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a b s t r a c t

For the connectivity of random geometric graphs, where there is no density for the underly-

ing distribution of the vertices, we consider n i.i.d. Cantor distributed points on [0, 1]. We

show that for such a random geometric graph, the connectivity threshold, Rn, converges

almost surely to a constant 1− 2φ where 0 < φ < 1/2, which for the standard Cantor dis-
tribution is 1/3. We also show that �Rn − (1 − 2φ)�1 ∼ 2 C (φ) n−1/dφ where C (φ) > 0 is

a constant and dφ := − log 2/ logφ is the Hausdorff dimension of the generalized Cantor set

with parameter φ.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and motivation

A random geometric graph consists of a set of vertices, distributed randomly over somemetric space, inwhich two distinct

such vertices are joined by an edge if the distance between them is sufficiently small. More precisely, let Vn be a set of

n points in Rd, distributed independently according to some distribution F on Rd. Let r be a fixed positive real number.

Then, the random geometric graph G = G(Vn, r) is a graph with vertex set Vn where two vertices v = (v1, . . . , vd) and
u = (u1, . . . , ud) in Vn are adjacent if and only if �v − u� ≤ r where �.� is some norm on Rd.

A considerable amount of work has been done on the connectivity threshold defined as

Rn = inf {r > 0 | G(Vn, r) is connected } . (1)

For the case where the vertices are assumed to be uniformly distributed in [0, 1]d, Appel and Russo (2002) showed that
with probability 1,

lim
n→∞

n

log n
Rdn =






1 for d = 1,

1

2d
for d ≥ 2

(2)
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when the norm �.� is taken to be theL∞ or the sup norm. Later, Penrose (2003) showed that the limit in (2) holds but with

different constants for any Lp norm for 1 ≤ p ≤ ∞. Penrose (1999) considered the case where the distribution F has a

continuous density f with respect to the Lebesguemeasure which remains bounded away from 0 on the support of F . Under

certain technical assumptions such as that of a smooth boundary for the support, he showed that with probability 1,

lim
n→∞

n

log n
Rdn = C

where C is an explicit constant which depends on the dimension d and the essential infimum of f and its value on the

boundary of the support. Recently, Sarkar and Saurabh (2010) (a personal communication), studied a casewhere the density

f of the underlying distributionmay haveminimum zero. They proved, in particular, that when the support of f is [0, 1] and
f is bounded below on any compact subset not containing the origin but is regularly varying at the origin, then Rn/F

−1(1/n)
has a weak limit.

The proof by Sarkar and Saurabh (2010) can easily be generalized to the case where the density is zero at finitely many

points. A question then naturally arises: that of what happens to the case where the distribution function is flat on some

intervals, that is, if a density exists then it will be zero on some intervals. Also, the question arises of what happens in the

somewhat extreme case, where the density may not exist even though the distribution function is continuous and has flat

parts. To consider these questions, in this workwe study the connectivity of random geometric graphswhere the underlying

distribution of the vertices has no mass and is also singular with respect to the Lebesgue measure, that is, it has no density.

For this purpose, we consider the generalized Cantor distribution with parameter φ denoted by Cantor(φ) as the underlying
distribution of the vertices of the graph. The distribution function is then flat on infinitely many intervals. Wewill show that

the connectivity threshold converges almost surely to the length of the longest flat part of the distribution function and we

also provide some finer asymptotics for the same case.

1.2. Preliminaries

In this subsection, we discuss the Cantor set and the Cantor distribution which is defined on it.

1.2.1. The Cantor set

The Cantor set was first discovered by Smith (1875) but became popular after Cantor (1883). The standard Cantor set

is constructed on the interval [0, 1] as follows. One successively removes the open middle third of each subinterval of the

previous set. More precisely, starting with C0 := [0, 1], we inductively define

Cn+1 :=
2n�

k=1

��

an,k, an,k +
bn,k − an,k

3

�

∪

�

bn,k −
bn,k − an,k

3
, bn,k

��

where Cn := ∪2n

k=1

�
an,k, bn,k

�
. The standard Cantor set is then defined as C =

�∞
n=o Cn. It is known that the Hausdorff

dimension of the standard Cantor set is
log 2

log 3
(see Theorem 2.1 of Chapter 7 of Stein and Shakarchi, 2005).

