Lateral and Longitudinal Collision Risk (A Case Study using December 2010 TSD)

Antar Bandyopadhyay

(Joint work with Deepayan Sarkar and BOBASMA Team, AAI)

Workshop on Airspace Safety Monitoring Indian Statistical Institute, New Delhi May 7, 2012

Antar Bandyopadhyay (ISI, Delhi)

Collision Risk Assessment

Outline

2 Introduction

- Background
- Goal
- Achievements
- Data Sets
- 3 Collision Risk Models (CRMs)
 - 4 Lateral Collision Risk Assessment
 - Model
 - Estimates

5 Longitudinal Collision Risk Assessment

- Model
- Estimates

6 New things in the Subsequent Analysis

• We will investigate the collision risk between two aircraft flying over the Bay of Bengal airspace.

Background

- We will investigate the collision risk between two aircraft flying over the Bay of Bengal airspace.
- This joint work was presented in the *RASMAG 14* meeting at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand on February 24, 2011.

- We will investigate the collision risk between two aircraft flying over the Bay of Bengal airspace.
- This joint work was presented in the *RASMAG 14* meeting at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand on February 24, 2011.
- This was the first analysis which we conducted as part of the project jointly under taken by the *Airports Authority of India (AAI)* and the *Indian Statistical Institute, Delhi Centre* under the MoA signed between the two organizations on *January 13, 2011*.

Background

- We will investigate the collision risk between two aircraft flying over the Bay of Bengal airspace.
- This joint work was presented in the *RASMAG 14* meeting at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand on February 24, 2011.
- This was the first analysis which we conducted as part of the project jointly under taken by the *Airports Authority of India (AAI)* and the *Indian Statistical Institute, Delhi Centre* under the MoA signed between the two organizations on *January 13, 2011*.
- The goal was to confirm that the *Target Level of Safety (TLS)* $(5 \times 10^{-9} \text{ accidents per flight hour})$, was met.

- We will investigate the collision risk between two aircraft flying over the Bay of Bengal airspace.
- This joint work was presented in the *RASMAG 14* meeting at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand on February 24, 2011.
- This was the first analysis which we conducted as part of the project jointly under taken by the *Airports Authority of India (AAI)* and the *Indian Statistical Institute, Delhi Centre* under the MoA signed between the two organizations on *January 13, 2011*.
- The goal was to confirm that the *Target Level of Safety (TLS)* $(5 \times 10^{-9} \text{ accidents per flight hour})$, was met.
- Note that it was pre-RHS time and so the separation standards were
 - $\bullet~50~\text{NM}$ lateral separation between all the parallel routes;
 - $\bullet~10$ minutes longitudinal separation between front and behind aircrafts.

The Final Goal of the Analysis were

• To help India/AAI establish an *En-route Monitoring Agency (EMA)* for Bay of Bengal and Arabian Sea.

The Final Goal of the Analysis were

- To help India/AAI establish an *En-route Monitoring Agency (EMA)* for Bay of Bengal and Arabian Sea.
- This was of course prestigious for India/AAI.

The Final Goal of the Analysis were

- To help India/AAI establish an *En-route Monitoring Agency (EMA)* for Bay of Bengal and Arabian Sea.
- This was of course prestigious for India/AAI.
- Moreover this it would help in reducing the current separation standards and hence a sharp increase in air traffic volume hopefully leading to positive effect on India's economy.

• This joint work and a subsequent analysis were presented in two successive *RASMAG* meetings at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand.

- This joint work and a subsequent analysis were presented in two successive *RASMAG* meetings at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand.
- Both times the joint report of AAI and ISI was very enthusiastically accepted by the RASMAG and it has finally forwarded to **APANPIRG** which later in September 2011 took the decision of formally accepting **BOBASMA** as an recognized *En-Route Monitoring Agency* for the Asia Pacific Region.

- This joint work and a subsequent analysis were presented in two successive *RASMAG* meetings at the *International Civil Aviation Organization (ICAO)* Asia Pacific Office at Bangkok, Thailand.
- Both times the joint report of AAI and ISI was very enthusiastically accepted by the RASMAG and it has finally forwarded to **APANPIRG** which later in September 2011 took the decision of formally accepting **BOBASMA** as an recognized *En-Route Monitoring Agency* for the Asia Pacific Region.

Map of Chennai FIR

Map of Chennai FIR

Data Sets Used for this Study

• **Traffic Sample Data (TSD):** Traffic sample data from Chennai FIR for the month of December 2010 was used. Some data pruning was done to remove reporting errors in the data.

Data Sets Used for this Study

• **Traffic Sample Data (TSD):** Traffic sample data from Chennai FIR for the month of December 2010 was used. Some data pruning was done to remove reporting errors in the data.

Note: We use the TSD from Chennai FIR since it is centrally located for the region of study.

Data Sets Used for this Study

• **Traffic Sample Data (TSD):** Traffic sample data from Chennai FIR for the month of December 2010 was used. Some data pruning was done to remove reporting errors in the data.

Note: We use the TSD from Chennai FIR since it is centrally located for the region of study.

 Gross Navigational Error (GNE) Data: This consists of the reports of Gross Navigational Errors were received from India (Chennai, Mumbai, and Kolkata FIRs) and Bangkok for the months of July to December 2010

