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Abstract

Max-type Recursive Distributional Equations

by

Antar Bandyopadhyay

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor David J. Aldous, Chair

In certain problems in a variety of applied probability settings (from probabilistic analysis

of algorithms to mean-field statistical physics models), the central requirement is to solve

a fixed point equation of the form X
d
= g ((ξi,Xi) , i ≥ 1), where (ξi)i≥1 and g (·) are

given and (Xi)i≥1 are independent copies of X with unknown distribution. We call such

an equation a recursive distributional equation. Exploiting the natural recursive structure

one can associate a tree-indexed process with every solution, and such a process is called

a recursive tree process. This process in some sense is a solution of an infinite system of

recursive distributional equations.

The dissertation is devoted to the study of such fixed point equations and the

associated recursive tree process when the given function g (·) is essentially a “maximum”

or a “minimum” function. Such equations arise in the context of optimization problems and

branching random walks. The present work mainly concentrates on the theoretical question

of endogeny : the tree-indexed process being measurable with respect to the given i.i.d

innovations (ξi). We outline some basic general theory which is natural from a statistical

physics point of view and then specialize to study some concrete examples arising from

various different contexts.

Professor David J. Aldous
Dissertation Committee Chair
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Chapter 1

Introduction

Let P(S) be the set of all probability measures on a Polish space S; in most of our examples,

S will either be a discrete set, or the set of real numbers, or a subset of it. Suppose that we

are given a joint distribution for a family of random variables say (ξi, i ≤ 1), and a S-valued

function g(·) with some appropriate domain (we give a precise definition in Section 2.1 of

Chapter 2).Then we can define a map T : P(S) → P(S) as follows.

T (µ)
d
= g ((ξi,Xi) , i ≥ 1) , (1.1)

where (Xi)i≥1 are i.i.d samples from the distribution µ and are independent of the given

family (ξi)i≥1. Within this general framework one can ask about the existence and unique-

ness of fixed points of the operator T , that is distributions µ such that

T (µ)
d
= µ. (1.2)

We will rewrite the fixed point equation (1.2) in terms of the random variables as

X
d
= g ((ξi,Xi) , i ≥ 1) on S, (1.3)

where we will implicitly assume the independence assumption. We call such an equation

a recursive distributional equation (RDE). RDEs have arisen in a variety of settings, for

example, in the study of the Galton-Watson branching process and related trees (see Sec-

tion 1.1), characterization of probability distributions [19], probabilistic analysis of random

algorithms with suitable recursive structures, in particular the study of Quicksort algorithm
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[26, 27, 16] and the study of the find algorithm [12], in the study of branching random

walk [9, 10], and in various statistical physics models on trees [4, 5], to name a few.

Perhaps the most well studied case is the case when S = R
+ and g is of the form

g ((ξi,Xi) , i ≥ 1) =
N
∑

i=0

ξiXi, (1.4)

where N ≤ ∞ is a constant or a given random variable taking values in Z
+ = {1, 2, . . . ;∞}.

Durrett and Liggett [14] studied this case extensively for non-random fixed N . The exten-

sion to random N have been developed by Liu [21, 22].

Our main interest is to study a subclass of RDEs, those involving “max-type” functions

g. Such RDEs have arisen in the study of branching random walks [9], statistical physics

models on trees, like frozen percolation process on trees [4], and also in the probabilistic

study of combinatorial optimization and local weak convergence method [3].

This thesis mainly focuses on the study of some “max-type” RDEs. On the theoretical side

we develop some general theory which is rather natural from a statistical physics point of

view but may be less apparent from the algorithms viewpoint. We formalize RDEs in terms

of tree-indexed processes which we call recursive tree processes(RTPs). In particular we

define the endogeny property, that in a RTP the variables Xi are measurable functions of

the basic driving tree-indexed innovation process (ξi), and hence no external randomness

is needed. We also set out some general facts to study the tail of a RTP. The rest of the

work mainly devoted to carefully studying some particular examples of RDEs arising from

various different contexts. The main interest has been to show existence, uniqueness and if

possible to check the endogenous property of the associated RTP.

1.1 A Motivating Example

Consider a sub-critical/critical Galton-Watson branching process with progeny distribution

N . To exclude the trivial cases we assume that P (N = 1) 6= 1 and P (N = 0) 6= 1. A

classical result [8] shows that the branching process starting from one individual goes extinct

a.s. and hence the random family tree of the individual is a.s. finite. So the random variable

H := min
{

d
∣

∣

∣no individual in generation d
}

(1.5)
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HN

H1

1

1 N2

Φ

H

Figure 1.1: Recursion for H in a (sub)-critical Galton-Watson branching process

is well defined. Naturally H = 1+ height of the family tree.

Thus H satisfies the following simple RDE

H
d
= 1 + max (H1,H2, . . . ,HN ) on S = {1, 2, . . .} , (1.6)

where H1,H2, . . . are the i.i.d. copies of H which are heights of the family trees of the

children of the first individual. Note that here we define maximum over an empty set (like

N = 0 in (1.6)) as zero. The RDE (1.6) is a natural prototype for “max-type” RDEs and

one of our main motivating examples. So although the following result is implicit in the

classical literature [8, 6] we provide a proof which is a simple consequence of the above

RDE.

Proposition 1 Let N be a non-negative integer valued random variable with E [N ] ≤ 1 and

assume that 0 < P (N = 0) < 1. Let φ be the probability generating function of N . Then

the RDE (1.6) has unique solution given by P (H ≤ n) = φn(0), for n ≥ 1, where φn is the

n-fold composition of φ.

Proof : Let H be a solution of the RDE (1.6). Write F (x) = P (H ≤ x), x ∈ R as the
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distribution function of H. Clearly F (1) = P (N = 0) = φ(0). Fix n ≥ 2 then

F (n) = P (max (H1,H2, . . . ,HN ) ≤ n − 1)

=

∞
∑

k=0

P (N = k)P (max (H1,H2, . . . ,Hk) ≤ n − 1)

=
∞
∑

k=0

P (N = k) (F (n − 1))k

= φ (F (n − 1))

The rest follows by induction. �

It is interesting to note that the distribution of H is completely characterized by the dis-

tribution of N . In fact we will show later (using Lemma 8) that H is indeed a measurable

function of the family tree.

1.2 Outline

In Chapter 2 we develop some basic general theory which formalizes RDEs in terms of recur-

sive tree processes (RTPs). In particular we define endogeny property, bivariate uniqueness

of 1st and 2nd kind and also study the tail of the RTPs. Chapters 3, 4 and 5 provides

interesting examples of some “max-type” RDEs. In Chapter 3 we specialize to RDEs where

the function g is of the form g (η, (ξi,Xi) , i ≥ 1) = η + maxi≥1 ξiXi and discuss related

examples. Chapter 4 is devoted to study a particular RDE we call the Logistic RDE, which

appears in Aldous’ proof of ζ(2)-limit for the mean-field random assignment problem [5].

Chapter 5 focuses on another example of a “max-type” RDE which has arisen in the study

of the frozen-percolation process on infinite binary tree [4]. Unfortunately for this RDE

we do not have a conclusive result about the endogenous property of the RTP but, we

provide numerical results which suggest that the RTP is not endogenous. Chapters 2 and

3 represent parts of a joint work with David J. Aldous [2].
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Chapter 2

Basic General Theory

In this chapter we outline some basic general theory to study RDEs. Exploiting the recursive

nature one can associate with a RDE a much richer probabilistic model which we call

recursive tree process (RTP) (see Section 2.4 for a formal definition). This treatment is

some what similar to the general theory of Markov random field [17] but our emphasis is

quite different.

2.1 The General Setting

Here we record a careful setup for RDEs. Let (S,S) be a measurable space, and P(S) the

set of probability measures on (S,S). Let (Θ,T) be another measurable space. Construct

Θ∗ := Θ ×
⋃

0≤m≤∞
Sm (2.1)

where the union is a disjoint union, Sm is product space, interpreting S∞ as the usual

infinite product space and S0 as a singleton set, which we will write as {∆}. Let g : Θ∗ →

S be a measurable function. Let ν be a probability measure on Θ × Z̄
+, where Z̄

+ :=

{0, 1, 2, . . . ;∞}. These objects can now be used to define an operator T : P(S) → P(S) as

follows. We write ≤∗ N to mean ≤ N for N < ∞ and to mean < ∞ for N = ∞.

Definition 2 For µ ∈ P(S), T (µ) is the distribution of g(ξ,Xi, 1 ≤ i ≤∗ N), where
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1. (Xi, i ≥ 1) are independent with distribution µ;

2. (ξ,N) has distribution ν;

3. the families in 1 and 2 are independent.

Equation (1.1) fits this setting by writing ξ = (ξi)i≥1. In most examples there is a sequence

(ξi)i≥1, but for theoretical discussion we regard such a sequence as a single random element

ξ.

In examples where P (N = ∞) > 0 a complication often arise. It may be that g(·) is not

well-defined on all of Θ × S∞ while g (ξ,Xi, 1 ≤ i ≤∗ N) is well-defined almost surely for

(Xi)i≥0 i.i.d with distribution in a restricted class of probability measures on S. For such

examples and also for other cases where it is natural to restrict attention to distributions

satisfying some conditions (like moment conditions), we allow the more general setting

where we are given a subset P ⊆ P(S) with g (ξ,Xi, 1 ≤ i ≤∗ N) is well-defined almost

surely for (Xi)i≥0 i.i.d with distribution in P . Now T is well-defined as a map

T : P 7→ P(S) (2.2)

2.2 Basic Monotonicity and Contraction Lemmas

In this section we describe two very basic standard tools for studying maps T : P → P(S)

which do not depend on the map arising in the particular way of Definition 2.

First suppose S ⊆ R
+ is an interval of the form [0, x0] for some x0 < ∞, or S = [0,∞). Let

� be the standard stochastic partial order on P(S). We will say T is monotone if

µ1 � µ2 ⇒ T (µ1) � T (µ2).

Note that, writing δ0 for the probability measure degenerate at 0, if T is monotone then

the sequence of iterates T n(δ0) is increasing, and thus the weak limit

Tn(δ0)
d
→ µ?

exists for some probability measure µ? on the compactified interval [0,∞]. The following

lemma is obvious and we omit the proof of it.
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Lemma 3 (Monotonicity Lemma) Let S be an interval as above. Suppose T is mono-

tone. If µ? gives non-zero measure to {∞} then T has no fixed point on P(S). If µ?

gives zero measure to {∞}, and if T is continuous with respect to increasing limits, that is,

µn ↑ µ∞ implies T (µn) ↑ T (µ∞), then µ? is a fixed point of T , and µ? � µ, for any other

fixed point µ.

This obvious result parallels the notion of lower invariant measure in attractive interacting

particle systems [20].

Now considering the case of general S, the Banach contraction mapping principle specializes

to yet another obvious result.

Lemma 4 (Contraction Method) Let P be a subset of P(S) such that T maps P into

P. Suppose there is a complete metric d on P such that T is a (strict) contraction, that is

sup
µ1 6=µ2∈P

d(T (µ1), T (µ2))

d(µ1, µ2)
< 1.

Then T has a unique fixed point µ in P, whose domain of attraction is all of P.

2.3 Recursive Tree Framework

Consider again the setup from Section 2.1. Rather than considering only the induced map

T , one can make a richer structure by interpreting

X = g(ξ,Xi, 1 ≤ i ≤∗ N)

as a relationship between random variables. In brief we regard X as a value associated with a

“parent” which is determined by the values Xi at N “children” and by some “random noise”

ξ associated with the parent. One can then extend to grandchildren, great grandchildren

and so on in the obvious way. We write out the details carefully in rest of this section

Let T = (V, E) be the canonical infinite tree with vertex set V := ∪m≥0N
m ( where N

0 := {∅}

), and the edge set E := {e = (i, ij) | iV, j ∈ N }. We consider ∅ as the root of the tree, and

will write ∅j = j ∀ j ∈ N. A typical vertex of the tree, say i = i1i2 · · · id denotes a dth

generation individual, which is the ithd child of its parent i1i2 · · · id−1. We will write gen(i)
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ξΦ NΦ,( )

ξ N,( )1 1 ξ N,( )2 2 ξ N,( )3 3
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11 12 13 21 22 23 31 32 33

Φ

g

g

Figure 2.1: Recursive tree framework

for the generation of the vertex i. Of course the generation of the root is defined to be

0. Given the distribution ν on Θ × Z̄
+ from Section 2.1, for each i ∈ V let (ξi, Ni) have

distribution ν, independent as i varies. Recall also the function g from Section 2.1.

