigned to receive the additional forecast interpretation treatment receive informa-

tional voice-calls every two-weeks between August and October (six in total) reiterating how

to interpret forecasts and probabilities. The English translation of the script for these calls

17The forecast indicates the likelihood of rain above a certain threshold, which varies across months to
correspond to quantities of rainfall that may be necessary for agricultural practices in a given month. For
example, in the month of July, if the median forecasted rainfall in the next five days is between 0.1 and
2.5 inches, then the forecast provides the likelihood of any rain; while if the median forecasted rainfall is
above 2.5 inches, the forecast provides the likelihood of rain above 2.5 inches. Rain upto 2.5 inches is ideal
for the pest management activities typically undertaken in July, while rain above 2.5 inches requires other
precautionary measures.

18Exact definitions are in the Appendix.

19



is below:

“Namaskara! This is a message from Coffee Krishi Taranga. The following is important

information about understanding CKT rainfall forecast messages. Each forecast that you

receive provides the total expected rainfall for the next 5 days and the likelihood of certain

amounts of rain as a percentage chance. For example, an 80% chance of rain indicates that it

will rain 8 out of 10 times. This means that it is very likely to rain, but it is not guaranteed to

rain. Similarly, an 80% chance of 2 inches or more of rain means that it is very likely, but not

certain, that rainfall will be 2 inches or more. In either case, there is also a small chance that

the forecasted rainfall quantity may not occur. Weather prediction is complex, and so forecasts

may occasionally be inaccurate. We recommend using the Coffee Krishi Taranga forecasts,

other trustworthy local information, and your own experience to make the best decisions for

your crops. We are constantly working to provide the most accurate forecast information and

improve our service. If you have questions, suggestions, or need help, please contact us at

[number]. Thank you for your attention and cooperation.”

3.3 Data

Lab-in-the-Field Experiment. In the lab-in-the-field experiment, apart from game out-

comes, we collect data on farmer characteristics, farm characteristics, risk preferences, un-

derstanding of probabilities.

Administrative Data from the CKT service. Administrative data for the pre-existing

advisory service consists of data on farmer demographics and farm characteristics for the

larger sample of farmers who receive forecasts.

Service engagement data. For farmers who are enrolled in the weather-forecasting ser-

vice, engagement data is automatically recorded by the service’s technology platform. This

consists of data on whether farmers answered a call or not, which call-try they answered, how

much of a call they listened to, and the forecast that was sent. Forecasts are those generated

by CFAN and described in sectionSection 2, updated on a daily-basis. In addition, we have

data on actual weather realizations from NASA’s Integrated Multi-satellitE Retrievals for

GPM (IMERG) dataset.

Phone surveys. We conduct short phone surveys with a sub-set of farmers in phase 0,

and phase 2 between September and December, 2024. These phone surveys are timed to

be administered one day after a farmer is scheduled to receive a forecast. We collect data

on farmers’ trust in the forecast service, whether farmers relied on forecasts for agricultural

decision-making in the preceding month, whether they shared forecasts with others. We

also gather data on farmers’ expectations of upcoming weather, comprehension of forecast

message content.
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Pre-registration. This research was registered on the social sciences registry. We describe

deviations from the PAP in the Appendix.

4 Results

4.1 Demand for forecasts

Farmers who participate in the lab-in-the-field experiment demonstrate high demand for a

new voice-call based probabilistic rainfall forecast service, with 98.43% of farmers willing

to pay positive amounts and all farmers willing to take-up the service. In an incentive-

compatible (Becker et al., 1964) elicitation, farmers’ average willingness-to-pay for an 8-

month subscription to the forecast-service is INR 204.4 (USD 2.42) or INR 25.55 (USD 0.30)

per month—comparable with the willingness-to-pay for seasonal forecasts in the neighboring

state of Telangana in 2022, INR 1.03 found by Burlig et al. (2024).19

Of the farmers who participated in this study component, 91% reported already receiving

forecasts from another source, but only a them reporting trusting those forecasts.20 Survey

responses and interviews with farmers indicated that they often rely on multiple sources

of weather information. Farmers also share forecast information with, and receive forecast

information from, other farmers—79% of the forecast-service-users we surveyed indicated

that they did share forecasts with others. So, this willingness-to-pay likely underestimates

farmers’ true valuation.21

These farmers’ high demand for forecasts is also reflected in their eventual use of the real-

world service. Over 96% of the same farmers answer at least one forecast-call that they

receive after an initial onboarding call, and over 70% of farmers answer more than half the

calls that they receive until mid-October, 2024. Farmers’ willingness-to-pay also correlates

with their engagement with the forecast-service (Figure 10, Table A4), as farmers with high

engagement (i.e., who answered more than 50% of the forecast calls sent to them) had

previously reported a 6% higher willingness to pay for the service.

Reported average willingness-to-pay is far higher than the average cost of providing the

19This is understandably higher than the willingness-to-pay for a 9-month subscription to a voice-call
based agricultural advisory service in Gujarat in 2013, INR 109 in Cole and Fernando (2020).

20Measured as reporting trust of 4 or 5 on a 5-point visual Likert scale.
21Also note that the months for which the subscription is offered in the BDM exercise, November to

May, are non-rainy (or non-monsoon) months. Examples of activities that occur during this period are: (1)
harvesting, and drying, when rain is undesirable; (2) coffee flowers begin to blossom in the spring, and light
rain (or irrigation) is necessary. The real-world service begins in April, which includes the coffee blossoming
period, and then continues onto the monsoon. Rain may be harder to predict outside the monsoon, indicating
that reported willingness-to-pay may be lower for the monsoon months. Ongoing data collection will extend
until January, 2025, allowing us more visibility into service-use beyond the monsoon.
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service to each farmer at the target scale (of 50,000 farmers), INR 8 (USD 0.1).22 Assuming

that the demand curve implied by the willingness-to-pay reported by the farmers in the lab-

in-the-field experiment applies to all farmers on the service at scale, the revenue maximizing

price is INR 31.25 (USD 0.37), at which price 49.67% of farmers would take up the service (or

24,835 farmers in the at-scale service). Back of the envelope total cost calculations indicate

an average cost of INR 15.69 (USD 0.19) when 24,835 farmers take up the service at price

of INR 31.25, pointing to the substantial value generated by providing this service at-scale.

Figure 10: Farmer demand for a voice-call forecast service with probabilistic rainfall forecasts
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Notes: The first figure represents the share of forecast calls that farmers who participated in the lab-in-the-field experiment
answered between April and October, 2024. Farmers answered an average of 56.27% of calls sent to them. The second figure
represents farmers’ monthly willingness-to-pay for a subscription to the forecast service recorded in the BDM exercise at the end
of the lab-in-the-field experiment. Farmers have an average willingness-to-pay of |204.4 or $2.42 for an 8-month subscription.
The graph presents monthly equivalents of willingness-to-pay, which averages to |25.55 or $0.30 per month.

4.2 Impact of forecast information on beliefs about weather

We rely on results from the lab-in-the-field experiment and data on farmers’ expectations of

upcoming weather reported in phone surveys to assess how farmers rely on forecast informa-

tion to form beliefs about weather.

First, we consider farmers’ decisions in the ‘agricultural decision-making game’ from the

lab-in-the-field experiment in Table 2, using the specification below.

I(Updated Rainfall Beliefs)ir = β0 + β1Probir + Order
′

irα1 + Format
′

irα2

+ X
′

irα4 + GP g + ϵir (1)

where an observation is at the individual-round level, i, r; the outcome and regressors are

described in Table 2.

22This is the average cost including the cost of custom private forecasts from CFAN for the coffee-growing
region in Karnataka, phone service costs, and additional infrastructure and staff costs when the service is
added onto an existing advisory service
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Table 2: Impact of forecast information on beliefs about weather in hypothetical scenarios

(in an incentivized decision-making game with scores dependent on correctly predicting eventually realized weather)

Irrigation
Fertilizer

Application

|Forecast - No forecast | |Forecast - No forecast |

(1) (2) (3) (4)

Probability in the forecast 0.658∗∗∗ 0.537∗∗∗ 0.304∗∗∗ 0.244∗∗∗

(0.049) (0.066) (0.061) (0.076)

Fixed Effects No Yes No Yes

N 2424 2424 2424 2424

Outcome mean, forecast prob = 0.1 0.131 0.131 0.052 0.052

Notes: The outcome is the absolute difference between the a farmer’s belief about whether it will
rain in a round with a forecast (posterior) and in a round without a forecast (prior) in a hypothetical
decision-making game with two forecast rounds and one no-forecast round in each decision-making
scenario. Regressor of interest is the probability in the forecast, which indicates the likelihood of
rain being realized in that round, which randomly varies from 0.1 to 0.9. Columns 1, 3 present
results which control for farmer characteristics; columns 2, 4 present results with individual fixed
effects. Results with controls are from double lasso specifications, which include gram panchayat
fixed effects, and controls for the forecast format, the order of the game round, game realizations
in prior rounds, and whether the farmer first watched either of the informational videos prior to
the experiment. Lasso controls include farmer characteristics, farm characteristics, forecast use
prior to the experiment.
Robust standard errors clustered at the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 2 demonstrates that farmers update their beliefs about expected weather based on

information contained in a forecast in a given incentive-compatible round (rounds are de-

scribed in Figure 6). Farmers in the game decide whether to irrigate (if rain is not expected)

or not (if rain is expected), and whether to apply fertilizer (if heavy rain is not expected)

or not (if heavy rain is expected) based on information in the forecast or their priors. Their

action in a round with no forecast reflects their prior beliefs about the likelihood of rain,

while their beliefs in a round with a forecast reflect their posterior beliefs based on informa-

tion in the round’s forecast, and the results across columns in Table 2 indicate that farmers

are more likely to update their beliefs about the likelihood of rain based on a forecast, when

the probability of rain in that forecast is higher. For each round in a scenario, the proba-

bility in forecasts randomly varies across participants, allowing us to interpret these results

as the effect of the forecast information on beliefs. These results are not confounded by

any within-scenario order effects and learning effects, which are controlled for; nor are they

confounded by the method in which a forecast is delivered. The result also persists across

both scenarios, where farmers are likely to have different priors—reassuring us that farmers

are indeed updating their beliefs about expected weather based on a probabilistic rainfall

forecast in hypothetical, controlled scenarios.