A Glimpse of the TSD

	A	B	C	D	E	F	G	н			1	K	L	M	N	0	•
1	Date	Call_sign	Registration	Approval	AC_type	FROM	то	ETD	ENTRY_POIN	IT ENTRY	TIME	ENTRY_LEVEL	ROUTE_AFTER_ENTRY	EXIT_POINT	EXIT_TIME	EXIT_LEVE	ROUTE_BEFORE_EXIT
2	1/12/201	I0 AIC442	VTSCG	RNP10	A319	VABB	WSSS		1840 IDASO	2037		F370	N571	IGOGU	2222	F370	N571
3	1/12/201	0 GIA3209	FHSEA	RNP10	B744	WIMM	OEJN	0100	NOPEK	0217		F380	P574	GIRNA	0347	F380	P574
4	1/12/201	0 SIA334	9VSKE	RNP10	A388	WSSS	LFPG		1555 NOPEK		1748	F340	P574	GIRNA	1918	F340	P574
5	1/12/201	I0 SIA346	9VSKA	RNP10	A388	WSSS	LSZH		1900 NOPEK	1908		F340	P574	GIRNA	2040	F360	P574
6	1/12/201	I0 SIA456	9VSTH	RNP10	A333	WSSS	OMAA	0445	NOPEK	0632		F380	P574	GIRNA	0804	F380	P574
7	1/12/201	0 MAS195	9MMRK	RNP10	B772	VABB	WMKK		1820 GIRNA	1703		F350	P574	NOPEK	1958	F390	P574
8	1/12/201	0 XAX2517	9MXXF	RNP10	A333	VABB	WMKK		1855 GIRNA	2220		F370	P574	NOPEK	2350	F390	P574
9	1/12/201	0 QFA52	VHQPG	RNP10	A333	VABB	WSSS	0500	GIRNA	0725		F370	P574	NOPEK	0856	F390	P574
10	1/12/201	0 MAS193	9MMLA	RNP10	B738	VOBL	WMKK		1850 SULTO	2113		F350	N563	MEMAK	2155	F350	N563
11	1/12/201	0 AXM212	9MAHY	RNP10	A320	VOBL	WMKK		1305 SULTO	1415		F350	N563	MEMAK	1500	F350	N563
12	1/12/201	0 SLK423	9VSBC	RNP10	A319	VOBL	WSSS		1130 IDASO	1305		F390	N571	IGOGU	1423	F390	N571
13	1/12/201	0 HDA153	BHWJ	RNP10	A333	VOBL	VHHH		2130 IDASO	2222		F330	P761	LULDA	2352	F330	P762
14	1/12/201	I0 AXM204	9MAHU	RNP10	A320	VOCI	WMKK		1145 SULTO	1344		F390	N563	MEMAK	1424	F390	N563
15	1/12/201	0 BAW15	GYMML	RNP10	B772	EGLL	WSSS	0950	BIDEX	0953		F390	L510	EMRAN	1105	F390	L510
16	1/12/201	L0 SIA325	9VSWR	RNP10	B77W	EDDF	WSSS		2100 BIDEX	0517		F350	L510	EMRAN	0627	F370	L510
17	1/12/201	I0 QFA6	VHOJD	RNP10	B744	EDDF	WSSS		2220 BIDEX	0650		F350	L510	EMRAN	0800	F370	L510
18	12/1/201	0 SIA319	9VSWP	RNP10	B77W	EGLL	WSSS	0430	BIDEX	0433		F350	L510	EMRAN	0542	F350	L510
19	12/1/201	LO KLMB09	PHBQA	RNP10	B772	EHAM	WMKK		1950 BIDEX	0430		F370	L510	EMRAN	0531	F370	L510
20	12/1/201	I0 MAS1	9MMPB	RNP10	B744	EGLL	WMKK		2200 BIDEX	0817		F370	L510	EMRAN	0927	F370	L510
21	12/1/201	L0 KLM835	PHBVB	RNP10	B77W	EHAM	WSSS		2000 BIDEX	1801		F370	L510	EMRAN	1910	F390	L510
22	12/1/201	I0 ALK889	4RALA	RNP10	A332	VTBS	VCBI		1415 LULDA		1542	F320	P762	DUGOS	1656	F320	P762
23	12/1/201	I0 THA307	HSTAZ	RNP10	A306	VTBS	VCBI		1520 LULDA		1630	F320	P762	DUGOS	1744	F320	P762
24	12/1/201	L0 CPA749	BHOW	RNP10	B744	VHHH	FAJS		1545 LULDA		1900	F320	P762	DUGOS	2004	F320	P762
25	12/1/201	0 SQC7342	9VSFD	RNP10	B744	WSSS	VOBL		1200 IGOGU		1344	F340	N571	IDASO	1514	F340	N571
26	12/1/201	I0 AXM224	9MAHV	RNP10	A320	VOHS	WMKK	0340	GIRNA	0456		F370	P574	NOPEK	0624	F370	P574
27	12/1/201	L0 SLK477	9VSLK	RNP10	A320	VOHS	WSSS		1850 GIRNA	2017		F330	P574	NOPEK	2147	F330	P574
28	12/1/201	I0 SIA321		RNP10	A388	EGLL	WSSS	0764	BIDEX	0820		F390	L510	EMRAN	0929	F390	L510
29	12/1/201	L0 XAX2905	9MXXB	RNP10	A333	OIIE	WMKK		1825 BIDEX		2319	F390	L510	EMRAN	0032	F390	L510
30	12/1/201	IO ALK886	4RALD	RNP10	A332	VCBI	VTBS		2100 DUGOS		2211	F410	P762	LULDA	2330	F330	P762
31	12/1/201	I0 THA308	HSTAZ	RNP10	A306	VCBI	VTBS		2005 DUGOS		2047	F270	P762	LULDA	2200	F290	P762
32	12/1/201	0 CSH813	B2566	RNP10	B763	ZSPD	VRMM		1425 LULDA		144)	F320	P762	DUGOS	1600	F320	P762
33	12/1/201	IO AXM5701	9MAQB	RNP10	A320	WMKP	VOMM	0015	SAMAK	0138		F350	P574	GIRNA	0305	F360	P574
34	12/1/201	0 CSH814	B2566	RNP10	B763	VRMM	ZSPD		1850 DUGOS		2101	F310	P762	LULDA	2215	F310	P762
35	12/1/201	0 THA338	HSTAP	RNP10	A306	VOMM	VTBS		1845 IDASO	1923		F310	P761	LULDA	2048	F310	P762
36	12/1/201	I0 SIA529	9VSQN	RNP10	B772	VOMM	WSSS		1745 GIRNA	1836		F390	P574	NOPEK	2006	F390	P574
37	12/1/201	10 SLK435	9VSLF	RNP10	A320	VOMM	WSSS		1045 GIRNA	1427		F390	P574	NOPEK	1557	F390	P574
38	12/1/201	LO AXB684	VTAYB	RNP10	B738	VOMM	WSSS	0740	IDASO	1020		F390	N571	IGOGU	1153	F390	N571
39	12/1/201	I0 JAI16	VTJGU	RNP10	B738	VOMM	WSSS		1945 IDASO	2040		F330	N571	IGOGU	2210	F330	N571
40	12/1/201	0 CPA632	BHLU	RNP10	A333	VOMM	VHHH		2145 IDASO	2215		F370	P761	LULDA	2340	F370	P762
41	12/1/201	0 CPA018	BHUO	RNP10	B744	VOMM	VHHH		21001DASO	2144		F330	P761	LULDA	2314	F330	P762
42	12/1/201	0 UAE356	A6EBH	RNP10	B77W	OMDB	WIII	0110	IDASO	0452		F330	N451	IGOGU	0623	F330	N571
43	12/1/201	0 SIA326	9VSWJ	RNP10	B77W	WSSS	EDDF	0845	IGOGU	0751		F300	N571	IDASO	0921	F300	N571
44	12/1/201	I0 AIC443	VTSCM	RNP10	A319	WSSS	VABB	0245	IGOGU	0434		F350	N571	IDASO	0605	F360	N571
45	12/1/201	0 XAX2516	9MXXC	RNP10	A333	WMKK	VABB		10001GOGU		1450	F380	N571	IDASO	1614	F380	N571
46	12/1/201	0 SIA422	9VSQI	RNP10	B772	WSSS	VABB		1830/GOGU	2016		F360	N571	IDASO	2146	F360	N571