Definition 5 A triplet of the form
(

T, (ξi, Ni)i∈V , g
)

is called a recursive tree framework

(RTF). The infinite tree T is called the skeleton and the i.i.d random variables (ξi, Ni)i∈V
are called innovation process of the RTF (see Figure 2.1).

Remark : Associated with any RTF there is a Galton-Watson branching process tree T

rooted at ∅ which is embedded in the skeleton tree T, and has the offspring distribution

given by the marginal of ν on Z̄
+. Indeed the Z̄

+-valued random variables Ni defines a

Galton-Watson branching forest on V with the required offspring distribution, set T as the

connected component containing the root ∅. In most of the applications this branching
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Figure 2.2: Recursive tree process

process tree T is the most important part of the skeleton.

2.4 Recursive Tree Process

In the setting of a RTF suppose that, jointly with the random objects above, we can

construct S-valued random variables Xi such that for each i

Xi = g(ξi,Xij, 1 ≤ j ≤∗ Ni) a.s. (2.3)

and such that, conditional on the values of {ξi, Ni : i ∈ N
m,m ≤ d − 1 }, the random

variables {Xi : i ∈ N
d } are i.i.d. with some distribution µd. Call this structure (a RTF

jointly with the Xi’s) a recursive tree process (RTP). If the random variables Xi are defined

only for vertices i of gen(i) ≤ d then call it a RTP of depth d. See Figure 2.2.

Now an RTF has an induced map T : P(S) → P(S) as in Definition 2. In the extended
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case 2.2 we need to assume that T maps P into P. Note that the relationship between a

RTF and a RTP mirrors the relationship between a Markov transition kernel and a Markov

chain. Fix a RTF, given d and an arbitrary distribution µ0 on S, there is a RTP of depth

d in which the generation-d vertices are defined to have distribution µd = µ0. Then the

distributions µd, µd−1, µd−2, . . . , µ0 at decreasing generations d, d−1, d−2, . . . , 0 of the tree

are just the successive iterates µ0, T (µ0), T 2(µ0), . . . , T d(µ0) of the map T .

One should take a moment to distinguish RTPs from other structures involving tree-indexed

random variables. For instance, a branching Markov chain can also be represented as a

family (Xi). But its essential property is that, conditional on the value Xi at a parent i, the

values (Xi1,Xi2, . . .) at the children i1, i2, . . . are i.i.d.. A RTP in general does not have

this property. Conceptually, in branching processes one thinks of the “arrow of time” as

pointing away from the root, whereas in a RTF the arrow points toward the root.

Calling a RTP invariant if the marginal distributions of Xi are identical at all depths, then

we have the following obvious analog of Markov chain stationarity.

Lemma 6 Consider a RTF. A distribution µ is a fixed point of the induced map T if and

only if there is an invariant RTP with marginal distributions µ.

Proof : First of all if there is an invariant RTP with marginal µ then naturally the induced

map T has a fixed point.

Conversely, suppose that the induced map T of the given RTF has a fixed point µ. So for

any d ≥ 0 we can construct an invariant RTP of depth d with marginal µ. The existence of

an invariant RTP follows from Kolmogorov’s consistency theorem. �

An invariant RTP could be regarded as a particular case of a Markov random field, but the

special “directed tree” structure of RTFs makes them worth distinguishing from general

Markov random fields.

2.5 Endogeny and Bivariate Uniqueness Property

Now imagine (2.3) as a system of equations for “unknowns” Xi in terms of “known data”

(ξi, Ni). It is natural to ask if there is a unique solution which depends only on the data.
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We formalize this as the following endogenous property. Write

GT = σ(ξi, Ni, i ∈ V). (2.4)

Definition 7 An invariant RTP is called endogenous if

X∅ is GT-measurable.

We here note that by considering the embedded Galton-Watson branching process tree T

one can rephrase the endogeny property by saying that

X∅ is G-measurable,

where

G := σ (ξi, Ni, i is a vertex of T ) .

In this work we will mainly use this formulation.

It is intuitively clear that when the embedded Galton-Watson tree T is a.s. finite then there

will be an unique invariant RTP and it will be endogenous. The following lemma proves

this fact.

Lemma 8 Consider a RTF such that the Galton-Watson branching process tree embedded

in the skeleton is a.s. finite, then the associated RTP has an unique solution and it is

endogenous.

Proof : Let I be the set of all finite rooted trees with each vertex having a weight from

Θ. Using similar nomenlature as done above we will write a vertex as i and its weight wi

and the number of children it has as ni. Define the function h : I → S as follows.

• At each leaf i define xi = g (wi,∆);

• for an internal vertex i recursively define xi = g (wi, (xij , 1 ≤ j ≤ ni));

h is then the value x∅. Observe that h is well defined since each tree in I is finite. Now

consider a RTF with the Galton-Watson tree embedded in the skeleton a.s. finite. Let T

be the a.s. finite Galton-Watson branching process tree rooted at ∅. Let T i denote the tree
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rooted at the vertex i for i a vertex of T . Define Xi = h (T i). Clearly (Xi) is an invariant

RTP, proving that the associated RDE has a solution. Further this solution is endogenous

from definition.

Now assume that the associated RDE has a solution and let (Yi) be the corresponding

invariant RTP. Let T be the associated Galton-Watson branching process tree rooted at ∅

which is a.s. finite by assumption. Define Xi for i a vertex of T as above. Let i be a leaf

of the tree T from definition Yi = g (ξi,∆) but so is Xi, and hence Yi = Xi for all i. This

proves the uniqueness of the solution. �

When T is infinite the “boundary behavior” may cause uniqueness and/or endogeny to fail.

The following trivial example shows that one can not tell whether or not the endogenous

property holds just by looking at T , even when the T has a unique fixed point.

Example 1 Take S = R and define T : P(S) → P(S) by T (µ) = Normal(0, 1) for all µ.

So Normal(0, 1) is the unique fixed point of T . We will construct two RTPs with the same

induced map T such that in one case it will be endogenous while in the other case it will fail

to be endogenous.

For the first case take (ξ,N) with N ≡ 1 and ξ ∼ Normal(0, 1), and g(t, x1) = t. Clearly

the induced map is T . Observe that for the associated RTP we have X∅ = ξ∅ and so the

endogenous property holds.

For the other case take the same pair (ξ,N) and let g(t, x1) = sign(x1) × t. Once again it

is easy to see that the induced map is T . But notice that g(ξ,−X1) = −g(ξ,X1) and also

X1
d
= −X1 when X1 ∼ Normal(0, 1). So we can change the value of the root variable X∅

by changing X1 to −X1 and not changing any of the values of the innovation process. So

naturally the RTP is not endogenous. More formally one can show that in this example the

bivariate uniquness fails and hence as discussed in the following sections the invariant RTP

is not endogenous.

Theorem 12 will show that the endogenous property is equivalent to a certain bivariate

uniqueness property, which is explained next.
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2.5.1 Bivariate Uniqueness Property of 1st Kind

In the general setting of a RTF we have the induced map T : P → P(S). Now consider

a bivariate version, let P (2) be the space of probability measures on S2 = S × S, with

marginals in P. We can now define a map T (2) : P(2) → P
(

S2
)

as follows

Definition 9 For a probability µ(2) ∈ P(2), T (2)
(

µ(2)
)

is the joint distribution of





g
(

ξ,X
(1)
i , 1 ≤ i ≤∗ N

)

g
(

ξ,X
(2)
i , 1 ≤ i ≤∗ N

)





where we assume

1.
(

X
(1)
i ,X

(2)
i

)

i≥1
are independent with joint distribution µ(2) on S2;

2. (ξ,N) has distribution ν;

3. the families of random variables in 1 and 2 are independent.

The point is that we use the same realization(data) of (ξ,N) in both components. Imme-

diately from the definitions we conclude the following

Lemma 10 (a) If µ is a fixed point for T then the associated diagonal measure µ↗ is a

fixed point for T (2), where

µ↗ = dist(X,X) for µ = dist(X).

(b) If µ(2) is a fixed point for T (2) then each marginal distribution is a fixed point for T .

So if µ is a fixed point for T then µ↗ is a fixed point for T (2) and there may or may not be

other fixed points of T (2) with marginals µ.

Definition 11 An invariant RTP with marginal µ has the bivariate uniqueness property of

1st kind if µ↗ is the unique fixed point of T (2) with marginal µ.

The following example shows that even if T has a unique fixed-point say µ, T (2) may have

several fixed-points with marginal µ.
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Example 2 Take S = {0, 1} and let ξ have Bernoulli(q) distribution for 0 < q < 1. Fix

N = 1. Consider the RDE

X
d
= X1 + ξ (mod 2). (2.5)

Here T maps a Bernoulli(p) to Bernoulli(p(1 − q) + q(1 − p)), so Bernoulli(1/2) is the

unique fixed point. We will show that any distribution on S2 with marginal Bernoulli(1/2)

is a fixed-point for T (2).

Let (X1, Y1) be a pair with some bivariate distribution on S2 with marginal Bernoulli(1/2).

Put θ := P (X1 = 1, Y1 = 1), then observe that θ = P (X1 = 0, Y1 = 0) also. Let ξ be

independent of (X1, Y1) and has Bernoulli(q) distribution, then

P (X1 + ξ = 1, Y1 + ξ = 1) = θ × q + θ × (1 − q) = θ.

So dist (X1, Y1) is a fixed-point for T (2).

Further we note that it is possible that T has several solutions some of which are endogenous

and some are not. One such non-trivial example is considered in Section 3.3 of Chapter 3

2.5.2 The First Equivalence Theorem

Here we state a version of the general result linking endogeny and bivariate uniqueness.

This result is similar to results about Gibbs measures and Markov random fields [17].

Theorem 12 Suppose S is a Polish space. Consider an invariant RTP with marginal

distribution µ.

(a) If the endogenous property holds then the bivariate uniqueness property of 1st kind

holds.

(b) Conversely, suppose the bivariate uniqueness property of 1st kind holds. If also T (2) is

continuous with respect to weak convergence on the set of bivariate distributions with

marginals µ, then the endogenous property holds.

(c) Further, the endogenous property holds if and only if T (2)n (µ ⊗ µ)
d
→ µ↗, where

µ ⊗ µ is product measure.
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Remark : In part (b) we need the technical condition of continuity of T (2) for writing the

proof, though we do not have an example where the equivalence in part (b) fails without

the condition. Also it is worth noting that for part (c) we do not need to assume continuity

of T (2). The part (c) can be used non-rigorously to investigate endogeny via numerical or

Monte Carlo methods (see Section 5.3 of Chapter 5).

2.5.3 Intuitive Picture for the Equivalence Theorem

Intuitively we can think of the root variable X∅ of an invariant RTP as a function (output)

of the innovation process of the associated RTF and possibly some other external variables

which are given as inputs at the boundary at infinity. Then endogeny simply means that

the effect of the boundary values have no influence on the output X∅. If that is the case then

giving independent inputs at the boundary at infinity should still give the same output at

the root (see Figure 2.3). The bivariate uniqueness of 1st kind should then hold by breaking

up the skeleton tree T in subtrees rooted at the children of the root ∅. The proof of the

above equivalence theorem is essentially a formalization of this intuitive idea.

2.5.4 Proof of the First Equivalence Theorem

(a) Let ν be a fixed point of T (2) with marginals µ. Consider a bivariate RTP ((X
(1)
i ,X

(2)
i ), i ∈

T ) with ν = dist(X
(1)
∅ ,X

(2)
∅ ). Define Gn := σ ((ξi, Ni), gen(i) ≤ n). Observe that Gn ↑ G.

Fix Λ : S → R a bounded continuous function. Notice that from the construction of the

bivariate RTP,

(X
(1)
∅ ; (ξi, Ni), gen(i) ≤ n)

d
= (X

(2)
∅ ; (ξi, Ni), gen(i) ≤ n).

So

E
[

Λ(X
(1)
∅ )
∣

∣

∣Gn

]

= E
[

Λ(X
(2)
∅ )
∣

∣

∣Gn

]

a.s. (2.6)

Now by martingale convergence

E
[

Λ(X
(1)
∅ )
∣

∣

∣Gn

]

a.s.
−→E

[

Λ(X
(1)
∅ )
∣

∣

∣G
]

a.s.
= Λ(X

(1)
∅ ) (2.7)

the last equality because of the endogenous assumption for the univariate RTP. Similarly,

E
[

Λ(X
(2)
∅ )
∣

∣

∣G
]

a.s.
= Λ(X

(2)
∅ ).
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Figure 2.3: Intuitive picture for bivariate uniqueness of 1st kind
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Thus by (2.6) we see that Λ(X
(1)
∅ ) = Λ(X

(2)
∅ ) a.s.. Since this is true for every bounded

continuous Λ we deduce X
(1)
∅ = X

(2)
∅ a.s., proving bivariate uniqueness of 1st kind.