To validate whether these results translate to the real-world, we compare expectations (for

a sub-sample of phase-2 farmers who we survey over the phone) between a randomly as-

signed control group and a randomly assigned forecast group using the following regression

specification:

I(Accurate Beliefs)i = β0 + β1Forecasti + X
′

irα4 + Forecast−Gridg + ϵig (2)

where an observation is at the farmer-level, i. The outcome and regressors are described

in Table 3. Suggestive evidence (from a small sample of farmers on the service) in Table 3

indicates that expectations are accurate for 14.9 percentage point more farmers in the forecast

group, relative to the control group, at the 10% significance level. Sixty-five percent of

the realizations in this dataset are of rainfall across categories, while 35% are of no-rain,

reassuring us that the accuracy does not arise due to a lack of variation in realized weather.
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Table 3: Impact of forecast information on beliefs about weather in real-world service

I[Expected Rainfall
= Realized Rainfall]

I[Expected Rainfall
= Forecasted Rainfall]

(1) (2)

Receives Forecasts 0.149∗ 0.106
(0.078) (0.081)

N 334 334

Outcome mean, no forecast group 0.365 0.459

Notes: The outcome is an indicator, which takes the value 1 if the quantity of rainfall expected by
the farmer in the next 5 days is in the same category as the realized rainfall in those 5 days. Data
is from a survey with a small sample of farmers who use the real-world service, comparing those
who receive forecasts with those who don’t. Results are from double lasso specifications which
include forecast grid, week of survey, and forecast format fixed effects. Lasso controls include
age, indicator for whether a farmer is a smallholder, indicator for whether the farmer is female,
indicator for whether the farmer completed higher secondary education, indicator for whether the
farmer owns a smartphone, and an indicator for whether the farm has working irrigation facilities.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

4.3 Impact of forecast outcomes on beliefs about forecasts

To establish the impact of forecast outcomes on beliefs about forecasts, we rely on three

sets of results: the impact of incorrect forecasts in a game-round on subsequent decisions

by farmers in the lab-in-the-field experiment; the impact of incorrect forecasts in the real-

world service on subsequent farmer engagement with the service; and the impact of incorrect

forecasts in the real-world service on subsequent reported farmer beliefs and behavior from

a phone-survey with a a sub-sample of service-users. We focus on incorrect forecasts of

two types, as defined by meteorologists: false alarms, where rainfall is forecast but does

not occur, and missed events, where rainfall is not forecast, but does occur (see for e.g.,

Ripberger et al., 2015).23

First, in Table 4, we analyze farmers’ choices in the ‘market-location choice’ game from the

lab-in-the-field experiment (described in Figure B2, Figure 5) using the specification below,

Outcomeir = β0 + β1Incorrect Forecastir + γ4Difference in Probabilitiesir

+ X
′

irα4 + GP g + ϵir (3)

where an observation is at the individual-round level, i, r. Outcomes and regressors are

described in Table 4.

23A comprehensive discussion of forecast skill and verification measures is in
https://www.cawcr.gov.au/projects/verification/
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Table 4: Impact of incorrect forecasts on distinguishing between two probabilistic forecasts

(in an incentivized decision-making game with scores dependent on desired weather being realized)

Chosen forecast is
ex ante optimal

Investment Current round score

(1) (2) (3) (4) (5) (6)

Incorrect forecast in preceding round -0.029∗∗ -0.033∗∗∗ -0.306∗∗∗ -0.225∗∗∗ -0.423∗∗∗ -0.391∗∗∗

(0.011) (0.012) (0.033) (0.029) (0.091) (0.093)

Difference in probabilities between 0.103∗∗∗ 0.086∗∗∗ 0.334∗∗∗ 0.261∗∗∗ 1.164∗∗∗ 0.972∗∗∗

forecasts in current round (0.020) (0.020) (0.061) (0.052) (0.163) (0.164)

Individual Fixed Effects No Yes No Yes No Yes

N 6060 6060 6060 6060 6060 6060

Outcome mean, previous forecast correct 0.875 0.875 4.186 4.186 3.248 3.248

Notes: The outcome in columns (1), (2) is an indicator which takes the value 1 if the farmer makes the ex
ante optimal choice, and 0 otherwise; the outcome in columns (2), (3) is the investment that farmers choose in
that round ∈ {1, 2, 3, 4, 5}, i.e., the number of points at stake; the outcome in columns (4), (5) is +investment
if the farmer made the ex post optimal choice, or -investment if the farmer made the ex post non-optimal
choice. Columns 1, 3, 5 present results which control for farmer characteristics; columns 2, 4, 6 present results
with individual fixed effects. Results with controls are from double lasso specifications, which include gram
panchayat fixed effects, and controls for the forecast format, the order of the game round, an indicator for
whether the round requires that farmers choose the more likely event (as opposed to the less likely event), an
indicator for whether forecasts differs only in probabilities (as opposed to forecasts that differ in both quantities
and probability), correct choice in preceding round, whether the farmer first watched either of the informational
videos prior to the experiment. Lasso controls include farmer characteristics, farm characteristics, forecast use
prior to the experiment.
Robust standard errors clustered at the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Results in columns (1) and (2) in Table 4 indicate that farmers are less likely to choose

the ex ante optimal forecast from a pair of forecasts describing predicted weather in two

different market-locations, following a round where the forecasted event was not realized—an

incorrect forecast. In the absence of these effects, farmers choose the ex ante optimal forecast

more than 87% of the time, and experiencing an incorrect forecast lowers this by around 3

percentage points. Considering the high skill farmers otherwise exhibit, these results suggest

a ‘discouraging’ effect of experiencing an incorrect forecast. Results in columns (3) and (4)

further indicate that experiencing an incorrect forecast also causes farmers to stake fewer

points (the investment) in subsequent rounds, reflecting lower confidence in the forecast.

This directly points to a reduction in the perceived accuracy of the forecast, or trust in the

forecast. Design features in the game ensure that results from this game are not confounded

by biases that may arise due to a farmer conflating the quantity in a forecast with the

probability in the forecast. They also ensure that merely knowing that a number is higher

than another is not sufficient to make the optimal choice, since rounds require selecting either

a ‘more likely to rain’ or ‘less likely to rain’ location at random. The order in which rounds

are played is also randomized, as is the probabilities in the forecasts presented.

We next analyze how incorrect forecasts in the real-world impact farmers’ engagement with
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the service, using the specification:

Call pick upi,t = β0 + β1False Alarmi,t−1 + β2Missed Eventi,t−1 +

( β4False Alarmi,t−1 × Characteristic) +

+ X
′

irα4 + Forecast−Gridg + ϵig (4)

The outcome and regressors are described in Table 5.