A Glimpse of the GNE Data

Year	Month	FIR	Flights	LLE	LLD
2010	AUGUST	KOLKATA	443	0	0
2010	SEPTEMBER	KOLKATA	423	0	0
2010	OCTOBER	KOLKATA	432	0	0
2010	NOVEMBER	KOLKATA	427	0	0
2010	DECEMBER	KOLKATA	545	0	0
2010	JULY	CHENNAI	2679	0	0
2010	AUGUST	CHENNAI	5173	0	0
2010	SEPTEMBER	CHENNAI	5196	0	0
2010	OCTOBER	CHENNAI	5478	0	0
2010	NOVEMBER	CHENNAI	5258	0	0
2010	DECEMBER	CHENNAI	5432	0	0
2010	JULY	MUMBAI	1838	0	0
2010	AUGUST	MUMBAI	1812	0	0
2010	SEPTEMBER	MUMBAI	1792	0	0
2010	OCTOBER	MUMBAI	1884	0	0
2010	NOVEMBER	MUMBAI	1068	0	0
2010	DECEMBER	MUMBAI	1426	0	0
2010	JULY	BANGKOK	1865	0	0
2010	AUGUST	BANGKOK	2330	0	0
2010	SEPTEMBER	BANGKOK	2297	0	0
2010	OCTOBER	BANGKOK	2234	0	0
2010	NOVEMBER	BANGKOK	2108	0	0
2010	DECEMBER	BANGKOK	2061	0	0
2011	JANUARY	BANGKOK		0	0
	Total		54201	0	0

Collision Risk Models (CRMs) Reich's Collision Risk Model (CRM)

• We use Reich's Collision Risk Model (CRM) to obtain the expected number of accidents (two for every collision) per flight hour due to the loss of planned lateral or longitudinal separations.

Collision Risk Models (CRMs) Reich's Collision Risk Model (CRM)

- We use Reich's Collision Risk Model (CRM) to obtain the expected number of accidents (two for every collision) per flight hour due to the loss of planned lateral or longitudinal separations.
- For lateral separation the formula turns out to be:

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x}\left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right. \\ &+ E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

Collision Risk Models (CRMs) Reich's Collision Risk Model (CRM)

- We use Reich's Collision Risk Model (CRM) to obtain the expected number of accidents (two for every collision) per flight hour due to the loss of planned lateral or longitudinal separations.
- For longitudinal separation the formula turns to be:

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right) \\ \times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

• All collisions normally occur between aircraft on adjacent routes.

- All collisions normally occur between aircraft on adjacent routes.
- Aircraft in proximity pair can collide with each other in only three ways, namely, *top-to-bottom*, *nose-to-tail* and *side-to-side*.

- All collisions normally occur between aircraft on adjacent routes.
- Aircraft in proximity pair can collide with each other in only three ways, namely, *top-to-bottom*, *nose-to-tail* and *side-to-side*.
- Entry times into track system are statistically independent.

- All collisions normally occur between aircraft on adjacent routes.
- Aircraft in proximity pair can collide with each other in only three ways, namely, *top-to-bottom*, *nose-to-tail* and *side-to-side*.
- Entry times into track system are statistically independent.
- Lateral deviations of aircrafts on adjacent tracks are statistically independent.

- All collisions normally occur between aircraft on adjacent routes.
- Aircraft in proximity pair can collide with each other in only three ways, namely, *top-to-bottom*, *nose-to-tail* and *side-to-side*.
- Entry times into track system are statistically independent.
- Lateral deviations of aircrafts on adjacent tracks are statistically independent.
- The aircrafts are approximated by rectangular boxes.

- All collisions normally occur between aircraft on adjacent routes.
- Aircraft in proximity pair can collide with each other in only three ways, namely, *top-to-bottom*, *nose-to-tail* and *side-to-side*.
- Entry times into track system are statistically independent.
- Lateral deviations of aircrafts on adjacent tracks are statistically independent.
- The aircrafts are approximated by rectangular boxes.
- Vertical, longitudinal, and lateral deviations of an aircraft are statistically independent.

- All collisions normally occur between aircraft on adjacent routes.
- Aircraft in proximity pair can collide with each other in only three ways, namely, *top-to-bottom*, *nose-to-tail* and *side-to-side*.
- Entry times into track system are statistically independent.
- Lateral deviations of aircrafts on adjacent tracks are statistically independent.
- The aircrafts are approximated by rectangular boxes.
- Vertical, longitudinal, and lateral deviations of an aircraft are statistically independent.
- There is no corrective action by pilots or ATC when two aircrafts are about to collide.

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x}\,\left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right.\\ &+ E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 N_{ay} Expected number of accidents (two for every collision) per flight hour due to the loss of lateral separation between aircrafts flying on tracks with planned S_y NM lateral separation

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right) P_z\left(0\right) \frac{\lambda_x}{S_x} \left\{ E_y\left(\mathsf{same}\right) \left[\frac{\left|\Delta \bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right. \\ &+ E_y\left(\mathsf{opp}\right) \left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right\} \end{split}$$

 S_y Minimum planned lateral separation

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x} \left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right] \right. \\ &+ E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

$\lambda_x\,$ Average length of an aircraft flying in airspace

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right) P_z\left(0\right) \frac{\lambda_x}{S_x} \left\{ E_y\left(\mathsf{same}\right) \left[\frac{\left|\Delta \bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right. \\ &+ E_y\left(\mathsf{opp}\right) \left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right\} \end{split}$$

 λ_y Average wingspan of an aircraft flying in airspace

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x} \left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right] \right. \\ &+ E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 $\lambda_z\,$ Average height of an aircraft flying in airspace