For constructing the generalized Cantor set, we start with the unit interval [0, 1] and at the first stage, we delete the

interval (φ, 1− φ)where 0 < φ < 1/2. Then, this procedure is reiterated with the two segments [0, φ] and [1− φ, 1]. We

continue ad infinitum. The Hausdorff dimension of this set is given by dφ := − log 2

logφ
(see Exercise 8 of Chapter 7 of Stein and

Shakarchi, 2005). Note that the standard Cantor set is a special case when φ = 1/3.

1.2.2. The Cantor distribution

The Cantor distribution with parameter φ where 0 < φ < 1/2 is the distribution of a random variable X defined by

X =
∞�

i=1

φi−1Zi (3)

where the Zi are i.i.d. with P[Zi = 0] = P[Zi = 1 − φ] = 1/2. If a random variable X admits a representation of the form

(3) then we will say that X has a Cantor distribution with parameter φ, and write X ∼ Cantor(φ). Observe that Cantor (φ)
is self-similar, in the sense that

X
d
=

�
φX with probability 1/2
φX + 1 − φ with probability 1/2.

(4)

This follows easily by conditioning on Z1. It is worth noting here that if X ∼ Cantor(φ) then the same is true of 1 − X.

Note that for φ = 1/3 we obtain the standard Cantor distribution.
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2. The main results

Let X1, X2, . . . , Xn be independent and identically distributed random variables with the Cantor(φ) distribution on [0, 1].
Given the graph G = G(Vn, r), where Vn = {X1, X2, . . . , Xn}, let Rn be defined as in (1).

Theorem 1. For any 0 < φ < 1/2, as n −→ ∞ we have

Rn −→ 1 − 2φ a.s. (5)

Our next theorem gives finer asymptotics but before we state the theorem, we provide here some basic notation and

facts. Let mn := min{X1, X2, . . . , Xn}. Using (4) we get

mn
d
=

�
φmk with probability 2−n

�n

k

�
for k = 1, 2, . . . , n

φmn + 1 − φ with probability 2−n.
(6)

Let an := E[mn]. Using (6), Hosking (1994) derived the following recursion formula for the sequence (an):

�
2n − 2φ

�
an = 1 − φ + φ

n−1�

k=1

�n

k

�
ak, n ≥ 1. (7)

Moreover, Knopfmacher and Prodinger (1996) showed that whenever 0 < φ < 1/2, then as n → ∞,

an

n
− 1

dφ

−→ C (φ) , (8)

where

C (φ) :=
(1 − φ)(1 − 2φ)

φ log 2
�(− log2 φ)ζ (− log2 φ), (9)

and dφ = − log 2

logφ
is the Hausdorff dimension of the generalized Cantor set. Here �(·) and ζ (·) are the Gamma and Riemann

zeta functions, respectively.

Our next theorem gives the rate convergence of Rn to (1 − 2φ) in terms of the L1 norm.

Theorem 2. For any 0 < φ < 1/2, as n −→ ∞ we have

�Rn − (1 − 2φ)�1

n
− 1

dφ

−→ 2C (φ) , (10)

where C (φ) is as in Eq. (9) and �·�1 is the L1 norm.

3. Proofs of the theorems

3.1. Proof of Theorem 1

We draw a sample of size n from Cantor(φ) on [0, 1]. Let Nn be the number of elements falling in the subinterval [0, φ]
and n − Nn the number of elements falling in [1 − φ, 1]. From the construction, we have Nn ∼ Bin

�
n, 1

2

�
. In selecting this

sample of size n, there are three cases which may happen. Some of these points may fall in the interval [0, φ] and the rest
in the interval [1− φ, 1]. That means that Nn �∈ {0, n}. In this case, the distance between the points in [0, φ] and [1− φ, 1]
is at least 1− 2φ. The other cases are those where all points fall in [0, φ] or all fall in [1− φ, 1], which in this case are those
with Nn = n or Nn = 0. Let mn = min1≤i≤n Xi,Mn = max1≤i≤n Xi and define

Ln := max {Xi|1 ≤ i ≤ n and Xi ∈ [0, φ]} (11)

and

Un := min {Xi|1 ≤ i ≤ n and Xi ∈ [1 − φ, 1]} . (12)

We will take Ln = 0 (and similarly Un = 0) if the corresponding set is empty.