Table 5: Impact of incorrect forecasts on farmer engagement with a real-world service

Whether a forecast voice-call is answered or not

(1) (2) (3) (4) (5) (6)

Preceding forecast was a false alarm -0.092∗∗∗ -0.045∗∗∗ -0.094∗∗∗ -0.072∗∗∗ -0.086∗∗∗ -0.111∗∗∗

[Rain is predicted with p>0.5, but no rain occurs] (0.016) (0.011) (0.026) (0.021) (0.017) (0.015)

Preceding forecast was a false alarm -0.030∗∗

× Risk Averse (0.010)

Preceding forecast was a false alarm -0.053∗∗

× Grows weather sensitive variety (0.023)

Preceding forecast was a false alarm -0.016∗∗∗

× No working irrigation facilities (0.005)

Preceding forecast was a false alarm 0.049∗∗

× High rainfall variability (0.023)

Preceding forecast was a missed event -0.027 -0.034∗∗ -0.018 -0.017 -0.027 -0.025
[No rain predicted, but rain of any magnitude occurs] (0.020) (0.014) (0.022) (0.021) (0.020) (0.021)

Individual Fixed Effects No Yes Yes Yes Yes Yes

N 342693 342803 30885 30885 342693 342693
Outcome mean, previous forecast
correct in omitted group

0.606 0.606 0.653 0.642 0.595 0.632

Notes: The outcome in all columns is an indicator which takes the value 1 if the farmer answers the forecast
voice-call that is made to their number, and 0 otherwise. Columns (1) presents results which control for farmer
characteristics, forecast grid, with a double lasso specification; columns (2)-(6) present results with individual
fixed effects. All specifications include controls: forecast-grid, indicators for the calendar-week, indicator for
number of forecast calls sent previously, indicator for forecast-type, indicators for which call-try (out of 3) was
answered, the rainfall realization in the preceding forecast, current rainfall conditions, indicator for which call
was last answered, indicator for whether the preceding forecast included the call-day or not. Lasso controls
are an indicator for whether the farmer is female or not, the farmer’s age, whether the farmer is a smallholder
with 5 acres or less of land, whether the farmer has completed higher secondary education or not, whether the
farmer has a smartphone or not, whether the farmer has working irrigation facilities or not. Columns (3) and
(4) include only the sub-sample of farmers who participated in the lab-in-the-field experiments, and for whom
data on risk aversion and crop variety exist.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

As we demonstrate in Appendix C, farmers’ engagement with the service reflects (or may

be considered a proxy for) underlying trust in the service. Results in columns (1) and (2) of

Table 5 indicate that farmers are less likely to answer a forecast-call following a forecast that
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ended up being a false alarm or a missed event—4.5 percentage points fewer calls are answered

after a false alarm, while 3.4 percentage points fewer calls are answered after a missed event—

demonstrating the ‘discouraging’ effect of incorrect forecasts, similar to that observed in the

experimental games.24 These effects are not driven by farmers misunderstanding or being

confused about probabilities in probabilistic rainfall forecasts—?? indicates that these effects

persist for farmers in villages which receive probabilistic forecasts, and those which receive

deterministic forecasts (recall that in phases 1 and 2, some villages are randomly assigned

to receive deterministic forecasts, while others are randomly assigned to receive probabilistic

forecasts).

This effect persists, with farmers demonstrating reduced engagement many weeks after ex-

periencing an incorrect forecast in early forecasts (Table A7), suggesting lower perceived

accuracy or trust in the forecast. Moreover, Table A9 clearly shows that when early fore-

casts are successes (i.e., there are no incorrect forecasts in the first five forecast-calls), the

‘discouraging’ effect of a false alarm is significantly lower in subsequent time periods. While

farmers still exhibit lower engagement with the forecast-service after a false alarm, early

successes narrow this effect by 4.6 percentage points, or around 7%. This corroborates the

predictions in Appendix C that early experiences have lasting effects on trust-levels, even

when the same number of correct forecasts have been experienced in total.

Heterogeneity. Columns (3)-(5) in Table 5 demonstrate that the reduction in engagement

with the service is more pronounced for farmers who are more risk averse, for those who

grow the more weather sensitive coffee variety (Arabica, as opposed to Robusta), and for

those who do not have working irrigation facilities on their farms. All these factors suggest

that farmers are more likely to be ‘discouraged’, when the stakes for them are higher. These

findings reflect a similar underlying concept as that reflected in the findings in (Giné et al.,

2015) which indicate that farmers with a lower ability to cope with risk, i.e., with similarly

higher stakes, have accurate priors about weather.

Vulnerability to climate change. Column (6) demonstrates an important result, that

farmers who are exposed to more weather variability, are less likely to be ‘discouraged’

by, or to lower engagement due to, incorrect forecasts. Here, blocks25 with high recent

historical rainfall variability, i.e., above median rainfall variability between 2000 and 2022,

are categorized as high rainfall variability blocks, and intended to proxy for exposure to

climate change—which is making weather patterns in the region more variable (Sreenath

et al., 2022; Varikoden et al., 2019; Chandrashekhar and Shetty, 2017a). In high variability

blocks, the reduction in engagement following a false alarm is 6.2 percentage points, as

24Note that there are far fewer missed events than false alarms in the dataset, since most calls are during
the monsoon, leading to lower power on the missed event effects. As a result, we don’t analyze heterogeneous
effects with respect to missed events.

25geographic unit below the district level
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opposed to 11.1 percentage points in other blocks—a 7.7% smaller effect where the average

call-pick-up rate when the preceding forecast was correct is 63.2%. An associated results is

the finding in Table 7 that the climate change salience treatment video in the lab-in-the-field

experiment leads to a 3 percentage point increase in take-up of the real-world service more

than six months after the treatment. This is an increase over an already high take-up rate

of 95.1% in the control group from the lab-in-the-field experiment’s study sample. Together,

these findings demonstrate the value of improved and accessible medium-range range rainfall

forecasts as a climate adaptation tool.

Survey findings. Finally, we provide provide supportive evidence from phone surveys with

a little over 600 farmers who use the real-world forecast service Table 6. We analyze the

impact of experiencing incorrect forecasts on subsequent trust in the forecast service, use

of the forecasts in decision-making, and likelihood of sharing these forecasts with others by

running the following regression specification:26

Outcomeit = β0 + β1False Alarmi,t−1 + + X
′

irα4 + Forecast−Gridg + ϵig (5)

where an observation is at the individual level, i. Outcomes and regressors are described in

Table 6.

Table 6: Impact of incorrect forecasts in a real-world service on farmer beliefs

Trust in
forecasts used

Shared forecasts
with others

Relied on forecasts
for decision-making
in the last month

Any CKT Any CKT Any CKT

(1) (2) (3) (4) (5) (6)

Preceding forecast was a false alarm -0.053 -0.031 -0.020 -0.051 0.069 -0.145∗∗

[Rain is predicted with p>0.5, but no rain occurs] (0.048) (0.066) (0.050) (0.067) (0.055) (0.058)
-0.151ˆ*** -0.151ˆ*** -0.151ˆ*** -0.151ˆ*** -0.151ˆ*** -0.151ˆ***

N 589 502 590 501 614 504
Outcome mean, previous forecast correct 0.544 0.663 0.801 0.807 0.825 0.540

Notes: The outcome is columns (1) and (2) is an indicator that takes the value 1 if the farmer reports trusting forecasts at
4 or 5 on a 5-point scale, and 0 otherwise; the outcome in columns (3) and (4) is an indicator that takes the value 1 if the
farmer reports having shared forecasts with others, and 0 otherwise; the outcome in columns (5) and (6) is an indicator that
takes the value 1 if the farmer reports having relied on forecasts for decision-making in the last month, and 0 otherwise.
Results are from double lasso specifications, including controls for forecast grid, calendar-week, the number of forecast
calls answered previously,roll-out phase, forecast format, the rainfall realization in the preceding forecast, current rainfall
conditions. Lasso controls are: whether the farmer is female or not, the farmer’s age, whether the farmer is a smallholder
with 5 acres or less of land, whether the farmer has completed higher secondary education or not, whether the farmer has
a smartphone or not, whether the farmer has working irrigation facilities or not.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Suggestive evidence in Table 6 indicates that farmers who last received a forecast that ended

26There are not enough missed events in the data to estimate any effects.

29



up being a false alarm are less likely to rely on the forecasts for decision-making—14.5

percentage fewer farmers reporting having done so after a false alarm. This finding is robust

to the definition of a false alarm Table A6. In addition, using this alternate definition of a

false alarm in Table A6, we find that the incidence of a false alarm also lowers reported trust

in the forecasts—supporting our argument that the reduction in encouragement reflects a

reduction in trust or perceived accuracy.

We also find supportive evidence in these surveys that the impact of incorrect forecasts may

persist. Table A8 indicates that if the first forecast that was received was a false alarm,

it reduces the likelihood that farmers rely on the service’s forecasts to make agricultural

decisions. Finally, corroborating our results on service-engagement and those theorized in

Appendix C, Table A10 indicates that if early forecasts (in this case, the first five forecast

calls sent to a farmer) are successful or correct, farmers report higher trust in the service

when surveyed (at least 5-months after the service launched for phase 0 farmers, and at least

two months after the service launched for phase 2 farmers). These results are statistically

significant at the 95% level. However, a caveat here is that this is a sample of 502 randomly

sampled farmers in phase 0 and phase 2 villages who used the service. These results, along

with those in Table A9, show that early experiences with forecasts determine trust over a

longer-horizon.

4.4 Impact of information treatments on beliefs about forecasts

Finally, we look at the impacts of the light-touch information treatments during the lab-in-

the-field experiment, and in the real-world service. During the lab-in-the-field experiment,

farmers were randomly assigned to watch a climate change salience video, a probability

training video along with the climate change salience video, or a placebo video. Subsequently,

once farmers being receiving calls from the real-world forecast service, villages in phases 0,

and 1 are randomly assigned to receive either probabilistic forecasts alone, or probabilistic

forecasts along with an information treatment, the ‘forecast interpretation’ treatment. The

treatment intended to boost trust in the service by highlighting the uncertainty associated

with forecasts, and explaining how to interpret probabilistic forecasts.