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x}\left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right. \\ &+ E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 $P_y\left(S_y\right)\,$ Probability that two aircrafts assigned to two parallel routes with S_y NM lateral separation will lose all planned lateral separation
Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right) P_z\left(0\right) \frac{\lambda_x}{S_x} \, \left\{ E_y\left(\mathsf{same}\right) \left[\frac{\left|\Delta \bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right. \\ &+ \left. E_y\left(\mathsf{opp}\right) \left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right\} \end{split}$$

 $P_{z}\left(0
ight)$ Probability that two aircrafts assigned to same flight level are at same geometric height

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right) P_z\left(0\right) \frac{\lambda_x}{S_x} \left\{ E_y\left(\mathsf{same}\right) \left[\frac{\left|\Delta \bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right. \\ &+ E_y\left(\mathsf{opp}\right) \left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right\} \end{split}$$

 $S_{\boldsymbol{x}}$ Length of half the interval in NM used to count proximate aircraft at adjacent routes

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x} \left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right] \right. \\ &+ E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 E_{y} (same) Same direction lateral occupancy at same flight level

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right) P_z\left(0\right) \frac{\lambda_x}{S_x} \left\{ E_y\left(\mathsf{same}\right) \left[\frac{\left|\Delta \bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right. \\ &+ E_y\left(\mathsf{opp}\right) \left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right\} \end{split}$$

 E_y (opp) Opposite direction lateral occupancy at same flight level

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x}\,\left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right.\\ &+ \left.E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 $\left| \Delta \bar{V} \right|$ Average relative speed of two aircraft flying on parallel routes in same direction

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x} \,\left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right] \right. \\ &+ \left.E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 $|ar{V}|$ Average ground speed on an aircraft

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right)P_z\left(0\right)\frac{\lambda_x}{S_x} \,\left\{E_y\left(\mathsf{same}\right)\left[\frac{\left|\Delta\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right] \right. \\ &+ \left.E_y\left(\mathsf{opp}\right)\left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z}\right]\right\} \end{split}$$

 $|\bar{y}(S_y)|$ Average relative lateral speed of aircraft pair at loss of planned lateral separation of S_y

Lateral Collision Risk

$$\begin{split} N_{ay} &= P_y\left(S_y\right) P_z\left(0\right) \frac{\lambda_x}{S_x} \left\{ E_y\left(\mathsf{same}\right) \left[\frac{\left|\Delta \bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right. \\ &+ E_y\left(\mathsf{opp}\right) \left[\frac{\left|2\bar{V}\right|}{2\lambda_x} + \frac{\left|\bar{y}\left(S_y\right)\right|}{2\lambda_y} + \frac{\left|\bar{z}\right|}{2\lambda_z} \right] \right\} \end{split}$$

 $|\bar{z}|$ Average relative vertical speed of a co-altitude aircraft pair assigned to the same route

Estimates of the Parameters

Parameter	Estimate	Source of the Estimate
S_y	50 NM	Current minimum
λ_x	0.0326051 NM	TSD
λ_y	0.02983705 NM	TSD
λ_z	0.009069301 NM	TSD
$P_{y}(50)$	4.31577×10^{-8}	Mixture model
$P_{z}\left(0 ight)$	0.538	Double Exponential model
S_x	80 NM	± 10 -mins longitudinal separation
E_y (same)	0.04880429	TSD
$E_y \left(opp \right)$	0	No opposite direction flights
		at same flight level
$\Delta \bar{V}$	36 knots	TSD
$\left \bar{\dot{y}} \left(50 \right) \right $	75 knots	Conservative (EMA Handbook)
$ \bar{z} $	1.5 knots	Conservative (EMA Handbook)

Estimates of the Parameters

Parameter	Estimate	Source of the Estimate
S_y	50 NM	Current minimum
λ_x	0.0326051 NM	TSD
λ_y	0.02983705 NM	TSD
λ_z	0.009069301 NM	TSD
$P_{y}(50)$	4.31577×10^{-8}	Mixture model
$P_z(0)$	0.538	Double Exponential model
S_x	80 NM	± 10 -mins longitudinal separation
E_y (same)	0.04880429	TSD
E_y (opp)	0	No opposite direction flights
		at same flight level
$\Delta \overline{V}$	36 knots	TSD
$\dot{y}(50)$	75 knots	Conservative (EMA Handbook)
Ż	1.5 knots	Conservative (EMA Handbook)

$N_{ay} = 0.895265 \times 10^{-9}$

Average Aircraft Dimensions

• Estimated using dimensions of each aircraft type weighted by their proportions in TSD

Probability of Lateral Overlap: $P_y(S_y)$

• $Y_1 =$ lateral deviation of first aircraft

- $Y_1 =$ lateral deviation of first aircraft
- $Y_2 =$ lateral deviation of second aircraft

- $Y_1 =$ lateral deviation of first aircraft
- $Y_2 =$ lateral deviation of second aircraft
- Then, probability of lateral overlap (with planned separation S_y)

$$P_y(S_y) = \mathbf{P}\left(|S_y + Y_1 - Y_2| \le \lambda_y\right) ,$$

• Assumption:

 Y_1 and Y_2 identically distributed, independent, with distribution F_y

- Assumption:
 - $Y_1 \ {\rm and} \ Y_2$ identically distributed, independent, with distribution F_y
- F_y is a mixture distribution having a *core* component G_y and *non-core* component H_y .

- Assumption:
 - Y_1 and Y_2 identically distributed, independent, with distribution F_y
- F_y is a mixture distribution having a *core* component G_y and *non-core* component H_y .
- The core distribution G_y represents errors that derive from standard navigation system deviations. These errors are always present, as navigation systems are not perfect and they have a certain precision.

- Assumption:
 - Y_1 and Y_2 identically distributed, independent, with distribution F_y
- F_y is a mixture distribution having a *core* component G_y and *non-core* component H_y .
- The core distribution G_y represents errors that derive from standard navigation system deviations. These errors are always present, as navigation systems are not perfect and they have a certain precision.
- The non-core distribution H_y , represents *Gross Navigation Errors* (*GNE*), that corresponds to what may be viewed as non-nominal performance.