(b) To prove the converse, again fix Λ : S → R bounded continuous. Let (Xi) be the

invariant RTP with marginal µ. Again by martingale convergence

E
[

Λ(X∅)
∣

∣

∣Gn

]

a.s.
−→
L2

E
[

Λ(X∅)
∣

∣

∣G
]

. (2.8)

Independently of (Xi, ξi, Ni, i ∈ T), construct random variables (Vi, i ∈ T) which are i.i.d

with distribution µ. For n ≥ 1, define Y n
i := Vi if gen(i) = n, and then recursively define Y n

i

for gen(i) < n by (2.3) to get an invariant RTP (Y n
i ) of depth n. Observe that X∅

d
= Y n

∅ .

Further given Gn, the variables X∅ and Y n
∅ are conditionally independent and identically

distributed given Gn. Now let

σ2
n(Λ) :=

∥

∥

∥E
[

Λ(X∅)
∣

∣

∣Gn

]

− Λ(X∅)
∥

∥

∥

2

2
. (2.9)

We calculate

σ2
n(Λ) = E

[

(

Λ(X∅) −E
[

Λ(X∅)
∣

∣

∣Gn

])2
]

= E
[

Var
(

Λ(X∅)
∣

∣

∣Gn

)]

= 1
2E
[

(

Λ(X∅) − Λ(Y n
∅ )
)2
]

. (2.10)

The last equality uses the conditional form of the fact that for any random variable U one

has Var(U) = 1
2E
[

(U1 − U2)
2
]

, where U1, U2 are i.i.d copies of U .

Now suppose we show that

(X∅, Y
n
∅ )

d
→ (X?, Y ?), say (2.11)

for some limit. From the construction,





X∅

Y n+1
∅





d
= T (2)









X∅

Y n
∅







 ,

and then the weak continuity assumption on T (2) implies





X?

Y ?





d
= T (2)









X?

Y ?







 .
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Also by construction we have X∅
d
= Y n

∅
d
= µ for all n ≥ 1, and hence X? d

= Y ? d
= µ.

The bivariate uniqueness of 1st kind assumption now implies X? = Y ? a.s. Since Λ is a

bounded continuous function, (2.11) implies Λ(X∅)−Λ(Y n
∅ ) → 0 a.s. and so using (2.10) we

see that σ2
n(Λ) −→ 0. Hence from (2.9) and (2.8) we conclude that Λ(X∅) is G-measurable.

This is true for every bounded continuous Λ, proving that X∅ is G-measurable, as required.

Now all remains is to show that a limit (2.11) exists. Fix f : S → R and h : S → R, two

bounded continuous functions. Again by martingale convergence

E
[

f(X∅)
∣

∣

∣Gn

]

a.s.
−→
L1

E
[

f(X∅)
∣

∣

∣G
]

,

and similarly for h. So

E
[

f(X∅)h(Y n
∅ )
]

= E
[

E
[

f(X∅)h(Y n
∅ )
∣

∣

∣Gn

]]

= E
[

E
[

f(X∅)
∣

∣

∣Gn

]

E
[

h(X∅)
∣

∣

∣Gn

]]

,

the last equality because of conditional on Gn X∅ and Y n
∅ independent and identically

distributed as of X∅ given Gn. Letting n → ∞ we get

E
[

f(X∅)h(Y n
∅ )
]

−→ E
[

E
[

f(X∅)
∣

∣

∣G
]

E
[

h(X∅)
∣

∣

∣G
]]

. (2.12)

Moreover note that X∅
d
= Y n

∅
d
= µ and so the sequence of bivariate distributions (X∅, Y

n
∅ )

is tight. Tightness, together with convergence (2.12) for all bounded continuous f and h,

implies weak convergence of (X∅, Y
n
∅ ) .

(c) First assume that T (2)n (µ ⊗ µ)
d
→ µ↗, then with the same construction as in part (b)

we get that
(

X∅, Y
n
∅
) d

→ (X∅,X∅) .

Further recall that Λ is bounded continuous, thus using (2.10), (2.9) and (2.8) we conclude

that Λ(X∅) is G-measurable. Since it is true for any bounded continuous function Λ, thus

X∅ is G-measurable. So the RTP is endogenous.

Conversely, suppose that the RTP with marginal µ is endogenous. Let Λ1 and Λ2 be two

bounded continuous functions. Note that the variables
(

X∅, Y
n
∅
)

, as defined in part (b) have

joint distribution as T (2)n (µ ⊗ µ). Further, given Gn, they are conditionally independent
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and have same conditional law as of X∅ given Gn. So

E
[

Λ1(X∅) Λ2(Y
n
∅ )
]

= E
[

E
[

Λ1(X∅)
∣

∣

∣Gn

]

E
[

Λ2(X∅)
∣

∣

∣Gn

]]

→ E
[

E
[

Λ1(X∅)
∣

∣

∣G
]

E
[

Λ2(X∅)
∣

∣

∣G
]]

= E [Λ1(X∅) Λ2(X∅)] .

The convergence is by martingale convergence, and the last equality is by endogeny. So

from definition we get

T (2)n (µ ⊗ µ)
d
=
(

X∅, Y
n
∅
) d

→ (X∅,X∅)
d
= µ↗.

�

2.6 Tail of a RTP

Consider a RTF such that the induced map T has a fixed-point µ ∈ P and let (Xi)i∈V be

an invariant RTP with marginal distribution µ. Let H be the tail sigma algebra of the RTP

defined as

H = ∩
n≥0

Hn, (2.13)

where Hn := σ (Xi, gen(i) ≥ n). Intuitively it is clear that if the invariant RTP is endoge-

nous then the tail H is trivial. Formally, let Gn := σ ((ξi, Ni) , gen(i) ≤ n). From definition

we have Hn ↓ H and Gn ↑ G. Also for each n ≥ 0, Gn is independent of Hn+1. So clearly

G is independent of H. Hence if the RTP is endogenous then X∅ is G-measurable, so it is

independent of H. The following lemma proves the rest.

Lemma 13 X∅ is independent of H if and only if H is trivial.

Proof : If the tail H is trivial then naturally X∅ is independent of it. For proving the

converse we will need the following standard measure theoretic fact whose proof is easy

using Dynkin’s π-λ Theorem (see [13]) and is omitted here.

Lemma 14 Suppose (Ω, I,P) be a probability space and let F∗,G∗ and H∗ be three sub-σ-

algebras such that F∗ is independent of H∗; G∗ is independent of H∗; and F∗ and G∗ are

independent given H∗. Then σ (F∗ ∪ G∗) is independent of H∗.
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To complete the proof of the Lemma 13 we denote F0
n := σ (Xi, gen(i) = n) and Fn :=

σ (Xi, gen(i) ≤ n). From assumption Xi is independent of H for all i ∈ V. Fix n ≥ 1 and

let i 6= i′ be two vertices at generation n. From the definition of RTP Xi and Xi′ are

independent, moreover they are independent given Hn+k for any k ≥ 1. Letting k → ∞

we conclude that Xi and Xi′ are independent given H. Thus by Lemma 14 we get that

(Xi,Xi′) is independent of H, and hence by induction F0
n is independent of H.

Now Gn is independent of H from definition. Further Gn is independent of F0
n+1 given Hn+k

for any k ≥ 1. Once again letting k → ∞ we conclude that Gn and F0
n+1 are independent

given H. So again using Lemma 14 it follows that σ
(

Gn ∪ F0
n+1

)

is independent of H. But

Fn ⊆ σ
(

Gn ∪ F0
n+1

)

so Fn is independent of H. But Fn ↑ H0 and hence H is independent

of H0 ⊇ H. This proves that H is trivial. �

So one way to conclude that the RTP is not endogenous will be to prove that the tail H is

non-trivial. The following trivial example shows that the converse is not necessarily true.

Example 3 Consider the RDE in Example 2. We have seen that T (2) has several fixed-

points with marginal Bernoulli(1/2). So the bivariate uniqueness of 1st kind fails, hence the

associated RTP is not endogenous. Now we will show that the tail of the RTP is trivial.

For that we will use the part (b) of Theorem 18 of the next section. Let (X,Y ) be S2-valued

random pair with some distribution such that the marginals are both Bernoulli(1/2). Let

θ = P (X = 1, Y = 1) = P (X = 0, Y = 0). Suppose further that the distribution of (X,Y )

satisfies the following bivariate RDE




X

Y





d
=





X1 + ξ

Y1 + η



 ( mod 2 ) ,

where (X1, Y1) is a copy of (X,Y ) and independent of (ξ, η) which are i.i.d. Bernoulli(q).

So we get the following equation for θ

θ = q2θ + (1 − q)2θ + 2q(1 − q)(1/2 − θ). (2.14)

The only solution of (2.14) is θ = 1/4, that is X and Y are independent. So using part (b)

of Theorem 18 we conclude that the RTP has a trivial tail.

In the same spirit of Section 2.5.3 we can intuitively argue that in order to check whether X∅

is independent of H (and so by the lemma above H is trivial) we can think of having same
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input at “infinity” in two RTFs with independent and identical innovations, and getting two

outputs say X∅ and Y∅. Intuitively if X∅ and Y∅ are independent then there is no influence of

the boundary at infinity, that is, X∅ should be independent of H. See Figure 2.4. Theorem

18 tries to make this idea formal in a similar way as done in the case of Theorem 12

2.6.1 Bivariate Uniqueness Property of 2nd Kind

In the general setting of a RTF consider the induced map T : P → P(S). Now we will

consider another bivariate version of it. With the same notation from Section 2.5.1, write

P(2) for the space of probability measures on S2 = S × S, with marginals in P. We can

now define a map T ⊗ T : P (2) → P
(

S2
)

as follows

Definition 15 For a probability µ(2) ∈ P(2), (T ⊗ T )
(

µ(2)
)

is the joint distribution of





g
(

ξ,X
(1)
i , 1 ≤ i ≤∗ N

)

g
(

η,X
(2)
i , 1 ≤ i ≤∗ M

)





where we assume

1.
(

X
(1)
i ,X

(2)
i

)

i≥1
are independent with joint distribution µ(2) on S2;

2. (ξ,N) and (η,M) are i.i.d ν;

3. the families of random variables in 1 and 2 are independent.

Unlike in the case of T (2) as defined in Section 2.5.1, the point is that we use independent

(data)realizations of in the two components. Once again immediately from the definition

we conclude the following

Lemma 16 (a) If µ is a fixed point for T then the associated product measure µ ⊗ µ is

a fixed point for T ⊗ T ,

(b) If µ(2) is a fixed point for T ⊗T then each marginal distribution is a fixed point for T .

So if µ is a fixed point for T then µ ⊗ µ is a fixed point for T ⊗ T and there may or may

not be other fixed points of T ⊗ T with marginal µ.



22

XΦ

YΦ

Independent
RTFs

Independent

Output ?

Input at Infinity RTF Output

Same Input

Figure 2.4: Intuitive picture for bivariate uniqueness of 2nd kind
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Definition 17 An invariant RTP with marginal µ has the bivariate uniqueness property of

2nd kind if µ ⊗ µ is the unique fixed point of T ⊗ T with marginal µ.

2.6.2 The Second Equivalence Theorem

The following result is a general result linking tail triviality and bivariate uniqueness prop-

erty of 2nd kind. This result and its proof is basically the formalization of the intuitive

picture described above. The proof of this theorem parallels the proof of the first equivalence

theorem (Theorem 12).

Theorem 18 Suppose S is a Polish space. Consider an invariant RTP with marginal

distribution µ.

(a) If the endogenous property holds then the bivariate uniqueness property of 2nd kind

holds.

(b) Suppose the bivariate uniqueness property of 2nd kind holds. If also T⊗T is continuous

with respect to weak convergence on the set of bivariate distributions with marginals

µ, then the tail of the RTP is trivial.

(c) Further, the RTP has a trivial tail if and only if (T ⊗ T )n (µ↗) d
→ µ ⊗ µ.

Remark : This theorem is not really an equivalence of the two properties, namely tail

triviality of the RTP and the bivariate uniqueness of the 2nd kind. The part (a) assumes

endogeny which is much stronger than tail triviality, though because of part (c) it is natural

to believe that part (a) is true if we just assume tail triviality. Unfortunately we do not have

a proof of this neither do we have a counter-example. The main usefulness of this theorem

is to show non-endogeny by showing bivariate uniqueness of 2nd kind does not hold, which

in some examples can possibly be simpler. Once again part (c) can be used for non-rigorous

investigation using numerical or Monte Carlo methods.