We estimate the effects of these treatments on engagement with the real-world service using

the following two specifications (outcomes and regressions are in the Table 7).

Takeupi = β0 + β1Climate Changei + β2Probability Trainingi + X
′

iα4 + GP g + ϵi
(6)
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Pick up %i = β0 + β1Forecast Interpretationi + β2% Incorrect Forecastsi

+ β3Forecast Interpretationi ×% Incorrect Forecastsi

+ X
′

iα4 + Forecast−Gridg + ϵig (7)

Table 7: Impact of information treatments on engagement with the real-world service

Take-up Share of calls answered

(1) (2) (3) (4) (5) (6)

Climate change salience (CC) 0.034∗∗ 0.006
(0.015) (0.013)

Probability training (PT)
[(CC + PT) - CC]

-0.012 -0.015

(0.012) (0.014)

Forecast interpretation (FI) -0.031∗∗∗ -0.077∗∗∗ -0.035∗∗∗ -0.081∗∗∗

(0.006) (0.020) (0.006) (0.021)

% incorrect forecasts sent -0.951∗∗∗ -0.989∗∗∗

(0.087) (0.090)

Forecast interpretation (FI) × 0.074∗∗

% incorrect forecasts sent (0.029)

% incorrect forecasts received -0.559∗∗∗ -0.598∗∗∗

(0.040) (0.045)

Forecast interpretation (FI) × 0.074∗∗∗

% incorrect forecasts received (0.028)

N 1211 1211 9327 9327 9327 9327
Outcome mean, no video treatment 0.951 0.565 0.887 0.887 0.887 0.887

Notes: The outcome in columns (1) is an indicator which takes the value 1 if the farmer answers at least
one forecast-call, and 0 otherwise; the outcome in columns (2) - (6) is the % of forecast-calls made to the
farmer that are answered by the farmer. Treatment ‘CC’ is a video highlighting increasing weather variability
and climate change adaptation measures at the start of the lab-in-the-field experiments; treatment ‘PT’ is a
video providing probability training at the start of the lab-in-the-field experiments; treatment ‘FI’ is a voice-
call describing how to interpret probabilistic forecasts and emphasizing that forecasts are not guarantees sent
after the launch of the real-world service. Columns (1), (2) include all 1,212 farmers who participated in the
lab-in-the-field experiments (phase 0), columns (3)-(6) include 1,135 phase 0 farmers, and an additional 8,192
farmers (phase 2). All results are from double-lasso specifications. Results in columns (3)-(6) include controls
for the forecast-grid, phase, and number of calls made, lasso controls include whether the farmer is female or
not, the farmer’s age, whether the farmer is a smallholder with 5 acres or less of land, whether the farmer has
completed higher secondary education or not, whether the farmer has a smartphone or not, whether the farmer
has working irrigation facilities or not.
Robust standard errors (clustered at the forecast grid level in cols (2)-(6)) in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

As discussed previously, the climate change salience treatment significantly increases the

take-up of the real-world service by 3 percentage points, more than six months after it is

31



administered (column 1 in Table 7). The time between the treatment and the launch of the

service is long enough to obfuscate any experimenter demand effects (Haaland and Roth,

2020, as in). However, column (2) indicates that it does not have a corresponding significant

impact on the share of calls answered overall (by mid-October, 2024).

The ‘forecast interpretation’ treatment in the real-world service, on the other hand, has

muted effects. The intent behind the treatment was to serve as a behavioral ‘nudge’, re-

minding farmers about uncertainty associated with forecasts and about how to interpret

probabilities. This in turn was to boost trust and engagement, or at the very least mitigate

the ‘discouraging’ effect of incorrect forecasts. These messages were sent over additional

voice-calls to farmers once every two weeks from mid-August to mid-October, 2024. Results

in columns (3)-(6) (Table 7) consider the share of calls answered after the start of the ‘forecast

interpretation’ treatment, and indicate that while the treatment did mitigate the reduction

in engagement (the interaction term), it came at the cost of lower overall engagement—

reducing the likelihood of farmers answering the forecast-calls and the standard advisory

calls (in Appendix)— due to ‘call fatigue’.

5 Discussion and Conclusion

This study demonstrates that coffee farmers in rural Karnataka exhibit high demand for

medium-range rainfall forecasts both through an incentive-compatible (Becker et al., 1964)

mechanism to elicit their willingness to pay, and their eventual use of a real-world medium-

range rainfall forecast service. We also find that the salience of climate change and weather

variability boosts the use of this service. Coffee is a weather sensitive, perennial crop, and

the region has highly variable (and increasingly so) weather, and taken together, our findings

highlight the role of medium-range forecasts as a climate adaptation tool that helps farmers

make within-season adjustments to manage agricultural risks, particularly in areas vulnerable

to climate variability. This insight aligns with the growing literature on adaptation in climate

economics and emphasizes that investments in scalable forecast services can have substantial

benefits for smallholder farmers. In addition, the high willingness-to-pay compared to the

costs of expanding access to forecasts that we observe also point to the value in investing in

improved, customized climate information services for vulnerable farmers.

This study also provides experimental evidence on how farmers in developing countries form

beliefs about the accuracy of weather forecasts based on their experiences, how this impacts

their use of the forecast service, and how it consequently impacts their decision-making—both

in a controlled lab-in-the-field experimental setting and through a natural experiment arising

in a real-world service. We show that farmers’ trust in the service evolves with forecast

outcomes: incorrect forecasts reduce engagement with the service, and reported trust in the

service. Trust (both reported, and implied by service engagement) in the service is heavily
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shaped by early forecast outcomes, as early positive experiences make farmer-engagement

more robust to later forecast errors. This suggests a need to prioritize forecast accuracy in

initial stages to foster early trust and encourage continued use, an approach that can extend

to other digital extension services.

An experiment disseminating information to promote understanding of the uncertainty as-

sociated with forecasts, and to boost trust, yielded mixed results — suggesting that future

research is needed to identify other strategies that boost trust in forecasts with high objec-

tive accuracy to overcome any ‘discouraging’ effects of errors. Digital information services

that rely on remote delivery, such as voice-calls or text messages should also consider po-

tential downsides of additional outreach, such as ‘call fatigue’. Finally, this study considers

a relatively short time-frame: our experiments with the real-world service run a total of

10 months, and limit our ability to draw any conclusions on longer-term effects on trust,

behavior or adaptation.
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A Additional Tables

Table A1: Randomization Balance

Treatments Obs

Mean (SD) Coefficient (SE) p-value

(1) (2) (3) (4) (5)

Control Climate Probability CC= Total
Change Training + PT + CC = Obs

Climate 0
Change

(CC) (PT+CC)

Is the primary decision maker 0.860 0.013 0.009 0.857 1212
(0.347) (0.024) (0.026)

Household size 3.931 0.007 0.058 0.840 1212
(1.419) (0.095) (0.109)

Age 48.360 -0.785 -0.221 0.562 1212
(11.084) (0.768) (0.845)

Educated to higher secondary level or above 0.409 -0.013 -0.022 0.840 1212
(0.492) (0.034) (0.037)

Is literate 0.966 0.001 -0.014 0.517 1212
(0.182) (0.013) (0.015)

Is female 0.243 0.015 0.019 0.824 1212
(0.429) (0.030) (0.033)

Has access to a smartphone 0.689 0.055* -0.002 0.094 1212
(0.464) (0.031) (0.035)

Uses WhatsApp 0.320 0.008 -0.009 0.872 1212
(0.467) (0.032) (0.035)

Is risk averse (implied CRRA risk aversion parameter >= 1.34) 0.446 0.028 0.062 0.262 1212
(0.498) (0.034) (0.038)

Trusts weather forecasts 0.357 -0.041 -0.024 0.456 1212
(0.480) (0.033) (0.036)

Coffee cultivation is the main source of income 0.914 -0.048** -0.032 0.072 1211
(0.280) (0.021) (0.022)

Cultivates coffee on <= 5 acres 0.711 -0.022 0.007 0.616 1212
(0.454) (0.032) (0.034)

Has access to functional irrigation facility 0.474 -0.031 -0.055 0.303 1212
(0.500) (0.033) (0.035)

Cultivates Arabica 0.774 -0.010 -0.017 0.813 1212
(0.419) (0.025) (0.026)

Cultivates Robusta 0.686 -0.019 -0.047 0.218 1212
(0.465) (0.026) (0.027)

Cherry coffee preparation 0.474 -0.018 -0.040 0.148 1212
(0.500) (0.020) (0.021)

p-value of joint F-test 0.341 0.487

Attrition 0.023 -0.003 -0.011 0.431 1212
(0.150) (0.010) (0.010)
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Table A2: Understanding of probabilities, climate change and weather forecasts

Probabilities Climate Weather Index
Change Forecasts

Understands Expects Correctly First-
probability unseasonal interprets stage
in ‘test’ weather forecasts Index
questions more

frequently

(1) (2) (3) (4)

Climate change salience (CC) -0.023 0.007 0.014 0.005
(0.033) (0.029) (0.025) (0.038)