• Overall lateral deviation distribution is modeled as

$$F_{y}(y) = (1 - \alpha) G_{y}(y) + \alpha H_{y}(y)$$

• The mixing parameter α is the probability of a gross navigational error

• Overall lateral deviation distribution is modeled as

$$F_{y}(y) = (1 - \alpha) G_{y}(y) + \alpha H_{y}(y)$$

• G_y is modeled by a *Double Exponential* distribution with rate β_y . That is, if $Y_1 \sim G_y$ then

$$\mathbf{P}\left(|Y_1| > y\right) = e^{-\beta_y y}.$$

Overall lateral deviation distribution is modeled as

$$F_{y}(y) = (1 - \alpha) G_{y}(y) + \alpha H_{y}(y)$$

• *H_y* is modeled by "*Separated Double Exponential*" distribution with

- separation parameter μ_y
- rate parameter γ_y

That is, if $Y_2 \sim H_y$ then

$$\mathbf{P}\left(Y_2>\mu_y+y
ight)=rac{1}{2}e^{-\gamma_y y}$$
 and $\mathbf{P}\left(Y_2<-\mu_y-y
ight)=rac{1}{2}e^{\gamma_y y}$.

• Overall lateral deviation distribution is modeled as

$$F_{y}(y) = (1 - \alpha) G_{y}(y) + \alpha H_{y}(y)$$

Choice of parameters

- Mixture parameter α :
 - Estimated by taking the 95% $upper\ confidence\ limit$ from observed GNE data.
 - The estimate is

$$\hat{\alpha} = 1 - (0.05)^{1/N} = 5.526927 \times 10^{-5},$$

where ${\cal N}=54201$ is the number of flights observed and no gross navigational errors were detected.

- Note: More GNE data with no detected gross navigational error will increase the value of N and hence decrease the value of α which will lead to decrease in the risk.
- Note: This is very conservative estimate compare to the "natural" point estimate.

Choice of parameters

- Core distribution:
 - The parameter β_y is estimated under the RNP10 assumption of ± 10 NM deviation with 95% confidence, this leads to the estimate

$$\widehat{\beta}_y = -\frac{\log 0.05}{10} = 0.299573227 \,.$$

Choice of parameters

- Non-core distribution:
 - Separation μ_y is taken to be 10 based on RNP10 consideration
 - Rate γ_y estimated by maximizing the wingspan overlap probability with $S_y=50~{\rm NM}$ initial separation
 - This is a conservative method similar to what has been used by FAA and also in EUR/SAM.
 - The estimated value of γ_y is 0.05489709

Probability of Lateral Overlap: $P_y(S_y)$

•
$$\hat{\alpha} = 1 - (0.05)^{1/N} = 5.526927 \times 10^{-5}$$

•
$$\hat{\beta}_y = 0.299573227$$

- $\widehat{\mu}_y = 10$
- $\widehat{\gamma}_y=0.05489709$
- Combining, estimated value of $P_y(50)$ is 4.31577×10^{-8} .

Probability of Vertical Overlap: $P_{z}(0)$

- Z_1 = height deviations of first aircraft
- Z_2 = height deviations of second aircraft
- Aircrafts nominally flying at same flight level on adjacent routes
- Then, probability of vertical overlap is

$$P_z(0) = \mathbf{P}\left(|Z_1 - Z_2| \le \lambda_z\right) \,,$$

Probability of Vertical Overlap: $P_{z}(0)$

• Assumption:

 ${\it Z}_1$ and ${\it Z}_2$ identically distributed, independent, with distribution ${\it F}_z$

Probability of Vertical Overlap: $P_{z}(0)$

• Assumption:

 ${\it Z}_1$ and ${\it Z}_2$ identically distributed, independent, with distribution ${\it F}_z$

• F_z is Double Exponential distribution with rate parameter β_z

Probability of Vertical Overlap: $P_{z}(0)$

• Assumption:

 ${\it Z}_1$ and ${\it Z}_2$ identically distributed, independent, with distribution ${\it F}_z$

- F_z is Double Exponential distribution with rate parameter β_z
- β_z is estimated as

$$\widehat{\beta}_z = -\frac{\log 0.05}{0.032915} = 91.014196371.$$

This is under assumption that a typical aircraft stays within ± 200 ft $=\pm 0.032915$ NM of its assigned flight level 95% of the time.

Probability of Vertical Overlap: $P_{z}(0)$

• Assumption:

 ${\it Z}_1$ and ${\it Z}_2$ identically distributed, independent, with distribution ${\it F}_z$

- F_z is Double Exponential distribution with rate parameter β_z
- β_z is estimated as

$$\widehat{\beta}_z = -\frac{\log 0.05}{0.032915} = 91.014196371.$$

This is under assumption that a typical aircraft stays within $\pm 200~{\rm ft}$ = $\pm 0.032915~{\rm NM}$ of its assigned flight level 95% of the time.

• Unfortunately this analysis ignores both the effect of large height deviations (LHDs) and aircraft altimetry system errors (ASE) which are not estimable directly. So we use a conservative value of 0.538, as used by MAAR for vertical safety assessment in BOB region.

Lateral Occupancy parameters E_y (same) and E_y (opp)

• *Same direction occupancy*: For a typical aircraft, average number of aircrafts that are "**proximate**"; that is,

- flying in the same direction as it
- nominally flying on tracks one lateral separation standard away
- nominally at the same flight level as it
- within a longitudinal segment centered on it
- The length of longitudinal segment $(2S_x)$ usually taken to be distance traveled in 20 minutes of flight, giving value of 160 NM.

Lateral Occupancy parameters E_y (same) and E_y (opp)

• *Same direction occupancy*: For a typical aircraft, average number of aircrafts that are "**proximate**"; that is,

- flying in the same direction as it
- nominally flying on tracks one lateral separation standard away
- nominally at the same flight level as it
- within a longitudinal segment centered on it
- The length of longitudinal segment $(2S_x)$ usually taken to be distance traveled in 20 minutes of flight, giving value of 160 NM.
- Similar for opposite direction occupancy
 - Proximate aircrafts flying in opposite direction, same flight level.
 - Currently flight levels are unidirectional, so taken to be 0.