2.6.3 Proof of the Second Equivalence Theorem

(a) Let λ be a fixed point of T ⊗T with marginals µ. Consider two RTFs with independent

and identical innovation processes given by ((ξi, Ni) , i ∈ V) and ((ηi,Mi) , i ∈ V). Exactly
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the same way as done in Lemma 6 we can now construct a bivariate RTP ((X
(1)
i ,X

(2)
i ), i ∈ V)

with λ = dist(X
(1)
∅ ,X

(2)
∅ ). Notice that

(

X
(1)
i

)

i∈V
and

(

X
(2)
i

)

i∈V
are two (univariate) RTPs

with marginal µ.

Let GT := σ ((ξi, Ni), i ∈ V) be as before and G?
T

:= σ ((ηi,Mi), i ∈ V). Trivially GT and G?
T

are independent.

Since we assume that invariant RTP with marginal µ has the endogenous property, thus

X
(1)
∅ is GT-measurable and X

(2)
∅ is G?

T
-measurable. Hence X

(1)
∅ is independent of X

(2)
∅ , so

λ = µ ⊗ µ.

(b) Let (Xi)i∈V be the invariant RTP with marginal µ. Define Hn := σ (Xi, gen(i) ≥ n).

Observe that Hn ↓ H. Now fix Λ : S → R a bounded continuous function. So by reverse

martingale convergence

E
[

Λ(X∅)
∣

∣

∣Hn

]

a.s.
−→
L2

E
[

Λ(X∅)
∣

∣

∣H
]

. (2.15)

Let (ηi,Mi)i∈V be independent innovations which are independent of (Xi, ξi, Ni, i ∈ V).

For n ≥ 1, define Y n
i := Xi if gen(i) = n, and then recursively define Y n

i for gen(i) < n

using (2.3) but replacing ξi by ηi and Ni by Mi to get an invariant RTP (Y n
i ) of depth n.

Observe that X∅
d
= Y n

∅ . Further given Hn, the variables X∅ and Y n
∅ are conditionally

independent and identically distributed. Now let

σ̄2
n(Λ) :=

∥

∥

∥
E
[

Λ(X∅)
∣

∣

∣
Hn

]

−E [Λ(X∅)]
∥

∥

∥

2

2
. (2.16)

We calculate

σ̄2
n(Λ) = E

[

(

E
[

Λ(X∅)
∣

∣

∣
Hn

]

− E [Λ(X∅)]
)2
]

= Var
(

E
[

Λ(X∅)
∣

∣

∣Hn

])

= Var (Λ(X∅)) − E
[

Var
(

Λ(X∅)
∣

∣

∣
Hn

)]

= Var (Λ(X∅)) −
1
2E
[

(

Λ(X∅) − Λ(Y n
∅ )
)2
]

. (2.17)

The last equality follows from similar reason given for (2.10).

Now suppose we show that

(X∅, Y
n
∅ )

d
→ (X?, Y ?) (2.18)
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for some limit (X?, Y ?). From the construction,





X∅

Y n+1
∅





d
= (T ⊗ T )









X∅

Y n
∅







 ,

and then the weak continuity assumption on T ⊗ T implies





X?

Y ?





d
= (T ⊗ T )









X?

Y ?







 .

Also by construction we have X∅
d
= Y n

∅
d
= µ for all n ≥ 1, and hence X? d

= Y ? d
= µ.

The bivariate uniqueness of 2nd kind assumption now implies X? and Y ? are independent.

Since Λ is a bounded continuous function, (2.18) implies

E
[

(

Λ(X∅) − Λ(Y n
∅ )
)2
]

→ E
[

(Λ(X?) − Λ(Y ?))2
]

= 2Var (Λ(X∅)) (2.19)

and so using (2.17) we see that σ̄2
n(Λ) −→ 0. Hence from (2.16) and (2.15) we conclude

that Λ(X∅) is independent of H. This is true for every bounded continuous Λ, proving that

X∅ is independent of H, so from Lemma 13 it follows that H is trivial.

Now all remains is to show that limit (2.18) exists. Fix f : S → R and h : S → R, two

bounded continuous functions. Again by reverse martingale convergence

E
[

f(X∅)
∣

∣

∣Hn

]

a.s.
−→
L1

E
[

f(X∅)
∣

∣

∣H
]

,

and similarly for h. So

E
[

f(X∅)h(Y n
∅ )
]

= E
[

E
[

f(X∅)h(Y n
∅ )
∣

∣

∣Hn

]]

= E
[

E
[

f(X∅)
∣

∣

∣Hn

]

E
[

h(X∅)
∣

∣

∣Hn

]]

,

the last equality because of conditional on Hn X∅ and Y n
∅ are independent and identically

distributed. Letting n → ∞ we get

E
[

f(X∅)h(Y n
∅ )
]

−→ E
[

E
[

f(X∅)
∣

∣

∣G
]

E
[

h(X∅)
∣

∣

∣G
]]

. (2.20)

Moreover note that X∅
d
= Y n

∅
d
= µ and so the sequence of bivariate distributions (X∅, Y

n
∅ )

is tight. Tightness, together with convergence (2.20) for all bounded continuous f and h,

implies weak convergence of (X∅, Y
n
∅ ) .
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(c) First assume that (T ⊗ T )n (µ↗) d
→ µ ⊗ µ, then with the same construction as done

in part (b) we get that
(

X∅, Y
n
∅
) d

→ (X?, Y ?) ,

where X? and Y ? are independent copies of X∅. Further recall that Λ is bounded continuous,

thus using (2.17), (2.16) and (2.15) we conclude that Λ(X∅) is independent of H. Since it

is true for any bounded continuous function Λ, thus X∅ is independent of H. Thus again

by Lemma 13 the RTP has trivial tail.

Conversely, suppose that the invariant RTP with marginal µ has trivial tail. Let Λ1 and

Λ2 ne two bounded continuous functions. Note that the variables
(

X∅, Y
n
∅
)

, as defined in

part (b) has joint distribution (T ⊗ T )n (µ↗). Further, given Hn, they are conditionally

independent and have same conditional law as of X∅ given Hn. So

E
[

Λ1(X∅) Λ2(Y
n
∅ )
]

= E
[

E
[

Λ1(X∅)
∣

∣

∣
Hn

]

E
[

Λ2(X∅)
∣

∣

∣
Hn

]]

→ E
[

E
[

Λ1(X∅)
∣

∣

∣H
]

E
[

Λ2(X∅)
∣

∣

∣H
]]

= E [Λ1(X∅)]E [Λ2(X∅)] .

The convergence is by reverse martingale convergence, and the last equality is by tail triv-

iality and Lemma 13. So from definition we get

(T ⊗ T )n
(

µ↗
)

d
=
(

X∅, Y
n
∅
) d

→ µ ⊗ µ.

�
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Chapter 3

Discounted Tree Sums

3.1 Background and Motivation

Athreya [7] studied the following RDE which he called “discounted branching random walk”

X
d
= η + cmax (X1,X2, . . . ,XN ) on S = R

+, (3.1)

where (Xi)i≥0 are i.i.d. copies of X and are independent of (η,N), where η ≥ 0, N is a non-

negative integer valued random variable independent of η, and 0 < c < 1 is a fixed constant

(“discounting factor”). He considered the super-critical case, that is when E [N ] > 1. It is

easy to see that the above RDE translates to the following integral equation

F (x) =

∫ ∞

0
φ

(

F

(

x − t

c

))

dH(t), x ≥ 0, (3.2)

where F and H are the distribution functions of X and η, and φ is the probability generating

function of N . In particular he studied the equation (3.2) for N ≡ 2 and η ∼ Exponential(1).

In this Chapter we will study the following generalization of the RDE (3.1)

X
d
= η + max

1≤i≤∗N
ξiXi on S = R

+ (3.3)

where (X)i≥1 are i.i.d. copies of X and (η, (ξi, 1 ≤ i ≤∗ N) , N) has some given distribution.

We will only study the case where η has all moments finite and 0 ≤ ξi < 1. Assuming that

(3.3) has a solution there is a natural interpretation of the associated RTP. Suppose at time

t = 0 we start with one individual who lives for a random η∅ amount of time, after which it
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dies and gives birth to N∅ number of children, whose life-spans get discounted by a random

factor ξi for the ith-child. The children then evolves in a similar manner independent of

each others. If (Xi)i∈V be the RTP then Xi is the time of survival of the family started

by the individual i. Durrett and Limic [15] proves the existence of such a process when

η ∼ Exponential(1) and (ξi)i≥1 are points of a Poisson point process of rate 1 on (0,∞) and

they are independent. We will study this example in Section 3.3.

3.2 Contraction Argument

Let T be the associated operator then it is easy to see that T is monotone and hence by

Lemma 3 the RDE (3.3) will have a solution if an only if T n (δ0) is tight. The following

theorem which is a generalization of Rachev and Rüschendorf’s result (see the comments

on equation (9.1.18) of [25]) which only deals with non-random fixed N , gives a sufficient

condition for existence of a solution.

Theorem 19 Suppose 0 ≤ ξi < 1 for all i ≥ 1 and η ≥ 0 has all moments finite. For p ≥ 1

write c(p) :=
∑∞

i=1 E [ξp
i ] ≤ ∞. Suppose c(p0) < ∞ for some p0 ≥ 1, then

(a) There exists p ≥ p0 such that c(p) < 1 and then T is a strict contraction on Fp, the

space of all probability measures on [0,∞) with finite pth moments under the standard

Mallows p-metric.

(b) There is a solution µ? of the RDE (3.3) with all moments finite such that T n (µ)
d
→ µ?

for all µ ∈ Fp. In particular Tn (δ0)
d
→ µ?.

(c) The RTP with marginal µ? is endogenous.

Proof : (a) By assumption c(p0) < ∞ for some p0 ≥ 1. Since 0 ≤ ξi < 1 for all i ≥ 1, we

clearly have c(p) ↓ 0 as p ↑ ∞. So choose and fix p ≥ p0 such that c(p) < 1. Recall

Fp :=
{

µ
∣

∣

∣µ is a probability on R
+ and µ has finite pth − moment

}

. (3.4)

We will first check that T (Fp) ⊆ Fp. Let µ ∈ Fp and let (X)i≥1 be i.i.d samples from

µ which are independent of
(

(ξi)i≥1 , N ; η
)

. Define [µ]p as the pth-moment of µ. Observe
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that

E

[(

max
1≤i≤∗N

(ξiXi)

)p]

= E

[

max
1≤i≤∗N

(ξp
i Xp

i )

]

≤ E





∑

1≤i≤∗N

ξp
i Xp

i





= E

[ ∞
∑

i=1

ξp
i Xp

i I(N ≥ i)

]

≤ E

[ ∞
∑

i=1

ξp
i Xp

i

]

=

∞
∑

i=1

E [ξp
i ]E [Xp

i ]

= [µ]p × c(p) < ∞.

Further we have assumed that E [ηp] < ∞, thus using (3.3) we conclude that T maps Fp

to itself.

Let dp be the Mallows metric on Fp defined as

dp (µ, ν) := inf
{

(E [|Z − W |p])1/p
∣

∣

∣Z ∼ µ and W ∼ ν
}

. (3.5)

Fix µ, ν ∈ Fp. By standard coupling argument construct i.i.d samples ((Xi, Yi))i≥1 such

that

• They are independent of
(

(ξi)i≥1 , N ; η
)

;

• Xi ∼ µ and Yi ∼ ν for all i ≥ 1;

• dp (µ, ν) = (E [|Xi − Yi|
p])1/p.
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Put Z = η + max
1≤i≤∗N

(ξiXi) and W = η + max
1≤i≤∗N

(ξiYi). Notice that from definition Z ∼ T (µ)

and W ∼ T (ν).

(dp (T (µ), T (ν)))p ≤ E [|Z − W |p]

= E

[∣

∣

∣

∣

max
1≤i≤∗N

ξiXi − max
1≤i≤∗N

ξiYi

∣

∣

∣

∣

p]

≤ E

[

max
1≤i≤∗N

|ξiXi − ξiYi|
p

]

≤ E

[ ∞
∑

i=1

|ξiXi − ξiYi|
p

]

=

∞
∑

i=1

E [ξp
i ] (dp (µ, ν))p

= c(p) × (dp (µ, ν))p

So T is a strict contraction map on Fp.

(b) Since Fp under the metric dp is a complete metric space so by Banach contraction

mapping principle it follows that there is a unique µ? ∈ Fp such that Tn (µ0)
d
→ µ? for all

µ ∈ Fp and T (µ?) = µ?. So µ? is a solution of the RDE (3.3). In particular T n (δ0)
d
→ µ?.

Since c(p) ↓ 0 as p ↑ ∞ so repeating same argument for larger and larger p it follows that

µ? has all moments finite.