Probability training (PT)
[(CC + PT) - CC]

0.058∗ 0.067∗∗ 0.007 0.076∗∗

(0.033) (0.028) (0.026) (0.037)

CC + PT = 0, p-val 0.33 0.02 0.46 0.05

N 1212 1211 1212 1211
Outcome mean, comparison group 0.400 0.420 0.160 -0.000

Notes: All columns report results from a double lasso specifications. All specifications include
GP fixed effects. Lasso controls are listed in the Appendix. Climate change salience (T1) is an
indicator that takes the value 1 when the farmer watches the climate change video; Probability
training (T2) is an indicator that takes the value 1 when the farmer watches the probability
training video, which is estimated as (T1 + T2) - T1; since the probability training video is only
ever watched along with the climate change salience video, and never alone.
Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3: Game Summary Statistics

N Mean Std. Dev. Min Max

Round 1

Lower probability out of the two options 6060 37.43 19.59 5.00 95.00

Higher probability out of the two options 6060 63.45 20.17 10.00 100.00

Difference in probability between the two options 6060 26.02 21.01 5.00 95.00

Rainfall realized after selecting a forecast 6060 0.49 0.50 0.00 1.00

Round 2

Probability in the forecast 4848 49.56 22.28 10.00 90.00

Rainfall realized after choosing an action 4848 0.50 0.50 0.00 1.00

39



Table A4: Correlation between ex ante WTP and use of real-world service

Share of forecast
calls answered

Farmer answered
> 50% calls

(1) (2)

WTP for forecast service 0.025 0.068∗∗

(in ’00 |per month) (0.016) (0.034)

N 1212 1212
Outcome mean 0.563 0.707

Notes: The outcome is an indicator, which takes the value 1 if the quantity of rainfall expected by
the farmer in the next 5 days is in the same category as the realized rainfall in those 5 days. Data
is from a survey with a small sample of farmers who use the real-world service, comparing those
who receive forecasts with those who don’t. Results are from double lasso specifications which
include forecast grid, week of survey, and forecast format fixed effects. Lasso controls include
age, indicator for whether a farmer is a smallholder, indicator for whether the farmer is female,
indicator for whether the farmer completed higher secondary education, indicator for whether the
farmer owns a smartphone, and an indicator for whether the farm has working irrigation facilities.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A5: Impact of incorrect forecasts on farmer engagement with a real-world service

Whether a forecast voice-call is answered or not

(1) (2) (3) (4) (5) (6)

Preceding forecast was a false alarm -0.032∗∗∗ -0.012∗ 0.004 -0.013 0.030∗∗∗ -0.048∗∗∗

[Rain is predicted with p>0.5, but rain below the predicted quantity occurs] (0.009) (0.007) (0.014) (0.025) (0.009) (0.011)

Preceding forecast was a false alarm -0.014∗

× Risk averse (0.006)

Preceding forecast was a false alarm 0.013
× Grows weather sensitive variety (0.014)

Preceding forecast was a false alarm -0.004
× No working irrigation facilities (0.004)

Preceding forecast was a false alarm 0.044∗∗

× High rainfall variability (0.017)

Preceding forecast was a missed event -0.013∗ -0.014∗∗ 0.019∗ 0.019∗ -0.012 -0.012
[Some rain predicted, but rain far above the predicted quantity occurs] (0.007) (0.006) (0.009) (0.009) (0.007) (0.007)

Individual Fixed Effects No Yes Yes Yes Yes Yes

N 342693 342803 30885 30885 342693 342693
Outcome mean, previous forecast
correct in omitted group

0.600 0.600 0.643 0.632 0.588 0.628

Notes: The outcome in all columns is an indicator which takes the value 1 if the farmer answers the forecast
voice-call that is made to their number, and 0 otherwise. Columns (1) presents results which control for farmer
characteristics, forecast grid, with a double lasso specification; columns (2)-(6) present results with individual
fixed effects. All specifications include controls: forecast-grid, indicators for the calendar-week, indicator for
number of forecast calls sent previously, indicator for forecast-type, indicators for which call-try (out of 3) was
answered, the rainfall realization in the preceding forecast, current rainfall conditions, indicator for which call
was last answered, indicator for whether the preceding forecast included the call-day or not. Lasso controls
are an indicator for whether the farmer is female or not, the farmer’s age, whether the farmer is a smallholder
with 5 acres or less of land, whether the farmer has completed higher secondary education or not, whether the
farmer has a smartphone or not, whether the farmer has working irrigation facilities or not. Columns (3) and
(4) include only the sub-sample of farmers who participated in the lab-in-the-field experiments, and for whom
data on risk aversion and crop variety exist.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6: Impact of incorrect forecasts in a real-world service on farmer beliefs

Trust in
forecasts used

Shared forecasts
with others

Relied on forecasts
for decision-making
in the last month

Any CKT Any CKT Any CKT

(1) (2) (3) (4) (5) (6)

Preceding forecast was a false alarm -0.159∗∗ -0.120∗ 0.005 -0.064 0.011 -0.151∗∗∗

[Rain is predicted with p>0.5,

but rain below the predicted quantity occurs]
(0.063) (0.062) (0.071) (0.052) (0.048) (0.043)

Preceding forecast was a missed event 0.005 0.060 -0.062 -0.053 -0.030 0.022
[Some rain predicted,

but rain far above the predicted quantity occurs]
(0.064) (0.064) (0.046) (0.043) (0.047) (0.042)

-0.151ˆ*** -0.151ˆ*** -0.151ˆ*** -0.151ˆ*** -0.151ˆ*** -0.151ˆ***

N 589 502 590 501 614 504
Outcome mean, previous forecast correct 0.544 0.625 0.835 0.819 0.823 0.545

Notes: The outcome is columns (1) and (2) is an indicator that takes the value 1 if the farmer reports trusting forecasts at
4 or 5 on a 5-point scale, and 0 otherwise; the outcome in columns (3) and (4) is an indicator that takes the value 1 if the
farmer reports having shared forecasts with others, and 0 otherwise; the outcome in columns (5) and (6) is an indicator that
takes the value 1 if the farmer reports having relied on forecasts for decision-making in the last month, and 0 otherwise.
Results are from double lasso specifications, including controls for forecast grid, calendar-week, the number of forecast
calls answered previously,roll-out phase, forecast format, the rainfall realization in the preceding forecast, current rainfall
conditions. Lasso controls are: whether the farmer is female or not, the farmer’s age, whether the farmer is a smallholder
with 5 acres or less of land, whether the farmer has completed higher secondary education or not, whether the farmer has
a smartphone or not, whether the farmer has working irrigation facilities or not.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7: Impact of incorrect forecasts on farmer engagement with a real-world service, by
forecast format

Whether a forecast voice-call is answered or not

Probabilistic Forecasts Deterministic Forecasts

(1) (2) (3) (4)

Preceding forecast was a false alarm -0.034∗∗∗ -0.030∗∗∗

[Rain is predicted with p>0.5, but rain below the predicted quantity occurs] (0.009) (0.010)

Preceding forecast was a missed event -0.010 -0.018∗∗

[Some rain predicted, but rain far above the predicted quantity occurs] (0.007) (0.008)

Preceding forecast was a false alarm -0.098∗∗∗ -0.083∗∗∗

[Rain is predicted with p>0.5, but no rain occurs] (0.016) (0.018)

Preceding forecast was a missed event -0.029 -
[No rain predicted, but rain of any magnitude occurs] (0.020)

N 214979 214979 127653 127653
Outcome mean, previous forecast correct 0.602 0.608 0.598 0.601

Notes: The outcome in all columns is an indicator which takes the value 1 if the farmer answers the forecast
voice-call that is made to their number, and 0 otherwise. All columns present results with individual fixed
effects, indicators for the forecast-grid, the calendar-week, which call was last answered, forecast-type, which
call-try (out of 3) was answered, whether the preceding forecast included the call-day or not, and controls
for the rainfall realization in the preceding forecast. Columns (1) and (2) include the sub-sample of farmers
randomly assigned to received probabilistic forecasts; columns (3) and (4) include the sub-sample of farmers
randomly assigned to received deterministic forecasts.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8: Impact of incorrect forecasts on farmer engagement with a real-world service

(Persistence of the impact of incorrect forecasts in the first call answered)

Whether a forecast
voice-call is

answered or not

(1) (2)

First forecast was a false alarm -0.015∗∗∗

[Rain is predicted with p>0.5, but rain below that quantity occurs] (0.005)

First forecast was a missed event -0.010∗

[Some rain is predicted with p>0.5, but rain far above that quantity occurs] (0.006)

First forecast was a false alarm -0.011∗

[Rain is predicted with p>0.5, but no rain occurs] (0.006)

First forecast was a missed event -0.039∗∗

[No rain is predicted, but rain of any magnitude occurs] (0.019)