Estimation of E_y (same) using TSD

• Estimated by computing number of proximate pairs in TSD

- Note time when aircraft on one route passes a waypoint
- $\bullet\,$ Count number of aircrafts passing homologous waypoint within $\pm 10\,$ minutes

Estimation of E_y (same) using TSD

• Estimated by computing number of proximate pairs in TSD

- Note time when aircraft on one route passes a waypoint
- $\bullet\,$ Count number of aircrafts passing homologous waypoint within $\pm 10\,$ minutes
- Estimate $\widehat{E}_y = \frac{2n_y}{n}$ where
 - n_y is the number of proximate pairs
 - n is the the total number of aircrafts

Estimation of E_y (same) using TSD

• Estimated by computing number of proximate pairs in TSD

- Note time when aircraft on one route passes a waypoint
- $\bullet\,$ Count number of aircrafts passing homologous waypoint within $\pm 10\,$ minutes

• Estimate
$$\widehat{E}_y = rac{2n_y}{n}$$
 where

- n_y is the number of proximate pairs
- n is the total number of aircrafts
- Route pairs
 - N877 parallel to (unidirectional) routes L510 (EB) and P628 (WB)
 - N571 parallel to P574
 - P762 has no parallel route
Estimation of E_y (same) using TSD

Count By	Routes	Waypoints	Total	Proximate
Entry	(N877, L510)	(ORARA, BIDEX)	316	2
Entry	(N877, P628)	(IGOGU, IGREX)	389	40
Entry	(P574, N571)	(NOPEK, IGOGU)	1188	80
Entry	(P574, N571)	(GIRNA, IDASO)	1254	38
Exit	(N877, P628)	(ORARA, VATLA)	389	20
Exit	(N877, L510)	(IGOGU, EMRAN)	81	0
Exit	(P574, N571)	(NOPEK, IGOGU)	1276	82
Exit	(P574, N571)	(GIRNA, IDASO)	1254	38

Estimation of E_y (same) using TSD

Count By	Routes	Waypoints	Total	Proximate
Entry	(N877, L510)	(ORARA, BIDEX)	316	2
Entry	(N877, P628)	(IGOGU, IGREX)	389	40
Entry	(P574, N571)	(NOPEK, IGOGU)	1188	80
Entry	(P574, N571)	(GIRNA, IDASO)	1254	38
Exit	(N877, P628)	(ORARA, VATLA)	389	20
Exit	(N877, L510)	(IGOGU, EMRAN)	81	0
Exit	(P574, N571)	(NOPEK, IGOGU)	1276	82
Exit	(P574, N571)	(GIRNA, IDASO)	1254	38

$$\widehat{E}_y(\mathsf{same}) = \frac{300}{6147} = 0.04880429$$

Estimate of Average Ground Speed

• Directly measured speed data were not available

Estimate of Average Ground Speed

- Directly measured speed data were not available
- Speeds have been estimated using waypoint report times

Estimate of Average Ground Speed

- Directly measured speed data were not available
- Speeds have been estimated using waypoint report times • Speed = distance between entry and exit waypoints
- traversal time

Estimate of average relative speed $|\Delta \overline{V}|$

• $\left|\Delta\bar{V}\right|$ = average absolute relative speed of two aircrafts flying on parallel routes in same direction

Estimate of average relative speed $|\Delta \bar{V}|$

- $\left|\Delta\bar{V}\right|$ = average absolute relative speed of two aircrafts flying on parallel routes in same direction
- Estimated from TSD by taking speed differences for laterally proximate pairs in the same direction (same calculations as for E_y (same) above).

Estimate of average relative speed $|\Delta \bar{V}|$

- $\left|\Delta\bar{V}\right|$ = average absolute relative speed of two aircrafts flying on parallel routes in same direction
- Estimated from TSD by taking speed differences for laterally proximate pairs in the same direction (same calculations as for E_y (same) above).
- Average absolute speed difference = 35.13632.

Estimate of average relative speed $|\Delta V|$

- $\left|\Delta\bar{V}\right|$ = average absolute relative speed of two aircrafts flying on parallel routes in same direction
- Estimated from TSD by taking speed differences for laterally proximate pairs in the same direction (same calculations as for E_y (same) above).
- Average absolute speed difference = 35.13632.
- We use conservative value 36.

Estimate of Average Relative Lateral Speed: $|\bar{y}(S_y)|$

• Average relative lateral cross-track speed between aircraft, flying on adjacent routes separated by S_y NM at the same flight level, that have lost their lateral separation.

Estimate of Average Relative Lateral Speed: $|\bar{y}(S_y)|$

- Average relative lateral cross-track speed between aircraft, flying on adjacent routes separated by S_y NM at the same flight level, that have lost their lateral separation.
- The estimation of this parameter generally involves the extrapolation of radar data, speeds and lateral deviations, but such radar data were not available for this study.

Estimate of Average Relative Lateral Speed: $|\bar{y}(S_y)|$

- Average relative lateral cross-track speed between aircraft, flying on adjacent routes separated by S_y NM at the same flight level, that have lost their lateral separation.
- The estimation of this parameter generally involves the extrapolation of radar data, speeds and lateral deviations, but such radar data were not available for this study.
- We use conservative value 75 knots as per EMA Handbook.

• Average absolute relative vertical speed for pair of aircrafts on the same flight level of adjacent tracks that has lost lateral separation.

- Average absolute relative vertical speed for pair of aircrafts on the same flight level of adjacent tracks that has lost lateral separation.
- Generally assumed that $|\bar{z}|$ is independent of amount of lateral separation as well as vertical separation between the aircraft.

- Average absolute relative vertical speed for pair of aircrafts on the same flight level of adjacent tracks that has lost lateral separation.
- Generally assumed that $|\bar{z}|$ is independent of amount of lateral separation as well as vertical separation between the aircraft.
- Data on $|\bar{z}|$ relatively scarce.

- Average absolute relative vertical speed for pair of aircrafts on the same flight level of adjacent tracks that has lost lateral separation.
- Generally assumed that $|\bar{z}|$ is independent of amount of lateral separation as well as vertical separation between the aircraft.
- Data on $|\bar{z}|$ relatively scarce.
- Estimate typically taken as 1.5 knots which is considered to be conservative (EMA Handbook).

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

 N_{ax} Expected number of accidents (two for every collision) per flight hour due to collision between two co-altitude aircraft with planned minimum m NM longitudinal separation.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

m Minimum longitudinal separation in NM.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

M Maximum initial longitudinal separation between aircraft pair which will be monitored by ATC in order to prevent loss of longitudinal separation standard.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z} \right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k) \right]$$

$\lambda_x\,$ Average length of an aircraft flying in airspace

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right) \\ \times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

 $\lambda_y\,$ Average wingspan of an aircraft flying in airspace

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\ddot{x}|}{2\lambda_x} + \frac{|\ddot{y}(0)|}{2\lambda_y} + \frac{|\ddot{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

 $\lambda_z\,$ Average height of an aircraft flying in airspace

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z} \right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k) \right]$$

 $P_{y}(0)$ Probability that two aircraft assigned at the same route will be at same across-track position.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\dot{x}|}{2\lambda_x} + \frac{|\dot{y}(0)|}{2\lambda_y} + \frac{|\dot{z}|}{2\lambda_z} \right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k) \right]$$

 $P_{z}(0)$ Probability that two aircraft assigned to same flight level are at same geometric height.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\dot{x}|}{2\lambda_x} + \frac{|\dot{y}(0)|}{2\lambda_y} + \frac{|\dot{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

 $|\dot{x}|$ Minimum relative along-track speed necessary for following aircraft in a pair separated by m NM at a reporting point to overtake lead aircraft at the next reporting point.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

 $|ar{y}\left(0
ight)|$ Relative across-track speed of same route aircraft pair.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z} \right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k) \right]$$

 $|\dot{z}|$ Average relative vertical speed of a co-altitude aircraft pair assigned to the same route.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z} \right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k) \right]$$

Q(k) Proportion of aircraft pairs with initial longitudinal separation k.