(c) From part (b) we know that T n (δ0)
d
→ µ?. But easy recursion shows that T n (δ0) is

the distribution of the following random variable

Dn := max
i=(∅=i0,i1,...,in−1)

n−1
∑

d=0

η(i0,i1,...,id)

d
∏

j=1

ξ(i0,i1,...,ij) (3.6)

where (ξi, Ni; ηi)i∈V is the i.i.d innovation process of the associated RTF. Note that here each

ξi is a infinite string of random variables written as (ξi1, ξi2, . . .) which are the respective

discounting factors for the 1st, 2nd, . . . child of i. Now let (Xi)i∈V be the RTP with

marginal µ? then from construction

D1 ≤ D2 ≤ · · · ≤ Dn ≤ Dn+1 ≤ · · · ≤ X∅.

The last inequality follows because Xi ≥ 0 a.s. for all i and the right hand side of (3.3) is

pointwise increasing in X-variables. But Dn
d
→ µ? = dist(X∅) and hence X∅ = lim

n→∞
Dn.

Thus the RTP is endogenous. �
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So the theorem tells us that under suitable condition (like c(p) < 1) the RDE (3.3) has a

solution with all moments finite which is unique among the class of measures in F p. As we

will see in the next section that this is unfortunately not the complete answer. It is possible

that other solutions might exist with none or some moments finite. Athreya [7] observes the

same in the particular case (3.1) with a slightly more general sufficient condition. Under our

assumption Athreya’s condition is satisfied giving the same solution µ? with all moments

finite.

3.3 A Concrete Example

Durrett and Limic [15] studied a particular Poisson process arising from a species competi-

tion model which they comment that can be thought of as the following branching Markov

process (the authors write “David Aldous has pointed out that time reversal of our process

together with a transformation of (0, 1) to (0,∞) by x → − log(1 − x) is an interesting

Markov chain ...”) taking values in the space of countable subsets of (0,∞). At time t = 0

start with one individual at position 0. Each individual at position x at time t lives for an

independent Exponential(ex) amount of time after which it dies and instantaneously gives

birth to infinite number of children to be placed at positions (x + ξi)i≥1 where (ξi)i≥1 are

points of an independent Poisson rate 1 process on (0,∞). Durrett and Limic [15] showed

that for each λ < 1 the Poisson rate λ process on (0,∞) is a stationary law for for the above

branching Markov process. It is easy to see that the time of extinction of the process when

started with only one particle at position 0 satisfies the following RDE

X
d
= η + max

i≥1
e−ξiXi on S = R

+, (3.7)

where (Xi) are i.i.d copies of X which are independent of
(

(ξi)i≥1 ; η
)

, η ∼ Exponential(1)

and is independent of (ξi)i≥1. This is a special case of the RDEs (3.3) discussed in the

previous sections.
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Now for this example we first compute the quantity c(p) for p ≥ 1 defined in Theorem 19.

c(1) =
∞
∑

i=1

E
[

e−p ξi

]

=

∞
∑

i=1

(

E
[

e−p ξ1
])i

=
∞
∑

i=1

(

1
1+p

)i
=

1

p
< ∞ (3.8)

Thus from Theorem 19 we get that there is a solution with all moments finite which is

unique among all solutions with finite (1 + ε)th moments for any ε > 0. Further this

solution is also endogenous.

We now consider the homogeneous equation, that is with η ≡ 0

X
d
= max

i≥1
e−ξiXi on S = R

+. (3.9)

Naturally δ0 is the solution with finite moments but, as we shall see that this is not the

unique solution, instead there is a one parameter family of solutions.

Proposition 20 The set of all solutions of the RDE (3.9) is given by

Fa(x) =







0 if x < 0

x
a+x if x ≥ 0

(3.10)

where a ≥ 0. In particular for a = 0 it is the solution δ0.

Proof : Let µ be a solution of (3.9). Notice that the points
{

(ξi;Xi)
∣

∣

∣ i ≥ 1
}

form a Poisson

point process, say P, on (0,∞)2 with mean intensity dt µ(dx). Thus if F (x) = P (X ≤ x)

then for x > 0

F (x) = P

(

max
i≥1

e−ξiXi ≤ x

)

= P
(

No points of P are in
{

(t, z)
∣

∣

∣ e−tz > x
})

= exp



−

∫ ∫

e−tz>x

dt µ(dx)





= exp



−

∞
∫

x

1 − F (u)

u
du



 (3.11)



33

We note that F is infinitely differentiable so by differentiating (3.11) we get

dF

dx
=

F (x)(1 − F (x))

x
for x > 0. (3.12)

It is easy to solve the equation (3.12) to get that the set of all solutions is given by (3.10).

�

The following is an immediate corollary of the above proposition.

Corollary 21 Consider the following RDE

X
d
= min

i≥1
(ξi + Xi) on S = R, (3.13)

where (Xi)i≥1 are i.i.d. copies of X and are independent of (ξi)i≥1 which are points of a

Poisson process of rate 1 on (0,∞). The set of all solutions of this RDE is given by

Hc (x) =
1

1 + e−(x+c)
, x ∈ R, (3.14)

where c ∈ R.

Proof : There is a one-to-one mapping between the non-zero solutions of the equation

(3.9) and the finite solutions of the (3.13) through the map x 7→ exp(−x). The rest follows

by easy computation. �

In other words if X is a solution of the RDE (3.13) then all the solutions are given by the

translates of X.

It is interesting to note that the solution H0 of (3.13) is the Logistic distribution defined

in Chapter 4. The RDE (3.13) looks similar to the Logistic RDE (4.1) but it is genuinely

different. For the first place it has one parameter family of solutions given by the translates

of the Logistic distribution while the Logistic RDE has unique solution. Secondly we will

see that all the solutions of the RDE (3.13) are not endogenous while in Chapter 4 we will

prove that the Logistic RDE is endogenous.

Observe that the RDE (3.13) is equivalent (through the map x 7→ −x) to the following

RDE

X
d
= max

i≥1
(ξi + Xi) on S = R, (3.15)
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where (−ξi)i≥1 are points of a Poisson process of rate 1. Such RDEs appear in the study

of the branching random walk (see Aldous and Bandyopadhyay [2] for a survey).

Finally we will prove that any solution of the RDE (3.15) is not endogenous. This will show

that all the non-zero solutions of the original homogeneous RDE (3.9) are not endogenous.

We start by proving the following technical lemma.

Lemma 22 For a r.v. Y and δ > 0 define

conc (dist(Y ), δ) = max
a

P (a ≤ Y ≤ a + δ).

Suppose (Zi) are i.i.d. with P (Z > x) ∼ ce−αx as x → ∞. Then there exists δ > 0,

depending only on the distribution of Z, such that for every countable set (xi) of reals for

which Y := maxi(xi + Zi) < ∞ a.s., we have conc (dist(Y ), δ) ≤ 1 − δ.

Proof : Suppose if possible the statement of the lemma is not true. Then for every δn ↓ 0+

we can find a countable collection of reals (xn
i )i≥1 such that Yn := max

i≥1
(xn

i + Zi) < ∞ a.s.

and

P (0 ≤ Yn ≤ δn) ≥ 1 − δn. (3.16)

Notice that since Yn < ∞ a.s. and we assumed that P (Z > x) ∼ ce−αx as x → ∞, thus

0 <
∞
∑

i=1

eαxn
i < ∞. (3.17)

So in particular xn
i → −∞ as i → ∞ for every n ≥ 1. Thus without lose of any generality

we can assume that (xn
i ) are in decreasing order.

Let F be the distribution function of Z and we will write F̄ (·) = 1 − F (·). We calculate,

P (0 ≤ Yn ≤ δn) = 1 − P (Yn 6∈ [0, δn])

= 1 − P (Zi < −xn
i for all i ≥ 1, or Zi > δn − xn

i for some i ≥ 1)

≤ 1 −
∞
∏

i=1

F (−λ − xn
i ) − max

i≥1
F̄ (δn − xn

i ) ,

where λ > 0 is a fixed number. So from (3.16) we get

∞
∏

i=1

F (−λ − xn
i ) + max

i≥1
F̄ (δn − xn

i ) ≤ δn. (3.18)
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But max
i≥1

F̄ (δn − xn
i ) = F̄ (δn − xn

1 ), so using (3.18) we get

lim
n→∞

F̄ (δn − xn
1 ) = 0

=⇒ xn
1 → −∞ as n → ∞. (3.19)

Fix ε > 0, from assumption there exists M > 0 such that

(1 − ε) c e−αx ≤ F̄ (x) ≤ (1 + ε) c e−αx for all x > M − λ. (3.20)

Find N ≥ 1 such that for all n ≥ N we have xn
1 < −M , and hence xn

i < −M for all i ≥ 1.

Now from (3.18)

δn ≥ F̄ (δn − xn
1 ) ≥ (1 − ε) c e−α(δn−xn

1
)

=⇒ eαxn
1 ≤

1

c(1 − ε)
δneαδn . (3.21)

Further

kn
∏

i=1

F (−λ − xn
i ) =

kn
∏

i=1

(

1 − F̄ (−λ − xn
i )
)

≥
(

1 − F̄ (−λ − xn
1 )
)kn

≥
(

1 − (1 + ε)ceαλeαxn
1

)kn

≥

(

1 −
1 + ε

1 − ε
eαλδneαδn

)kn

, (3.22)

the last inequality follows from (3.21). Now take kn = 1√
δn

↑ ∞ to get

lim inf
n→∞

kn
∏

i=1

F (−λ − xn
i ) ≥ 1.

This contradicts (3.18). �

Proposition 23 Suppose X is a solution of the RDE (3.15), then the invariant RTP as-

sociated with this solution is not endogenous.

Proof : Consider the RTF associated with the RDE (3.15). Let (Qi, i ∈ T ) be the

associated BRW; that is, T is the family tree of the progenitor, and Qi is the position of

the ith individual on R, with Q∅ = 0. Fix d ≥ 1, let
{

Z
(d)
i

∣

∣

∣ gen(i) = d
}

be i.i.d. with the

invariant distribution as of X. For i ∈ T define
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• Y
(d)
i = Z

(d)
i , when gen(i) = d;

• Y
(d)
i = max

{

Qj − Qi + Z
(d)
j

∣

∣

∣ gen(j) = d and j is a descendant of i
}

, when gen(i) ∈

{d − 1, d − 2, . . . , 1, 0}.

It is easy to check that
(

Y
(d)
i

)

defines an invariant RTP of depth d.

Let Gd be the σ-field generated by the first d generations of the BRW, naturally Gd ↑ G,

the σ-field generated by all the ξi’s. Observe that

Y
(d)
∅ = max

{

Qj + Z
(d)
j

∣

∣

∣ gen(j) = d
}

.

So under the conditional distribution given Gd, the random variable Y
(d)
∅ has the same form

as in the Lemma 22 with the role of the (xi) being played by the Gd-measurable random

variables (Qj, gen(j) = d), and the role of the (Zi) being played by the i.i.d. random variables
(

Z
(d)
j , gen(j) = d

)

. Now from Corollary 21 we know that X has exponential right tail, so

Lemma 22 implies that there exists δ > 0 depending only on the distribution of X such

that,

conc
(

dist
(

Y
(d)
∅

∣

∣

∣Gd

)

, δ
)

≤ 1 − δ. (3.23)

This inequality is true for any invariant RTP of depth at least d, so in particular true for

the invariant RTP of infinite depth. Thus we have

conc
(

dist
(

Y∅
∣

∣

∣Gd

)

, δ
)

≤ 1 − δ

⇒ max
−∞<a<∞

P
(

a ≤ Y∅ ≤ a + δ
∣

∣

∣Gd

)

≤ 1 − δ

⇒ max
−∞<a<∞

E
[

I (a ≤ Y∅ ≤ a + δ)
∣

∣

∣Gd

]

≤ 1 − δ

Now assume that the invariant RTP is endogenous, that is, Y∅ is G-measurable, then using

the martingale convergence theorem we get for each a ∈ R

I (a ≤ Y∅ ≤ a + δ) ≤ 1 − δ a.s.

and hence

P (Y 6∈ [q, q + δ] for all q rational ) = 1,

this is clearly a contradiction. So the invariant RTP associated with the solution X is not

endogenous. �
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Chapter 4

Logistic RDE

Consider the following RDE

X
d
= min

j≥1
(ξj − Xj) , (4.1)

where (ξj)j≥1 are points of a Poisson point process of rate 1 on (0,∞), and are independent

of (Xj)j≥1, which are independent and identically distributed with same law as of X. Aldous

[5] showed that this RDE has unique solution as the Logistic distribution defined below.