N 394016 394016
Outcome mean, first forecast correct 0.570 0.550

Notes: The outcome in all is an indicator which takes the value 1 if the farmer answers the forecast
voice-call that is made to their number, and 0 otherwise. Columns (1) and (2) presents results
from a double lasso specification. Controls include forecast-grid, indicators for the calendar-week,
indicator for number of forecast calls sent previously, indicator for forecast-type, indicators for
which call-try (out of 3) was answered, the rainfall realization in the preceding forecast, current
rainfall conditions, indicator for which call was last answered, indicator for whether the preceding
forecast included the call-day or not. Lasso controls are an indicator for whether the farmer is
female or not, the farmer’s age, whether the farmer is a smallholder with 5 acres or less of land,
whether the farmer has completed higher secondary education or not, whether the farmer has a
smartphone or not, whether the farmer has working irrigation facilities or not.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A9: Impact of incorrect forecasts in a real-world service on farmer beliefs

Trust in
forecasts used

Shared forecasts
with others

Relied on forecasts
for decision-making
in the last month

Any CKT Any CKT Any CKT

(1) (2) (3) (4) (5) (6)

First forecast was a false alarm -0.155 -0.186 -0.194 -0.087 0.094 -0.186∗∗

[Rain is predicted with p>0.5,

but rain below that quantity occurs]
(0.110) (0.195) (0.145) (0.137) (0.058) (0.088)

First forecast was a missed event 0.012 -0.022 -0.034 -0.010 0.088∗∗∗ -0.059
[Some rain is predicted with p>0.5,

but rain far above that quantity occurs]
(0.056) (0.078) (0.072) (0.022) (0.032) (0.076)

N 589 502 590 501 614 504
Outcome mean, first forecast correct 0.497 0.534 0.497 0.538 0.516 0.534

Notes: The outcome is columns (1) and (2) is an indicator that takes the value 1 if the farmer reports trusting forecasts at
4 or 5 on a 5-point scale, and 0 otherwise; the outcome in columns (3) and (4) is an indicator that takes the value 1 if the
farmer reports having shared forecasts with others, and 0 otherwise; the outcome in columns (5) and (6) is an indicator that
takes the value 1 if the farmer reports having relied on forecasts for decision-making in the last month, and 0 otherwise.
Results are from double lasso specifications, including controls for forecast grid, calendar-week, the number of forecast
calls answered previously,roll-out phase, forecast format, the rainfall realization in the preceding forecast, current rainfall
conditions. Lasso controls are: whether the farmer is female or not, the farmer’s age, whether the farmer is a smallholder
with 5 acres or less of land, whether the farmer has completed higher secondary education or not, whether the farmer has
a smartphone or not, whether the farmer has working irrigation facilities or not.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

45



Table A10: Impact of incorrect forecasts on farmer engagement with a real-world service,
when early forecasts received are correct relative to when they are not

Whether a forecast
voice-call is

answered or not

(1) (2)

Preceding forecast was a false alarm -0.082∗∗∗

[Rain is predicted with p>0.5, but rain below that quantity occurs] (0.017)

Preceding forecast was a false alarm 0.051∗∗∗

× No errors in the first 5 forecast calls (0.012)

Preceding forecast was a missed event -0.057∗∗∗

[Some rain is predicted with p>0.5, but rain far above that quantity occurs] (0.014)

Preceding forecast was a false alarm -0.129∗∗∗

[Rain is predicted with p>0.5, but no rain occurs] (0.017)

Preceding forecast was a false alarm 0.046∗∗∗

× No errors in the first 5 forecast calls (0.012)

Preceding forecast was a missed event -0.092
[No rain is predicted, but rain of any magnitude occurs] (0.079)

N 267944 267944
Outcome mean, omitted group 0.612 0.601

Notes: The outcome in all is an indicator which takes the value 1 if the farmer answers the forecast
voice-call that is made to their number, and 0 otherwise. Results are from specifications which
control for individual fixed effects, indicators for the forecast-grid, indicators for the calendar-week,
indicators for the number of forecast calls sent previously, indicator for forecast-type, indicators
for which call-try (out of 3) was answered, the rainfall realization in the preceding forecast, current
rainfall conditions, indicator for which call was last answered, indicator for whether the preceding
forecast call included the call-day or not, indicators for the number of correct forecasts received so
far.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A11: Impact of early correct forecasts in a real-world service on farmer beliefs

Trust in
forecasts used

Shared forecasts
with others

Relied on forecasts
for decision-making
in the last month

Any CKT Any CKT Any CKT

(1) (2) (3) (4) (5) (6)

No errors in the first 5 forecast calls -0.010 0.170∗∗ 0.011 0.071 -0.048 -0.000
(0.125) (0.084) (0.095) (0.108) (0.077) (0.133)

N 589 502 590 501 614 504
Outcome mean, first forecast correct 0.548 0.552 0.547 0.550 0.552 0.552

Notes: The outcome is columns (1) and (2) is an indicator that takes the value 1 if the farmer reports trusting forecasts at
4 or 5 on a 5-point scale, and 0 otherwise; the outcome in columns (3) and (4) is an indicator that takes the value 1 if the
farmer reports having shared forecasts with others, and 0 otherwise; the outcome in columns (5) and (6) is an indicator that
takes the value 1 if the farmer reports having relied on forecasts for decision-making in the last month, and 0 otherwise.
Specifications include controls for forecast grid, calendar-week, the number of forecast calls answered previously,roll-out
phase, forecast format, the rainfall realization in the preceding forecast, current rainfall conditions, indicators for the
number of correct forecasts so far. Controls from the following are selected using the double-selection LASSO method:
whether the farmer is female or not, the farmer’s age, whether the farmer is a smallholder with 5 acres or less of land,
whether the farmer has completed higher secondary education or not, whether the farmer has a smartphone or not, whether
the farmer has working irrigation facilities or not.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A12: Impact of video information treatments on game outcomes and willingness-to-
pay

(Videos (1) highlighting increasing weather variability and climate change adaptation measures; (2) providing probability train-
ing at the start of the lab-in-the-field experiments)

Total score WTP

(1) (2) (3)

Climate change salience (CC) 0.441 0.256 0.166
(1.009) (1.132) (1.126)

Probability training (PT)
[(CC + PT) - CC]

1.436 -2.125∗ -2.007∗

(1.058) (1.167) (1.163)

Any False Alarms in Experimental Games -2.661∗∗∗

(0.972)

Any Missed Events in Experimental Games 0.908
(0.970)

N 1212 1212 1212
Outcome mean, no video treatment 70.717 25.905 25.905

Notes: The outcome in all columns is an indicator which takes the value 1 if the farmer answers
the forecast voice-call that is made to their number, and 0 otherwise. All columns present results
with individual fixed effects. All specifications include controls: indicators for the calendar-week,
indicator for number of forecast calls answered previously, indicator for the roll-out phase, indica-
tors for number of tries made to farmers (out of 3), indicator for the forecast format, the rainfall
realization in the preceding forecast, current rainfall conditions. Results in columns (1) and (2)
rely on a sub-sample of farmers who participated in the lab-in-the-field experiments, for whom
data on risk aversion and coffee variety is available, while other results rely on the entire sample
of farmers receiving forecasts.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A13: Impact of an audio information treatment on farmer beliefs

(Voice-calls describing how to interpret probabilistic forecasts and emphasizing that forecasts are not guarantees)

Trust in
forecasts used

Shared forecasts
with others

Relied on forecasts
for decision-making
in the last month

Any CKT Any CKT Any CKT

(1) (2) (3) (4) (5) (6)

Forecast interpretation treatment -0.080∗∗ -0.059 -0.058 -0.056 -0.040 -0.068
(0.039) (0.074) (0.049) (0.042) (0.026) (0.054)

N 346 302 346 303 358 303
Outcome mean, no info 0.652 0.672 0.652 0.672 0.671 0.672

Notes: The outcome is columns (1) and (2) is an indicator that takes the value 1 if the farmer reports trusting
forecasts at 4 or 5 on a 5-point scale, and 0 otherwise; the outcome in columns (3) and (4) is an indicator
that takes the value 1 if the farmer reports having shared forecasts with others, and 0 otherwise; the outcome
in columns (5) and (6) is an indicator that takes the value 1 if the farmer reports having relied on forecasts
for decision-making in the last month, and 0 otherwise. Results are from double lasso specifications, including
controls for forecast grid, calendar-week, the number of forecast calls answered previously,roll-out phase, forecast
format, the rainfall realization in the preceding forecast, current rainfall conditions. Lasso controls are: whether
the farmer is female or not, the farmer’s age, whether the farmer is a smallholder with 5 acres or less of land,
whether the farmer has completed higher secondary education or not, whether the farmer has a smartphone or
not, whether the farmer has working irrigation facilities or not.
Robust standard errors clustered at the forecast grid level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B Additional Figures

Figure B1: Flow of activities in the lab-in-the-field experiment
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Choosing market
location based on
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Objective Maximize expected earnings across multiple game rounds
1. Farmers advise hypothetical vendors about where to set up a stall to sell their

goods
2. Whether the vendor makes any sales depends on the weather realized, while the

quantity sold depends on the points the advising farmer puts at stake in that
round

3. In each round, there is only one location where the ex-ante expected earnings are
maximized (i.e., where the probability of ideal weather is higher)