Longitudinal Collision Risk

$$N_{ax} = P_y(0) P_z(0) \frac{2\lambda_x}{|\dot{x}|} \left(\frac{|\bar{x}|}{2\lambda_x} + \frac{|\bar{y}(0)|}{2\lambda_y} + \frac{|\bar{z}|}{2\lambda_z}\right)$$
$$\times \left[\sum_{k=m}^M 2Q(k) \mathbf{P}(K > k)\right]$$

 $\mathbf{P}(K > k)$ Probability that a pair of same route co-altitude aircraft with initial longitudinal separation k will lose at least as much as k longitudinal separation before correction by ATC.

Estimates of the Parameters

Parameter	Estimate	Source of the Estimate
m	80 NM	Current minimum
M	160 NM	20 minutes longitudinal separation
λ_x	0.0326051 NM	TSD
λ_y	0.02983705 NM	TSD
λ_z	0.009069301 NM	TSD
$P_{y}\left(0 ight)$	0.2	Conservative estimate
$P_{z}\left(0 ight)$	0.3617939	Double exponential model
$ \bar{x} $	90 knots	Conservative estimate using speed
		and distance between way points
$ \bar{\dot{y}}\left(0 ight) $	1 knot	RASMAG/9 safety assessment
$ \bar{z} $	1.5	Conservative (EMA Handbook)
$Q\left(k ight)$	See Table	TSD
$\mathbf{P}\left(K > k\right)$	See Table	Mixture model for speeds from TSD

Estimates of the Parameters

Parameter	Estimate	Source of the Estimate
m	80 NM	Current minimum
M	160 NM	20 minutes longitudinal separation
λ_x	0.0326051 NM	TSD
λ_y	0.02983705 NM	TSD
λ_z	0.009069301 NM	TSD
$P_y(0)$	0.2	Conservative estimate
$P_{z}(0)$	0.3617939	Double exponential model
$ \bar{x} $	90 knots	Conservative estimate using speed
		and distance between way points
$\dot{y}(0)$	1 knot	RASMAG/9 safety assessment
Ż	1.5	Conservative (EMA Handbook)
$Q\left(k ight)$	See Table	TSD
$\mathbf{P}\left(K > k\right)$	See Table	Mixture model for speeds from TSD

 $N_{ax} = 0.743608 \times 10^{-9}$

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_y(0)$ as 0.004527846

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_y(0)$ as 0.004527846

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_{y}\left(0
 ight)$ as 0.004527846
- $\bullet\,$ However, $P_{y}\left(0\right)$ has a significant effect on the risk estimate, and should not be underestimated

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_y\left(0
 ight)$ as 0.004527846
- $\bullet\,$ However, $P_{y}\left(0\right)$ has a significant effect on the risk estimate, and should not be underestimated
- $P_{y}\left(0\right)$ will increase as the lateral navigational performance improves, correspondingly increasing collision risk estimate
- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_{y}\left(0
 ight)$ as 0.004527846
- $\bullet\,$ However, $P_{y}\left(0\right)$ has a significant effect on the risk estimate, and should not be underestimated
- $P_{y}\left(0\right)$ will increase as the lateral navigational performance improves, correspondingly increasing collision risk estimate
- Based on data collected in Europe, RGCSP adopted value of 0.059 (EUR/SAM report)

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_{y}\left(0
 ight)$ as 0.004527846
- $\bullet\,$ However, $P_{y}\left(0\right)$ has a significant effect on the risk estimate, and should not be underestimated
- $P_{y}\left(0\right)$ will increase as the lateral navigational performance improves, correspondingly increasing collision risk estimate
- Based on data collected in Europe, RGCSP adopted value of 0.059 (EUR/SAM report)
- EMA Handbook suggests much more conservative value $0.2\,$

- Probability of lateral overlap of consecutive flights on same route and flight levels
 - Can use same mixture model used to estimate $P_y(50)$
 - Leads to an estimate of $P_{y}\left(0
 ight)$ as 0.004527846
- $\bullet\,$ However, $P_{y}\left(0\right)$ has a significant effect on the risk estimate, and should not be underestimated
- $P_{y}\left(0\right)$ will increase as the lateral navigational performance improves, correspondingly increasing collision risk estimate
- Based on data collected in Europe, RGCSP adopted value of 0.059 (EUR/SAM report)
- EMA Handbook suggests much more conservative value $0.2\,$
- We use 0.2 for our analysis as well

Estimation of $|\bar{x}|$

• Minimum relative along-track speed necessary for following aircraft in a pair separated by m NM at a reporting point to overtake lead aircraft at the next reporting point.

Estimation of $|\bar{x}|$

- Minimum relative along-track speed necessary for following aircraft in a pair separated by *m* NM at a reporting point to overtake lead aircraft at the next reporting point.
- d = distance between the two way points
- $v_0 =$ speed of the front aircraft

• Then,

$$\frac{d-m}{v_0} = \frac{d}{v_0 + |\bar{x}|} \,,$$

leading to

$$|\bar{x}| = \frac{mv_0}{d-m}.$$

Estimation of $|\bar{x}|$

- Minimum relative along-track speed necessary for following aircraft in a pair separated by m NM at a reporting point to overtake lead aircraft at the next reporting point.
- d = distance between the two way points
- $v_0 =$ speed of the front aircraft

Then,

$$\frac{d-m}{v_0} = \frac{d}{v_0 + |\bar{x}|} \,,$$

leading to

$$|\bar{x}| = \frac{mv_0}{d-m}.$$

- Conservative estimates
 - $v_0 = \text{minimum speed observed in TSD} = 315 \text{ knots}$
 - $d = \max$ imum distance between two waypoints = 338 NM
 - $|\bar{x}| = 97.67442$ knots
 - ${\scriptstyle \bullet }$ We use even more conservative value $90~{\rm knots}$