Definition 24 We say a real valued random variable Z has Logistic distribution if its

distribution function is given by

H(x) := P (Z ≤ x) =
1

1 + e−x
, x ∈ R (4.2)

In this chapter we will study the endogenous property of the Logistic RDE (4.1). The

following theorem which is the main result of this chapter shows that the associated RTP

has the bivariate uniqueness property of 1st kind and hence endogeny follows from Theorem

12 of Chapter 2.

Theorem 25 Let 0 < ξ1 < ξ2 < · · · be points of a Poisson point process of rate 1 on (0,∞).

Let (X,Y ), ((Xj, Yj))j≥1 be independent random variables with some common distribution

ν on R
2, which are independent of (ξj)j≥1. Then





X

Y





d
=







min
j≥1

(ξj − Xj)

min
j≥1

(ξj − Yj)






, (4.3)
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if and only if ν = µ↗, where µ↗ is defined as the joint distribution of (Z,Z) on R
2, with

Z ∼ Logistic distribution.

Theorem 25 is a concrete result falling within the framework of recursive distributional

equations discussed in Chapter 2. This particular problem arose in the study of a classical

problem of combinatorial optimization, namely, the mean-field random assignment problem.

The following section develops background and provides the details of our motivation for

Theorem 25. In Section 4.2 we give a proof of Theorem 25 using analytic techniques. Some

technical results which are not terribly important, but are needed for the proof, are given

separately in Section 4.3 and in Section 4.4 we recall some basic facts about the Logistic

distribution which are useful for the proofs.

4.1 Background and Motivation

For a given n × n matrix of costs (Cij), consider the problem of assigning n jobs to n

machines in the most “cost effective” way. Thus the task is to find a permutation π of

{1, 2, . . . , n}, which solves the following minimization problem

An := min
π

n
∑

i=1

Ci,π(i). (4.4)

This problem has been extensively studied in literature for a fixed cost matrix, and there

are various algorithms to find the optimal permutation π. A probabilistic model for the

assignment problem can be obtained by assuming that the costs are independent random

variables each with distribution Uniform[0, 1]. Although this model appears to be rather

simple, careful investigations of it in the last few decades have proven that, it has enormous

richness in its structure. For a careful survey and other related works see [29, 3].

Our interest in this problem is from another perspective. In 2001 Aldous [5] showed that

lim
n→∞

E[An] = ζ(2) =
π2

6
, (4.5)

confirming the earlier work of Mézard and Parisi [23], where they computed the same limit

using some non-rigorous arguments based on the replica method [24]. In an earlier work

Aldous [1] showed that the limit of E [An] as n → ∞ exists for any cost distribution, and
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does not depend on the specifics of it, except only on the value of its density at 0, provided

it exists and is strictly positive. So for calculation of the limiting constant one can assume

that Cij ’s are independent and each has Exponential distribution with mean n, and re-write

the objective function An in the normalized form,

An = min
π

1

n

n
∑

i=1

Ci,π(i). (4.6)

Aldous [5] identified the limit constant ζ(2) in terms of an optimal matching problem on

a limit infinite tree with random edge weights. This structure is called Poisson Weighted

Infinite Tree, or, PWIT, it is described as follows ( see the survey of Aldous and Steele [3]

for a more friendly account ).

Let T := (V , E) be the canonical infinite rooted tree as defined in Chapter 2,
Section 2.3. For every vertex i ∈ V, let (ξij)j≥1 be points of independent Poisson

process of rate 1 on (0,∞). Define the weight of the edge e = (i, ij) as ξij .

Aldous [5] showed that on a PWIT one can construct random variables (Xi)i∈V taking

values in R, such that

• Xi = min
j≥1

(ξij − Xij) , ∀ i ∈ V.

• Xi is independent of
{

(

ξi′j
)

j≥1

∣

∣

∣ gen(i′) < gen(i)
}

, for all i ∈ V\{∅}.

• Xi ∼ Logistic distribution.

In the abstract setting of Chapter 2 we observe that this construction of (Xi)i∈V is nothing

but the standard construction of an invariant RTP associated with the Logistic RDE (4.1).

In [5] Aldous has a heuristic interpretation of Xi’s through the edge weights. Thus it is

natural to ask if they are actually measurable with respect to the sigma-field generated by

the edge weights, this is preciously asking about the endogenous property of the Logistic

RTP. This will also answer the question of Aldous ( see remarks (4.2.d) and (4.2.e) in [5] ).

From the first equivalence theorem (Theorem 12) discussed in Chapter 2 we know that the

RTP is endogenous if and only if the “bivariate uniqueness” property of Theorem 25 holds.

Of course one will need to check the technical condition of the part (b) of the Theorem 12.

In our current setting the Theorem 12 specializes as follows
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Theorem 26 Suppose S is the set of all probabilities on R
2 and we define Λ : S → S as

Λ(ν)
d
=





minj≥1 (ξj − Xj)

minj≥1 (ξj − Yj)



 , (4.7)

where (ξj)j≥1 are points of a Poisson process with mean intensity 1 on (0,∞), and are

independent of (Xj , Yj)j≥1, which are i.i.d with distribution ν on R
2. Suppose further that

Λ is continuous with respect to the weak convergence topology when restricted to the subspace

S? of S defined as

S? :=
{

ν ∈ S
∣

∣

∣ both the marginals of ν are Logistic distribution
}

. (4.8)

If the fixed-point equation Λ(ν) = ν has unique solution as µ↗ ( as defined in Theorem 25

) then X∅ as defined above is measurable with respect to the σ-field G.

Notice that Theorem 25 basically states that Λ(ν) = ν has unique solution as µ↗. Further

it is easy to see that the operator Λ is continuous with respect to the weak convergence

topology when restricted to the subspace S? ( see Proposition 33 of Section 4.3 for a proof

). Thus we have the following immediate corollary of Theorem 26 and Theorem 25

Corollary 27 The RTP associated with the Logistic RDE (4.1) is endogenous.

4.2 Proof of The Bivariate Uniqueness

First observe that if the equation (4.3) has a solution then, the marginal distributions of

X and Y solve the Logistic RDE, and hence they are both Logistic. Further by inspection

µ↗ is a solution of (4.3). So it is enough to prove that µ↗ is the only solution of (4.3).

Let ν be a solution of (4.3). Notice that the points {(ξj; (Xj , Yj)) | j ≥ 1} form a Pois-

son point process, say P , on (0,∞) × R
2, with mean intensity ρ(t; (x, y)) dt d(x, y) :=
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dt ν(d(x, y)). Thus if G(x, y) := P (X > x, Y > y), for x, y ∈ R, then

G(x, y) = P

(

min
j≥1

(ξj − Xj) > x, and, min
j≥1

(ξj − Yj) > y

)

= P
(

No points of P are in
{

(t; (u, v))
∣

∣

∣ t − u ≤ x, or, t − v ≤ y
})

= exp






−

∫ ∫ ∫

t−u≤x, or, t−v≤y

ρ(t; (u, v)) dt d(u, v)







= exp

(

−

∫ ∞

0

[

H(t − x) + H(t − y) − G(t − x, t − y)
]

dt

)

= H(x)H(y) exp

(∫ ∞

0
G(t − x, t − y) dt

)

. (4.9)

The last equality follows from properties of the Logistic distribution ( see Fact 36 of Section

4.4). For notational convenience we will write F (·) := 1−F (·), for any distribution function

F .

The following simple observation reduces the bivariate problem to a univariate problem.

Lemma 28 For any two random variables U and V , U = V a.s. if and only if U
d
= V

d
=

U ∧ V .

Proof : First of all if U = V a.s. then U ∧ V = U a.s.

Conversely suppose that U
d
= V

d
= U ∧ V . Fix a rational q, then under our assumption,

P (U ≤ q < V ) = P (V > q) − P (U > q, V > q)

= P (V > q) − P (U ∧ V > q)

= 0

A similar calculation will show that P (V ≤ q < U) = 0. These are true for any rational q,

thus P (U 6= V ) = 0. �

Thus if we can show that X ∧ Y also has Logistic distribution, then from the lemma above

we will be able to conclude that X = Y a.s., and hence the proof will be complete. Put

g(·) := P (X ∧ Y > ·), we will show g = H. Now, for every fixed x ∈ R, g(x) = G(x, x) by

definition. So using (4.9) we get

g(x) = H
2
(x) exp

(∫ ∞

−x
g(s) ds

)

, x ∈ R. (4.10)
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Notice that from (4.29) ( see Fact 38 of Section 4.4) g = H is a solution of this non-linear

integral equation (4.10), which corresponds to the solution ν = µ↗ of the original equation

(4.3). To complete the proof of Theorem 25 we need to show that this is the only solution.

For that we will prove that the operator associated with (4.10) ( defined on an appropriate

space ) is monotone and has unique fixed-point as H. The techniques we will use here are

similar to Eulerian recursion [28], and are based heavily on analytic arguments.

Let F be the set of all functions f : R → [0, 1] such that

• H
2
(x) ≤ f(x) ≤ H(x), ∀ x ∈ R,

• f is a tail of a distribution, that is, ∃ random variable say W such that f(x) =

P (W > x) , x ∈ R.

Observe that by definition H ∈ F. Further, from (4.10) it follows that g(x) ≥ H
2
(x), ∀ x ∈

R, as well as, g(x) = P (X ∧ Y > x) ≤ P (X > x) = H(x), ∀ x ∈ R. So it is appropriate to

search for solutions of (4.10) in F.

Let T : F → F be defined as

T (f)(x) := H
2
(x) exp

(∫ ∞

−x
f(s) ds

)

, x ∈ R. (4.11)

Proposition 34 of Section 4.3 shows that T does indeed map F into itself. Observe that the

equation (4.10) is nothing but the fixed-point equation associated with the operator T , that

is,

g = T (g) on F. (4.12)

We here note that using (4.29) ( see Fact 38 of Section 4.4) T can also be written as

T (f)(x) := H(x) exp

(

−

∫ ∞

−x

(

H(s) − f(s)
)

ds

)

, x ∈ R, (4.13)

which will be used in the subsequent discussion.

Define a partial order 4 on F as, f1 4 f2 in F if f1(x) ≤ f2(x), ∀ x ∈ R, then the following

result holds.

Lemma 29 T is a monotone operator on the partially ordered set (F,4).
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Proof : Let f1 4 f2 be two elements of F, so from definition f1(x) ≤ f2(x), ∀ x ∈ R.

Hence ∞
∫

−x
f1(s) ds ≤

∞
∫

−x
f2(s) ds, ∀ x ∈ R

⇒ T (f1)(x) ≤ T (f2)(x), ∀ x ∈ R

⇒ T (f1) 4 T (f2).

�

Put f0 = H
2
, and for n ∈ N, define fn ∈ F recursively as, fn = T (fn−1). Now from Lemma

29 we get that if g is a fixed-point of T in F then,

fn 4 g, ∀ n ≥ 0. (4.14)

If we can show fn → H pointwise, then using (4.14) we will get H 4 g, so from definition of

F it will follow that g = H, and our proof will be complete. For that, the following lemma

gives an explicit recursion for the functions {fn}n≥0.

Lemma 30 Let β0(s) = 1 − s, 0 ≤ s ≤ 1. Define recursively

βn(s) :=

∫ 1

s

1

w

(

1 − e−βn−1(1−w)
)

dw, 0 < s ≤ 1. (4.15)

Then for n ≥ 1,

fn(x) = H(x) exp
(

−βn−1(H(x))
)

, x ∈ R. (4.16)

Proof : We will prove this by induction on n. Fix x ∈ R, for n = 1 we get

f1(x) = T (f0)(x)

= H(x) exp

(

−

∫ ∞

−x

(

H(s) − H
2
(s)
)

ds

)

[ using (4.13) ]

= H(x) exp

(

−

∫ ∞

−x
H(s)

(

1 − H(s)
)

ds

)

= H(x) exp

(

−

∫ ∞

−x
H(s)H(s) ds

)

= H(x) exp

(

−

∫ ∞

−x
H ′(s) ds

)

[ using Fact 36 of Section 4.4]

= H(x) exp (−H(x))

= H(x) exp
(

−β0(H(x))
)
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Now, assume that the assertion of the Lemma is true for n ∈ {1, 2, . . . , k}, for some k ≥ 1,

then from definition we have

fk+1(x) = T (fk)(x)

= H(x) exp

(

−

∫ ∞

−x

(

H(s) − fk(s)
)

ds

)

[ using (4.13) ]

= H(x) exp

(

−

∫ ∞

−x
H(s)

(

1 − e−βk−1(H(s))
)

ds

)

= H(x) exp

(

−

∫ 1

H(x)

1

w

(

1 − e−βk−1(1−w)
)

dw

)

(4.17)

The last equality follows by substituting w = H(s) and thus from Fact 36 and Fact 37 of

Section 4.4 we get that dw
w = H(s) ds and H(−x) = H(x). Finally by definition of βn’s and

using (4.17) we get fk+1 = T (fk). �

To complete the proof it is now enough to show that βn → 0 pointwise, which will imply

by Lemma 30 that fn → H pointwise, as n → ∞. Using Proposition 35 ( see Section 4.3 )

we get the following characterization of the pointwise limit of these βn’s.