Game rounds Five incentivized rounds, three of which have one-day forecasts, and two have one-week
forecasts

1. Each round presents farmers with two hypothetical market locations, and forecasts
for each

2. Farmers recommend a location based on the forecasts
3. They recommend how much the vendor should invest (choosing how many points

to put at stake)
4. After both choices are made, in-game weather for the round is realized
5. If ideal weather is realized, points put at stake are gained, and if not, points put at

stake are lost

Scenario variations
to eliminate
confounding

Scenarios and rounds randomly vary in certain attributes to eliminate confounding
1. Certain rounds have a pair of forecasts where the rainfall quantity is the same, and

only the probability varies, while others have a pair of forecasts with both
quantities and probabilities vary to control for conflating probabilities and
quantities in probabilistic forecasts

2. Certain rounds require choosing a location where it is more likely to rain based on
probabilistic rainfall forecasts, while others require choosing a location where it is
less likely to rain based on probabilistic rainfall forecasts — to control for
conflating a larger number alone with the likelihood of ideal weather

3. Order in which each round and scenario appears to control for learning over time
4. Rounds have different formats in which forecasts are presented
5. Differences in probabilities between forecast pairs randomly varies between 5% and

95%

Scoring and
incentives

Farmers are incentivized to select the ex-ante optimal location in each round since their
score depends on the ideal weather being realized and the number of points they choose to
put at stake in a round

1. Points at stake are chosen from {1, 2, 3, 4, 5}
2. If ideal weather for the vendor’s sales is realized, the stake is awarded, and if it is

not realized, the stake is deducted
3. Final monetary rewards are based on points gained through all games and

game-rounds, with rupees earned being the number of points scored

Experimental Game 1
Choosing a hypothetical market-location where ideal weather con-

ditions are expected based on forecasts for two different locations

Figure B2: Overview of Experimental Game 1

51



Objective Maximize expected earnings across multiple game rounds
1. Farmers playing the game (player) advise a hypothetical farmer whether to take a

particular agricultural action or not based on expected weather
2. Scenarios describe the time-of-year, the action, the hypothetical farmer, and in

certain rounds the weather forecast
3. Once an action (or inaction) is recommended, in-game weather for the round is

realized
4. In each round, there is only one action where the ex-ante expected earnings are

maximized (i.e., the action or inaction that is appropriate for the weather predicted
by the forecast with probability ≥50%)

Game rounds Six incentivized rounds across two hypothetical agricultural scenarios
1. In each scenario, one round is played with no forecast, and 2 with forecasts
2. In each round, the agricultural scenario is described, then forecasts are provided in

forecast rounds, while players are asked to recollect historical incidence of weather
in their village in no-forecast rounds

3. Based on expected weather, players recommend an action/inaction
4. Following the choice of action/inaction, in-game weather for the round is realized
5. If the chosen action/inaction is appropriate for the realized weather, points are

awarded; otherwise, points are deducted

Scenario variations
to eliminate
confounding

1. One scenario requires farmers to decide whether to irrigate their crop or not, prior
to the monsoon. Irrigation is required when there is no rain, and no irrigation
when there is rain

2. The second scenario requires farmers to decide whether to apply fertilizer or not
during a mid-monsoon rainfall break. Fertilizer should be applied when heavy rain
is not expected, and not apply fertilizer when heavy rain is expected to avoid
run-off.

3. Rounds have different formats in which forecasts are presented, both audio and
text/image

4. Order in which each round and scenario appears to control for learning over time
5. The probabilities in forecasts are randomly chosen from {10%, 20%, 30%, 35%,

40%, 50%, 55%, 60%, 65%, 70%, 80%, 90%}

Scoring and
incentives 1. 5 points at stake in each round

2. If the chosen action/inaction is appropriate for the realized weather, points are
awarded; otherwise, points are deducted

3. Final monetary rewards are based on points gained through all games and game
rounds, with rupees earned being the number of points scored

Experimental Game 2
Choosing whether to take agricultural actions based on

probabilistic rainfall forecasts in hypothetical scenarios

Figure B3: Overview of Experimental Game 2
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Figure B4: Investment choice or points put at stake in game 1
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Figure B5: Rain realizations in the hypothetical Scenarios, game 1 & game 2
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Figure B6: Onboarding messages sent on the service, translated from Kannada

Probabilistic forecasts

“Namaskara from Coffee Krishi Taranga! We are pleased to announce the launch
of our weather forecast service in your village!

We will provide you with rainfall forecast messages over voice calls starting this
week. The forecasts will provide the total expected rainfall for the next 5 days, and
indicate how likely a certain amount of rainfall is in percentage chance terms.

Note that forecasts are not a guarantee, so if a forecast indicates that there is a
80% chance of rain, it indicates that it is highly likely to rain, but there is a small
chance that the forecasted rainfall quantity may not occur.

These forecasts are more accurate and for a smaller geographic area than other
forecasts commonly available to you. In the last 6 years, the forecasts correctly
predicted the occurrence of any rain in the next 5-days [district-accuracy%] of the
time in [district name].

In case you miss our call, you can access the latest forecast for your village by
calling on [number] and replying with ‘5’.

We recommend you make any agriculture decisions by using information from
sources that you feel are trustworthy.

If you have questions, suggestions, or need help, please contact us at [number].
Thank you for your attention and cooperation.”

Deterministic forecasts

“Namaskara from Coffee Krishi Taranga! We are pleased to announce the launch
of our weather forecast service for farmers in your village!

We will provide you with rainfall forecast messages over voice calls starting this
week. The forecasts will provide the total expected rainfall for the next 5 days.

While forecasts are not a guarantee, these forecasts are more accurate and for a
smaller geographic area than other existing forecasts commonly available to you.
In the last 6 years, the forecasts correctly predicted the occurrence of any rain in
the next 5-days [district-accuracy%] of the time in [district name].

In case you miss our call, you can access the latest forecast for your village by
calling on [number] and replying with ‘5’.

We recommend you make any agriculture decisions by using information from
sources that you feel are trustworthy. If you have questions, suggestions, or need
help, please contact us at [number]. Thank you for your attention and coopera-
tion.”
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Figure B7: Onboarding messages sent on the service, translated from Kannada

Probabilistic forecasts with related advisory

“Namaskara from Coffee Krishi Taranga! We are pleased to announce the launch
of our weather forecast service for farmers in your village!

We will be providing you with rainfall forecast messages over voice calls starting
this week. The messages will also indicate to you what coffee cultivation practices
are recommended under the forecasted weather conditions.

The forecasts will provide the total expected rainfall for the next 5-days; and indi-
cate how likely a certain amount of rainfall is in percentage chance terms.

Note that forecasts are not a guarantee, so if a forecast indicates that there is an
80% chance of rain, it indicates that it is highly likely to rain, but there is a small
chance that the forecasted rainfall quantity may not occur.

These forecasts are more accurate and for a smaller geographic area than other
existing forecasts that are commonly available to you. In the last 6 years, the
forecasts correctly predicted the occurrence of any rain in the next 5-days [district-
accuracy%] of the time in [district name].

In case you miss our call, you can access the latest forecast for your village by
calling on [number] and replying with ‘5’.

We recommend you make any agriculture decisions by using information from
sources that you feel are trustworthy. If you have questions, suggestions, or need
help, please contact us at [number]. Thank you for your attention and coopera-
tion.”

Deterministic forecasts with related advisory

“Namaskara from Coffee Krishi Taranga! We are pleased to announce the launch
of our weather forecast service for farmers in your village!

We will be providing you with rainfall forecast messages over voice calls starting
this week. The forecasts will provide the total expected rainfall for the next 5-days.
The messages will also indicate to you what coffee cultivation practices are recom-
mended under the forecasted weather conditions.

While forecasts are not a guarantee, these forecasts are more accurate and for a
smaller geographic area than other existing forecasts that are commonly available
to you. In the last 6 years, the forecasts correctly predicted the occurrence of any
rain in the next 5-days [district-accuracy%] of the time in [district name].

In case you miss our call, you can access the latest forecast for your village by
calling on [number] and replying with ‘5’.

We recommend you make any agriculture decisions by using information from
sources that you feel are trustworthy. If you have questions, suggestions, or need
help, please contact us at [number]. Thank you for your attention and coopera-
tion.”
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Figure B8: Examples of forecasts sent on the service, translated from Kannada

Probabilistic forecasts

For the next 5 days, that is, from May 23 to May 27, in <Pushapalli> village:
There is a 70% chance of rain. 1 inch of rainfall is expected (on average).

Deterministic forecasts

For the next 5 days, that is, from May 23 to May 27, in <Pushapalli> village: 1
inch of rainfall is expected (on average).

Probabilistic forecasts with related advisory

For the next 5 days, that is, from May 23 to May 27, in <Pushapalli> village: There
is a 70% chance of rain. 1 inch of rainfall is expected (on average). This forecast
indicates that there might be sufficient soil moisture for pre-monsoon fertilizer
application if you have not already applied fertilizer.