Longitudinal CRM Estimates

Estimation of $|\bar{y}(0)|$

- Relative cross-track speed of same route aircraft pair
- No data is available for estimation of this parameter
- We use conservative value of 1 knot (EMA Handbook)

Estimation of Q(k)

• Q(k) = proportion of aircraft pairs with initial separation k

Estimation of Q(k)

- Q(k) = proportion of aircraft pairs with initial separation k
- Values estimated from TSD
 - Flights entering on different routes and flight levels considered separately
 - Waiting times between successive arrivals tabulated in minutes
 - Assuming average speed of 8 NM per minute, Q(k) computed as

 $Q(k) = \frac{\text{number of flight pairs with inter-arrival distance } 8k}{\text{total number of flight pairs with at least 80 NM separation}}$

Longitudinal CRM Estimates

Estimation of Q(k)

- Q(k) = proportion of aircraft pairs with initial separation k
- Values estimated from TSD
 - Flights entering on different routes and flight levels considered separately
 - Waiting times between successive arrivals tabulated in minutes
 - Assuming average speed of 8 NM per minute, Q(k) computed as

 $Q(k) = \frac{\text{number of flight pairs with inter-arrival distance } 8k}{\text{total number of flight pairs with at least 80 NM separation}}$

$\bullet\,$ Probability of overtake given initial separation k

- $\bullet\,$ Probability of overtake given initial separation k
 - Consider two aircrafts on same route and flight level.

- $\bullet\,$ Probability of overtake given initial separation k
 - Consider two aircrafts on same route and flight level.
 - $\bullet\,$ Let V and V' be speeds of the front and behind aircraft

Estimation of $\mathbf{P}(K > k)$

- Probability of overtake given initial separation k
 - Consider two aircrafts on same route and flight level.
 - Let V and V' be speeds of the front and behind aircraft
 - Assume speeds are statistically independent but identically distributed

• Probability of overtake given initial separation \boldsymbol{k}

- Consider two aircrafts on same route and flight level.
- $\bullet~$ Let V~ and V'~ be speeds of the front and behind aircraft
- Assume speeds are statistically independent but identically distributed
- $T_0 = \text{maximum time before ATC intervenes (conservatively 0.5 hours)}$

Estimation of $\mathbf{P}(K > k)$

• Probability of overtake given initial separation k

- Consider two aircrafts on same route and flight level.
- Let V and V' be speeds of the front and behind aircraft
- Assume speeds are statistically independent but identically distributed
- $T_0 = \text{maximum time before ATC intervenes (conservatively 0.5 hours)}$

$$\mathbf{P}\left(K > k\right) = \mathbf{P}\left(0 < \frac{k}{V' - V} < T_0\right) = \mathbf{P}\left(V' - V > \frac{k}{T_0}\right) \,.$$

Estimation of $\mathbf{P}(K > k)$

- Estimation using TSD
 - Speed difference between successive flights on same route & flight level
 - Consider all flight pairs which are separated by 2 hours or less at entry
 - Note: two hours is more than the maximum time taken by any aircraft to travel between its entry and exit points

Longitudinal CRM Estimates

Estimation of $\mathbf{P}(K > k)$

- Estimation using TSD
 - Speed difference between successive flights on same route & flight level
 - $\bullet\,$ Consider all flight pairs which are separated by 2 hours or less at entry
 - Note: two hours is more than the maximum time taken by any aircraft to travel between its entry and exit points

Estimation of $\mathbf{P}(K > k)$

- Estimation using TSD
 - Speed difference between successive flights on same route & flight level
 - Consider all flight pairs which are separated by $2 \mbox{ hours or less at entry}$
 - Note: two hours is more than the maximum time taken by any aircraft to travel between its entry and exit points
- Not necessarily Normally distributed
- Conservatively take Normal and Double exponential mixture model

$$f_{v}(v) = p \frac{\beta_{v}}{2} e^{-\beta_{v}|v|} + (1-p) \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{v^{2}}{2\sigma^{2}}}$$

• Parameters (MLE) estimated using EM algorithm, rounded conservatively

Estimates

Estimation of $\mathbf{P}(K > k)$

- Estimation using TSD
 - Speed difference between successive flights on same route & flight level
 - Consider all flight pairs which are separated by 2 hours or less at entry
 - Note: two hours is more than the maximum time taken by any aircraft to travel between its entry and exit points

Summary of overtake probability calculations

k (mins)	k (NM)	Q(k)	P(K > k)
10	80	0.002235469	1.83061×10^{-6}
11	88	0.003353204	1.88145×10^{-7}
12	96	0.003725782	1.6016×10^{-8}
13	104	0.008196721	1.16613×10^{-9}
14	112	0.006706408	8.16394×10^{-11}
15	120	0.002608048	7.35331×10^{-12}
16	128	0.008941878	1.04974×10^{-12}
17	136	0.006333830	1.95268×10^{-13}
18	144	0.007451565	$3.89188 imes 10^{-14}$
19	152	0.004843517	7.84075×10^{-15}
20	160	0.005961252	1.58302×10^{-15}

• We incorporated TSD from other adjacent FIRs.

- We incorporated TSD from other adjacent FIRs.
- We also make risk analysis by assuming few GNEs.

- We incorporated TSD from other adjacent FIRs.
- We also make risk analysis by assuming few GNEs.
- We considered cross-routes which are typically not amenable to standard CRM.

- We incorporated TSD from other adjacent FIRs.
- We also make risk analysis by assuming few GNEs.
- We considered cross-routes which are typically not amenable to standard CRM.
- In our latest analysis we have also incorporated internal way-points and not just the entry and exit points. This gives better estimation of the parameters.

Statistical Challenges which are Yet to be Addressed

• How to find any "*standard error*" or "*confidence interval*" for the estimated risk ?

Statistical Challenges which are Yet to be Addressed

• How to find any "*standard error*" or "*confidence interval*" for the estimated risk ?

Note: Some parameters are not "estimated" in any statistical sense, either they are taken as some fixed values or derived based on postulated model. But some are estimated from data under certain statistical model assumptions.

Statistical Challenges which are Yet to be Addressed

• How to find any "*standard error*" or "*confidence interval*" for the estimated risk ?

Note: Some parameters are not "estimated" in any statistical sense, either they are taken as some fixed values or derived based on postulated model. But some are estimated from data under certain statistical model assumptions.

• Answer to this is probably through *re-sampling methods*.

New things in the Subsequent Analysis

Thank You