Lemma 31 There exists a function L : [0, 1] → [0, 1] with L(1) = 0, such that

L(s) =

∫ 1

s

1

w

(

1 − e−L(1−w)
)

dw, ∀ s ∈ [0, 1), (4.18)

and L(s) = lim
n→∞

βn(s), ∀ 0 ≤ s ≤ 1.

Proof : From part (b) of Proposition 35 we know that for any s ∈ [0, 1] the sequence

{βn(s)} is decreasing, and hence ∃ a function L : [0, 1] → [0, 1] such that L(s) = lim
n→∞

βn(s).

Now observe that βn(1 − w) ≤ β0(1 − w) = w, ∀ 0 ≤ w ≤ 1, and hence

0 ≤
1

w

(

1 − e−βn(1−w)
)

≤
βn(1 − w)

w
≤ 1, ∀ 0 ≤ w ≤ 1.

Thus by taking limit as n → ∞ in (4.15) and using the dominated convergence theorem

along with part (a) of Proposition 35 we get that

L(s) =

∫ 1

s

1

w

(

1 − e−L(1−w)
)

dw, ∀ 0 ≤ s < 1.

�

The above lemma basically translates the non-linear integral equation (4.10) to the non-

linear integral equation (4.18), where the solution g = H of (4.10) is given by the solution
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L ≡ 0 of (4.18). So at first sight this may not lead us to the conclusion. But fortunately,

something nice happens for equation (4.18), and we have the following result which is enough

to complete the proof of Theorem 25.

Lemma 32 If L : [0, 1] → [0, 1] is a function which satisfies the non-linear integral equation

(4.18), namely,

L(s) =

∫ 1

s

1

w

(

1 − e−L(1−w)
)

dw, ∀ 0 ≤ s < 1,

and if L(1) = 0, then L ≡ 0.

Proof : First note that L ≡ 0 is a solution. Now let L be any solution of (4.18),

then L is infinitely differentiable on the open interval (0, 1), by repeated application of the

Fundamental Theorem of Calculus.

Consider,

η(w) := (1 − w)eL(1−w) + we−L(w) − 1, w ∈ [0, 1]. (4.19)

Observe that η(0) = η(1) = 0 as L(1) = 0. Now, from (4.18) we get that

L′(w) = −
1

w

(

1 − e−L(1−w)
)

, w ∈ (0, 1). (4.20)

Thus differentiating the function η we get

η′(w) = e−L(w)
[

2 −
(

eL(1−w) + e−L(1−w)
)]

≤ 0, ∀ w ∈ (0, 1). (4.21)

So the function η is decreasing in (0, 1) and is continuous in [0, 1] with boundary values as

0, hence η ≡ 0 ⇔ L ≡ 0. �

4.3 Some Technical Details

In this section we prove some results which were used in Sections 4.1 and 4.2 for proving

Theorems 25 and Corollary 27. These results are mainly technical details and hence have

been omitted in the previous sections.

Proposition 33 The operator Λ defined in Theorem 26 is weakly continuous when re-

stricted to the subspace S? as defined in (4.8).
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Proof : Let {νn}
∞
n=1 ⊆ S? and suppose that νn

d
→ ν ∈ S?. We will show that

Λ(νn)
d
→ Λ(ν).

Let (Ω,F ,P) be a probability space such that, ∃ {(Xn, Yn)}∞n=1 and (X,Y ) random vectors

taking values in R
2, with (Xn, Yn) ∼ νn, n ≥ 1, and (X,Y ) ∼ ν. Notice that by definition

Xn
d
= Yn

d
= X

d
= Y , and each has Logistic distribution.

Fix x, y ∈ R, then using similar calculations as in (4.9) we get

Gn(x, y) := Λ(νn) ((x,∞) × (y,∞))

= H(x)H(y) exp

(

−

∫ ∞

0
P (Xn > t − x, Yn > t − y) dt

)

= H(x)H(y) exp

(

−

∫ ∞

0
P ((Xn + x) ∧ (Yn + y) > t) dt

)

= H(x)H(y) exp
(

−E
[

(Xn + x)+ ∧ (Yn + y)+
])

, (4.22)

and a similar calculation will also give that

G(x, y) := Λ(ν) ((x,∞) × (y,∞))

= H(x)H(y) exp
(

−E
[

(X + x)+ ∧ (Y + y)+
])

. (4.23)

Now to complete the proof all we need is to show

E
[

(Xn + x)+ ∧ (Yn + y)+
]

−→ E
[

(X + x)+ ∧ (Y + y)+
]

.

Since we assumed that (Xn, Yn)
d
→ (X,Y ) thus

(Xn + x)+ ∧ (Yn + y)+
d
→ (X + x)+ ∧ (Y + y)+ , ∀ x, y ∈ R. (4.24)

Fix x, y ∈ R, define Zx,y
n := (Xn + x)+ ∧ (Yn + y)+, and Zx,y := (X + x)+ ∧ (Y + y)+.

Observe that

0 ≤ Zx,y
n ≤ (Xn + x)+ ≤ |Xn + x| , ∀ n ≥ 1. (4.25)

But, |Xn + x|
d
= |X + x| , ∀ n ≥ 1. So clearly {Zx,y

n }
∞
n=1 is uniformly integrable. Hence

we conclude ( using Theorem 25.12 of Billingsley [11] ) that

E [Zx,y
n ] −→ E [Zx,y] .

This completes the proof. �
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Proposition 34 The operator T maps F into F.

Proof : First note that if f ∈ F, then by definition T (f)(x) ≥ H
2
(x), ∀ x ∈ R. Next by

definition of F we get that f ∈ F ⇒ f 4 H, thus
∫ ∞

−x
f(s) ds ≤

∫ ∞

−x
H(s) ds, ∀ x ∈ R

⇒ T (f)(x) ≤ H
2
(x) exp

(∫ ∞

−x
H(s) ds

)

= H(x), ∀ x ∈ R

The last equality follows from (4.29) ( see Fact 38 of Section 4.4). So,

H
2
(x) ≤ T (f)(x) ≤ H(x), ∀ x ∈ R. (4.26)

Now we need to show that for f ∈ F, T (f) is a tail of a distribution. From the definition

T (f) is continuous ( in fact infinitely differentiable ). Further using (4.26) and the fact that

H is a tail of a distribution we get that

lim
x→∞

T (f)(x) = 0, and lim
x→−∞

T (f)(x) = 1. (4.27)

Finally let x ≤ y be two real numbers, then
∫ ∞

−x

(

H(s) − f(s)
)

ds ≤

∫ ∞

−y

(

H(s) − f(s)
)

ds,

because f 4 H. Also H(x) ≥ H(y), thus using (4.13) we get

T (f)(x) ≥ T (f)(y) (4.28)

So using (4.26), (4.27), (4.28) we conclude that T (f) ∈ F if f ∈ F. �

Proposition 35 The following are true for the sequence of functions {βn}n≥0 as defined

in (4.15).

(a) For every n ≥ 1, lim
s→0+

βn(s) exists, and is given by

∫ 1

0

1
w

(

1 − e−βn−1(1−w)
)

dw,

we will write this as βn(0).

(b) For every fixed s ∈ [0, 1], the sequence {βn(s)} is decreasing.
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Proof : (a) Note that for n = 1,

β1(s) =

∫ 1

s

1

w
(1 − ew) dw, ∀ s ∈ (0, 1],

Thus lim
s→0+

β1(s) exists and is given by

∫ 1

0

1

w

(

1 − e−β0(1−w)
)

dw.

Now we assume that the assertion is true for n ∈ {1, 2, . . . , k} for some k ≥ 1, we will show

that it is true for n = k + 1. For that note

βk+1(s) =

∫ 1

s

1

w

(

1 − e−βk(1−w)
)

dw, ∀ s ∈ (0, 1].

But,

lim
w→0+

1

w

(

1 − e−βk(1−w)
)

= lim
w→0+

1 − e−βk(1−w)

βk(1 − w)
×

βk(1 − w)

w

= lim
w→0+

1

w

∫ 1

1−w

1

v

(

1 − e−βk−1(1−v)
)

dv

= 1 − e−βk−1(0)

The last equality follows from mean-value theorem and the induction hypothesis. The rest

follows from the definition.

(b) Notice that β0(s) = 1 − s for s ∈ [0, 1], thus

β1(s) =

∫ 1

s

1 − e−w

w
dw < 1 − s = β0(s), ∀ s ∈ [0, 1].

Now assume that for some n ≥ 1 we have βn(s) < βn−1(s) < · · · < β0(s), ∀ s ∈ [0, 1], if we

show that βn+1(s) < βn(s), ∀ s ∈ [0, 1] then by induction the proof will be complete. For

that, fix s ∈ [0, 1] then

βn+1(s) =

∫ 1

s

1

w

(

1 − e−βn(1−w)
)

dw

<

∫ 1

s

1

w

(

1 − e−βn−1(1−w)
)

dw

= βn(s)

Hence the proof of the proposition. �
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4.4 Some Basic Properties of the Logistic Distribution

Here we provide some known basic facts about the Logistic distribution which are used in

various places in the proofs.

Recall that we say a real valued random variable Z has Logistic distribution if its distribution

function is given by (4.2), namely,

H(x) = P (Z ≤ x) =
1

1 + e−x
, x ∈ R.

The following facts hold for the function H.

Fact 36 H is infinitely differentiable, and H ′(·) = H(·)H(·), where H(·) = 1 − H(·).

Proof : From the definition it follows that H is infinitely differentiable on R. Further,

H ′(x) =
1

1 + e−x
×

e−x

1 + e−x

= H(x)H(x) ∀ x ∈ R

�

Fact 37 H is symmetric around 0, that is, H(−x) = H(x) ∀ x ∈ R.

Proof : From the definition we get that for any x ∈ R,

H(−x) =
1

1 + ex
=

e−x

1 + e−x
= H(x).

�

Fact 38 H is the unique solution of the non-linear integral equation

H(x) = exp

(

−

∫ ∞

−x
H(s) ds

)

, ∀ x ∈ R. (4.29)

Proof : Notice that the equation (4.29) is nothing but Logistic RDE, since A(H)(x) =

exp
(

−
∫∞
−xH(s) ds

)

, ∀ x ∈ R ( see proof of Lemma 5 in Aldous [5] ). Thus from the fact

that H is the unique solution of Logistic RDE ( Lemma 5 of Aldous [5] ) we conclude that

H is unique solution of equation (4.29). �
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4.5 Final Remarks

4.5.1 Comments on the proof of Theorem 25

(a) Intuitively, a natural approach to show that the fixed-point equation Λ(ν) = ν on S has

unique solution, would be to specify a metric ρ on S such that the operator Λ becomes a

contraction with respect to it. Unfortunately, this approach seems rather hard or may even

be impossible. For this reason we have taken a complicated route of proving the bivariate

uniqueness using analytic techniques similar to Eulerian recursion.

(b) Although at first glance it seems that the operator T as defined in (4.11) is just an

analytic tool to solve the equation (4.10), it has a nice interpretation through the Logistic

RDE (4.1). Suppose A is the operator associated with Logistic RDE, that is,

A(µ)
d
= min

j≥1
(ξj − Xj) , (4.30)

where (ξj)j≥1 are points of a Poisson point process of mean intensity 1 on (0,∞), and are

independent of (Xj)j≥1, which are i.i.d with distribution µ on R. It is easy to check that

the domain of definition of A is the space

A :=

{

F
∣

∣

∣F is a distribution function on R and

∫ ∞

0
F (s) ds < ∞

}

. (4.31)

Note that in probabilistic terminology the condition
∫∞
0 F (s) ds < ∞ means EF [X+] < ∞.

Notice that from definition F ⊆ A, and T can be naturally extended to the whole of A. In

that case the following identity holds

T (µ)(·)

H(·)
×

A(µ)(·)

H(·)
= 1, ∀ µ ∈ A. (4.32)

This at least explains the monotonicity of T through anti-monotonicity property ( easy to

check ) of the Logistic operator A. The identity (4.32) seems rather interesting and might

be useful for deeper understanding of the bivariate uniqueness property of the Logistic

fixed-point equation.

4.5.2 Domain of attraction

Related to any fixed-point equation there is always the natural question of its domain of

attraction. From the recursion proof we can clearly see that the equation (4.10) has the
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whole of F within its domain of attraction. Thus it is natural to believe that one might be

able to derive the uniqueness by a contraction argument.