Provided there is sufficient soil moisture, for each acre we recommend applying 66
kg of urea, 133 kg of rock phosphate and 51 kg of muriate of potash for Arabica
coffee; and 77 kg of urea, 153 kg of rock phosphate and 59 kg of muriate of potash
for Robusta coffee.

Deterministic forecasts with related advisory

For the next 5 days, that is, from May 23 to May 27, in <Pushapalli> village: 1
inch of rainfall is expected (on average). This forecast indicates that there might
be sufficient soil moisture for pre-monsoon fertilizer application if you have not
already applied fertilizer.

Provided there is sufficient soil moisture, for each acre we recommend applying 66
kg of urea, 133 kg of rock phosphate and 51 kg of muriate of potash for Arabica
coffee; and 77 kg of urea, 153 kg of rock phosphate and 59 kg of muriate of potash
for Robusta coffee.
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C Learning from Forecasts and Forecast Outcomes: A

Conceptual Framework

Consider a farmer who is planning to make a decision for an upcoming time-period, such as

a week. The ex ante optimal decision for a farmer, e.g., whether to irrigate their crop or

not, or whether to apply fertilizer or not, depends on whether they expect it to rain in the

period under consideration.27 Farmers have a prior belief about the likelihood of rain, and

update their belief about the likelihood of rain once they receive a rainfall forecast (which

may be probabilistic or deterministic) for that period. A probabilistic forecast indicates the

probability that a quantity of rain occurs, pf,t ∈ [0, 1], while a deterministic forecast indicates

whether a quantity of rain is expected or not, df,t ∈ {0, 1}.

A farmer’s posterior belief about the likelihood of rain is:

p̂posterior,t = max (0,min (1, (1− τt)pprior,t + τtdf,t)) (8)

when they receive a deterministic forecast, and

p̂posterior,t = max (0,min (1, (1− τt)pprior,t + τtpf,t)) (9)

when they receive a probabilistic forecast (as in Lybbert et al., 2007). The extent to which

farmers incorporate the information in a forecast into their posterior beliefs about upcoming

weather depends on how much they trust the forecast, or their subjective belief about the

accuracy of the forecast (Millner, 2008; Shafiee-Jood et al., 2021). We represent this with

τt ∈ [0, 1], a ‘trust parameter’. When farmers first start using a particular forecast, they

have an initial trust, τ1 = τ , based on past experiences with forecasts and the credibility of

the new source.

In each period, a farmer receives a forecast, then makes a decision, after which weather

for that period is realized. The farmer then observes whether the forecast was incorrect or

correct, and finally updates their beliefs about the forecast’s accuracy at the start of the

next-period:

τt+1 = (1− γt)τt + γtat (10)

where at ∈ {0, 1} represents an individual forecast’s accuracy—taking the value 1 if the event

the forecast predicts occurs (correct forecast), and 0 otherwise (incorrect forecast), and γt is

a weighting function, which determines the weight farmers place on the forecast accuracy in

each time-period, t.28

27It also depends on how much rain farmers expect, but we focus on the likelihood.
28In the case of a probabilistic forecast, we consider an event to be predicted when then forecast probability

is > 0.5. Results hold if this threshold is anything else, and what matters is the farmers’ perception of
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The weighting-function decays over time, as farmers have more data on forecast accuracy

on which to base their beliefs (similar in spirit to Malmendier and Nagel, 2016). We assume

that γt =
θ
t
, where θ > 0 is a constant parameter that determines the weighting on past

experiences with the forecasts.29 Effectively, when farmers have few experiences to infer

from, an individual forecast’s accuracy has a large effect on τt, and when they have a large

number of experiences to infer from, an individual forecast’s accuracy has a smaller effect

on τt.

Call pick up. The trust parameter, τt also determines the likelihood that a farmer answers

a forecast voice-call from a real-world forecast service in that period. We represent the

likelihood of answering the call at a time period, t as a logistic function of τt.
30

pt(pick up) =
1

1 + e−β(τt−τ̄)
(11)

Figure B9 illustrates the evolution of farmers’ subjective belief about forecast accuracy, and

of the likelihood of answering a forecast call.

In the case of a weighting function that decays, an early incorrect forecast leads to lower levels

of trust, and lower likelihood of answering a forecast call. As a result, later forecast errors

have a smaller impact on the likelihood of answering a forecast call when early forecasts are

all correct (Figure B10).31

prediction.
29The results hold when the decay function is exponential, and hold in the medium-term if the decay

function is logarithmic.
30τ̄ is a threshold trust level, above which the likelihood of answering a call rapidly increases. For instance,

the intuition behind a threshold, τ̄ = 0.5 is that if a farmer’s subjective belief about the forecast accuracy is
0.5, they believe the forecast is as good as random chance, and so rapidly increase the likelihood of picking
up the call or relying on the forecast as the trust parameter increases beyond 0.5.

31This holds in the medium term even when the functional form of the decaying weighting function changes.
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Figure B9: Evolution of trust and likelihood of answering a forecast call

Notes: The figures above depict the evolution of parameters over 1000 time-periods when the initial τinitial = 0.5, τ̄ = 0.5,
θ = 0.2, β = 10, and the underlying true accuracy of forecasts in this simulation is 90%. The first figure in the top panel
depicts the evolution of τt; the second figure in the top panel depicts the evolution of pt(pickup). The first figure in the
second panel depicts the evolution of γt = θ

t
; the second figure in the bottom panel depicts each individual forecast’s

accuracy.

Figure B10: Comparing the evolution of trust and likelihood of answering a forecast call
when all early forecasts are correct and when they are not

Notes: The figures above depict the evolution of τt, pt(pickup) over 200 time periods when the initial τinitial = 0.5, τ̄ = 0.5,
θ = 0.2, β = 10 across 2 cases. In case 1, early forecasts are all correct, while in case 2, one early forecast is incorrect.
Following the first five forecasts, all forecasts and realizations are identical across the two cases.
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D Description of Coffee Krishi Taranga

Coffee Krishi Taranga (CKT) is a mobile-phone based agricultural advisory service for coffee

farmers in India. It is operated by Precision Development (PxD) with the Coffee Board of

India. In Karnataka, CKT reaches 70% of all coffee farmers. Advisory consists of voice-

call based advisory messages consisting of agronomic advice, market prices, information on

subsidies, etc. Agronomic messages are designed by agronomists, contrain advice on key

coffee agricultural practices, and are sent out to farmers at appropriate times in the year.

CKT also has an in-bound service or a hotline, where famers may dial in to record questions

that may not have been addressed in the outgoing calls. Responses to these questions are

recorded by agronomists, and delivered to farmers. CKT does not currently provide weather

forecasts to farmers on it’s voice-call service beyond alerts on extreme weather events, such

as cyclones and heat waves. However, CKT’s administrative data on user access at the

block level between 2019 and 2022 in Table A14 indicates that demand for information not

provided in outgoing calls responds to weather in the preceding week. We break this down by

periods that correspond to different baseline weather, and coffee practices. Between March

and May, coffee plants typically blossom, and require irrigation or rainfall showers in order

to do so. This is the pre-monsoon period in the region, and is typically dry with sporadic

showers. Blossoming requires moderate amounts of rainfall (between 1 and 2 inches of rain

over a week). Column (1) indicates that there are 18% fewer inbound calls following a week

with rainfall above the 75th percentile of historical weekly rainfall distribution in that block

during such a week suggesting lower demand for information when plants plausibly received

enough water.32 During the monsoon period (June - September) when baseline weather is

typically rainy, column (2) indicates that inbound calls increase by 29% following a week

with rainfall below the 25th percentile of historical weekly rainfall distribution in that block.

Finally, during the harvest period (October - February), which is after the monsoon, rainfall

is not frequent. However, unseasonal heavy rains can disrupt harvesting and make it harder

for farmers to dry their harvested coffee beans. Column (3) indicates that in this period,

inbound calls increase by 13% following a week with rainfall above the 75th percentile.

32Daily rainfall incidence at the block level comes from NASA’s IMERG (Integrated Multi-satellitE Re-
trievals for GPM) dataset for the years 2000 - 2022.
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Table A14: Inbound Calls on Coffee Krishi Taranga between 2019 and 2022

(1) (2) (3)

Blossom Monsoon Harvest
March - May June - Sept Oct - Feb

Preceding week rain ≥ 75th percentile -8.877∗∗ 1.232 5.773∗∗

(3.472) (2.889) (2.055)

Preceding week rain ≤ 25th percentile -3.490 10.148∗∗ -2.460
(5.719) (3.596) (2.824)

N 985 1265 1449
Outcome mean, omitted group 47.640 34.451 45.621

Notes: The outcome is the total number of inbound calls in a week at the block-level in the
specified months. All columns present the results from regressions of the outcome on a dummy
indicating that rainfall in the preceding week was above the 75th percentile of the 20000 - 2022
distribution for that week in that block; a dummy indicating that rainfall in the preceding week
was below the 25th percentile of the 20000-2022 distribution for that week in that block; year,
week-of-year, and block fixed effects.
Robust standard errors clustered at the block level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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