It still remains an open problem to determine the exact domain of attraction of Logistic

RDE. Unfortunately, the identity (4.32) does not seem to be useful in that regard.

4.5.3 Everywhere discontinuity of the operators Λ and A

From Proposition 33 we get that the operator Λ is continuous with respect to the weak

convergence topology when restricted to the subspace S? of its domain of definition, and

we saw that this is enough regularity to conclude nice result like Corollary 27. It is still

interesting to see if Λ is continuous on whole of its domain of definition. Unfortunately,

it is just the opposite. Λ is discontinuous everywhere on its domain of definition. In fact,

even the operator A associated with the Logistic RDE as defined in (4.30), is discontinuous

everywhere on its domain of definition A. To see this we note that if µ ∈ A, and µn
d
→ µ,

where {µn}
∞
n=1 ⊆ A, then A(µn)

d
→ A(µ) only if Eµn [X+

n ] −→ Eµ [X+]. Thus clearly A is

discontinuous everywhere on A and hence so is Λ.
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Chapter 5

Frozen Percolation RDE

In this chapter we will study another example of a “max-type” RDE which appears as a

crucial tool to establish the existence of an automorphism invariant process on the infinite

binary tree, called the frozen-percolation process, first studied by Aldous [4]. Unfortunately

here we do not have a rigorous answer to the question of endogey, but we provide numerical

results which suggest that the solution of interest of the RDE is not endogenous. Also this

will illustrate the need of developing further analytic methods.

5.1 Background and Motivation

Let T3 be the infinite binary tree, where each vertex has degree 3. We will write E for the

edge set of T3. Suppose each edge e ∈ E has a Uniform[0, 1] random edge weight Ue, and

they are independent as e varies. Aldous [4] studied the following process and called it a

frozen-percolation process

For 0 ≤ t ≤ 1 define a random collection of edges At ⊆ E such that, A0 = ∅,
and for each edge e ∈ E , at time instance t = Ue set At = At− ∪ {e} if and only
if each end-vertex of e is in a finite cluster of At; otherwise set At = At−.

Here formally a cluster is a connected subgraph of T3. A more familiar process of similar

kind is the standard percolation process on T3 defined as Bt := {e ∈ E
∣

∣

∣Ue ≤ t } for

0 ≤ t ≤ 1 [18]. From definition we see that At ⊆ Bt for all 0 ≤ t ≤ 1. We note that
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Bt has no infinite cluster for t ≤ 1/2, since all the connected components are then sub-

critical or critical (when t = 1/2) Galton-Watson branching process trees. Thus from above

description we get that At = Bt for all t ≤ 1/2. Qualitatively, in the process (At) the

clusters may grow to infinite size but, at the instant of becoming infinite, they are “frozen”

in the sense that no extra edge may be connected to an infinite cluster.

Although this process is apparently novel and intuitively natural, rigorously speaking it is

not at all clear from its description that the process exists or if it does whether it is unique

or not. As mentioned Aldous [4] showed the existence of the process on Td, the infinite

d-array tree, and a personal communication from Benjamini and Schramm to Aldous (2000)

proves the non-existence of the process for Z
2 square lattice. Naturally our interest for this

process is because it involves an interesting “max-type” RDE. The key ingredient of the

proof of existence of the process [4] is the following RDE

X
d
= Φ(X1 ∧ X2, U) on S =

(

1
2 , 1
]

∪ {∞} , (5.1)

where (X1,X2) are i.i.d. copies of X which are independent of U ∼ Uniform[0, 1], and

Φ : S → S defined as

Φ (x, u) =







x if x > u

∞ if x ≤ u
. (5.2)

It is easy to show [4] that (5.1) has unique solution with full support on S given by

µ(dx) =
dx

2x2
, when

1

2
< x ≤ 1; and µ({∞}) =

1

2
. (5.3)

Further one can show (see Lemma 3 of [4]) that the frozen-percolation RDE (5.1) has a one

parameter family of solutions which are non-atomic on (1/2, 1] given by

µa(dx) =
dx

2x2
, when

1

2
< x ≤ a; and µ({∞}) =

1

2a
. (5.4)

where 1/2 < a ≤ 1.

One can then construct the invariant RTP (Xi)i∈V with marginal µ. We here note that in

this case N ≡ 2. In [4] Aldous constructed the frozen-percolation process using the Xi’s

and also the edge weights. Thus it is natural to ask if the RTP is measurable with respect

to the edge weights, in other words if the RTP is endogenous. This will then also resolve

the question raised by Aldous in [4] (see remark (5.7)) regarding validity of the informal

description of the frozen percolation process. This is one of our main motivation to study

the RDE (5.1).
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5.2 Study of Bivariate Uniqueness of 1st Kind

In this section we try to see whether the RTP with marginal µ associated with the RDE

(5.1) has bivariate uniqueness property of 1st kind. For that we consider the following

bivariate version of the RDE ( see Section 2.5 )





X

Y





d
=





Φ(X1 ∧ X2, U)

Φ (Y1 ∧ Y2, U)



 , (5.5)

where (X1, Y1) and (X2, Y2) are independent copies of (X,Y ) and are independent of U ∼

Uniform[0, 1]. Also we assume that the marginal distributions of X and Y are µ as given

in (5.3). The following Lemma gives a characterization of bivariate uniqueness in this

particular case.

Lemma 39 For a solution (X,Y ) of the bivariate equation (5.5) X = Y a.s. if and only

if [X = ∞] = [Y = ∞] a.s.

Proof : Trivially, if X = Y a.s. then [X = ∞]
a.s.
= [Y = ∞]. Conversely, suppose that ν

is a solution of (5.5) with marginal µ such that X = ∞ ⇔ Y = ∞ a.s. Let (Xi, Yi)i∈V be

the bivariate RTP with marginal ν. Recall that

X∅ =







X1 ∧ X2 if X1 ∧ X2 > U

∞ if X1 ∧ X2 ≤ U
,

and similarly for Y∅. Thus

X1 ∧ X2 ≤ U ⇐⇒ Y1 ∧ Y2 ≤ U a.s., (5.6)

Let Z = X∅ ∧ Y∅ and similarly define Z1 and Z2 then using (5.6) we get

Z =







Z1 ∧ Z2 if Z1 ∧ Z2 > U

∞ if Z1 ∧ Z2 ≤ U
. (5.7)

Hence Z also satisfies the RDE (5.1). Clearly P (Z = ∞) = P (X∅ = Y∅ = ∞) = P (X∅ = ∞) =

1/2. Further as both X∅ and Y∅ are non-atomic and hence so is Z. Thus from (5.4) we

conclude that Z has the distribution µ. Using the Lemma 28 it follows that X∅ = Y∅ a.s. �
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Now let F (x, y) := P (X ≤ x, Y ≤ y), for x, y ∈ [0, 1], so from (5.5) we get

F (x, y) = P (Φ(X1 ∧ X2, U) ≤ x, Φ(Y1 ∧ Y2, U) ≤ y)

= P (U < X1 ∧ X2 ≤ x, U < Y1 ∧ Y2 ≤ y)

=

x∧y
∫

0

(

G2(x, y) − G2(x, u) − G2(u, y) + G2(u, u)
)

du (5.8)

where G(x, y) := P (X > x, Y > y), which can be written as

G(x, y) = F (x, y) − P (X ≤ x) −P (Y ≤ y) + 1

= F (x, y) + 1
2x + 1

2y − 1 (5.9)

The last equation is valid only when x, y ∈ (1/2, 1]. Unfortunately, the integral equation

(5.8) is too complicated and we have been unable to show that µ↗ is the only solution of

it, neither we have been able to find another solution.

From part (c) of Theorem 12 we know that the solution µ of the RDE (5.1) will be endoge-

nous if and only if T (2)n (µ ⊗ µ)
d
→ µ↗. Further the equation (5.11) provides a formula for

computing T (2)n (µ0) for any distribution µ0 on S. Thus one can do numerical computation

by repeating this formula starting from µ ⊗ µ to check whether the limit exists and if so

whether or not it is the same as µ↗. The next section gives the results of our numerical

computations which suggests that the the integral equation (5.8) possibly has solutions

other than µ↗.

5.3 Results of Numerical Computations for Bivariate Unique-

ness of 1st kind

In this section we provide results of our numerical computation to check whether the limit

in part (c) of Theorem 12 holds. In all the cases we discretize the set [1/2, 1] × [1/2, 1] as

a lattice grid with some small grid length. The results are provided for two grid lengths,

namely h = 0.01 and h = 0.005.
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(b) h = 0.005

Figure 5.1: Graphs of the distribution function of T (2)n (µ ⊗ µ) for n = 10000

We did computation of the distribution T (2)n (µ ⊗ µ) for n = 10000 iterations, and we

observed that the distributions almost do not change after n = 1000, suggesting that there

is possibly a limiting distribution. The Figure 5.1 gives the graph of the distribution function

of T (2)n (µ ⊗ µ) for n = 10000 in the two cases h = 0.01 and h = 0.005

To compare the possible limit with µ↗ we provide the graphs of the distribution functions

of µ↗ and T (2)n (µ ⊗ µ) for n = 10000 and h = 0.005 in Figures 5.2 and 5.3 respectively.

This strongly suggest that the possible limit might not be µ↗.

Further from Lemma 39 we get that if the RTP marginal µ is endogenous then the limit will

be 0.5. The following table gives the numerically computed values of the P (Xn = ∞, Yn = ∞)

where (Xn, Yn) ∼ T (2)n (µ ⊗ µ).
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Figure 5.2: Graph of the distribution function of µ↗
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Figure 5.3: Graph of the distribution function of T (2)n (µ ⊗ µ) for n = 10000
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n = 5000 n = 10000

h = 0.01 0.404878 0.404878

h = 0.005 0.413543 0.413543

This also suggests that perhaps the limit is not µ↗.

So it seems that there are strong numerical evidence to believe that the solution µ of the

frozen-percolation RDE (5.1) is not endogenous.

5.4 Study of Bivariate Uniqueness of 2nd Kind

Since the numerical results suggest that the bivariate RDE (5.5) may have solutions other

than µ↗ so we now try to show that the bivariate uniqueness of 2nd kind fails (see Section

2.6.2). For that we consider the following bivariate version of (5.1)





X

Y





d
=





Φ(X1 ∧ X2, U)

Φ (Y1 ∧ Y2, V )



 , (5.10)

where (X1, Y1) and (X2, Y2) are independent copies of (X,Y ) and are independent of U and

V which are i.i.d Uniform[0, 1]. Also we assume that X and Y has marginal distribution µ

as defined in (5.3). As before F (x, y) = P (X ≤ x, Y ≤ y) and G(x, y) = P (X > x, Y > y),

for 0 ≤ x, y ≤ 1. So now using (5.10) we get

F (x, y) = P (Φ (X1 ∧ X2, U) ≤ x, Φ(Y1 ∧ Y2, V ) ≤ y)

= P (U < X1 ∧ X2 ≤ x, V < Y1 ∧ Y2 ≤ y)

=

x
∫

0

y
∫

0

(

G2(x, y) − G2(x, v) − G2(u, y) + G2(u, v)
)

du dv

= xy G2(x, y) − x

y
∫

0

G2(x, v) dv

−y

x
∫

0

G2(u, y) du +

x
∫

0

y
∫

0

G2(u, v) du dv (5.11)

Assume F is twice differentiable (and hence so is G), using (5.9) we get

∂2F

∂x∂y
=

∂2G

∂x∂y
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for 1/2 < x, y < 1. Hence from (5.11) we get the following PDE

∂2

∂x ∂y
G(x, y) = xy

∂2

∂x ∂y

(

G2(x, y)
)

, (5.12)

where 1/2 < x, y < 1 and the boundary conditions are given by

G(x, 1/2) =
1

2x
and G(1/2, y) =

1

2y
. (5.13)

Clearly G0(x, y) = 1
4xy for 1/2 ≤ x, y ≤ 1 is a solution of the boundary value problem (5.12,

5.13) corresponding to the solution µ⊗ µ of the equation (5.10). The following proposition

is an immediate consequence of the part (a) of Theorem 18.

Proposition 40 The invariant RTP with marginal µ associated with the RDE (5.1) is not

endogenous if the boundary value problem (5.12, 5.13) has a feasible solution other than

G0.

Note that we say a solution G of the boundary value problem is feasible if there exists

random variables (X,Y ) taking values in S such that G(x, y) = P (X > x, Y > y), for all

1/2 < x, y ≤ 1.

We believe that the above boundary value problem has feasible solution(s) other than G0

but we have been unable to prove it.
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[24] M. Mézard, G. Parisi, and M. A. Virasoro. Spin Glass Theory and Beyond. World

Scientific, Singapore, 1987.
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