Now find a K ≡ K (φ) such that φK < 1

2
(1 − φ) (1 − 2φ). Note that such a K < ∞ exists since 0 < φ < 1. Let I1, I2,

. . . , I2K be the 2K subintervals of length φK which are part of the Kth stage of the ‘‘removal of the middle interval’’ for

obtaining the generalized Cantor set with parameter φ. For 1 ≤ j ≤ 2K define Nj :=
�n

i=1 1
�
Xi ∈ Ij

�
, which is the number of
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sample points in the subinterval Ij. From the construction of the generalized Cantor distributionwith parameter φ, it follows
that

NK :=
�
N1,N2, . . . ,N2K

�
∼ Multinomial

�

n;

�
1

2K
,
1

2K
, . . . ,

1

2K

��

, (13)

and Nn =
�

Ij⊆[0,φ] Nj. Consider the event En := ∩2k

j=1

�
Nj ≥ 1

�
. Observe that for the event En themaximumdistance between

two points in [0, φ] as well as in [1 − φ, 1] is at most 2φK + φ (1 − 2φ) < 1 − 2φ by the choice of K . Thus for En we must

have Rn = Un − Ln and so we can write

Rn = (Un − Ln) 1En + R∗
n 1Ecn (14)

where R∗
n is a random variable such that 0 < R∗

n < φ a.s.

Observe that conditioned on
�
N1 = r1,N2 = r2, . . . ,N2k = r2k

�
, we have Un

d
= 1−φ+φmn−k and Ln

d
= φMk, and Nn = k

where k =
�

Ij⊆[0,φ] rj. More generally,

((Ln,Un) ,NK )n≥1

d
=

��
φMNn , 1 − φ + φmn−Nn

�
,NK

�
n≥1

. (15)

Note that for technical correctness, we define M0 = m0 = 0.
Now it is easy to see that mn −→ 0 and Mn −→ 1 a.s. But by the SLLN, Nn/n −→ 1/2 a.s.; thus (Nn) and (n − Nn) are

two subsequences which are converging to infinity a.s. Moreover,

P
�
Ecn

�
≤

2K�

j=1

P
�
Nj = 0

�
= 2K

�

1 −
1

2K

�n

= 2K exp (−αKn) , (16)

where αK = − log

�
1 − 1

2K

�
> 0. Thus

�∞
n=1 P

�
Ecn

�
< ∞, so by the first Borel–Cantelli lemma we have

P
�
Ecn infinitely often

�
= 0 ⇒ P (En eventually) = 1.

In other words 1En −→ 1 a.s. and 1Ecn −→ 0 a.s. Finally observing that 0 ≤ R∗
n ≤ φ we get from Eqs. (14) and (15)

Rn −→ (1 − 2φ) . �

3.2. Proof of Theorem 2

We start by observing that

E [|Rn − (1 − 2φ)|] = E
�
(Rn − (1 − 2φ)) 1En

�
+ E

��
�R∗

n − (1 − 2φ)
�
� 1Ecn

�

= E
�
(Un − Ln − (1 − 2φ)) 1En1K≤Nn≤n−K

�
+ E

��
�R∗

n − (1 − 2φ)
�
� 1Ecn

�

= E
�
(Un − Ln − (1 − 2φ)) 1K≤Nn≤n−K

�

− E
�
(Un − Ln − (1 − 2φ)) 1Ecn1K≤Nn≤n−K

�
+ E

��
�R∗

n − (1 − 2φ)
�
� 1Ecn

�

= E
�
(Un − Ln − (1 − 2φ)) 11≤Nn≤n−1

�

− E
�
(Un − Ln − (1 − 2φ)) 1Ecn11≤Nn≤n−1

�
+ E

��
�R∗

n − (1 − 2φ)
�
� 1Ecn

�
. (17)

In the above the first equality holds because of (14) and the fact that for the event En wemust have Rn > 1−2φ. The second,
third and fourth equalities follow from the simple fact that En ⊆ [K ≤ Nn ≤ n − K].

Now recall that an = E[mn], so for the first part of the right-hand side of the Eq. (17) we can write

E
�
(Un − Ln − (1 − 2φ)) 11≤Nn≤n−1

�
=

φ

2n

n−1�

k=1

�n

k

�
(an−k + ak)

=
1

2n−1

��
2n − 2φ

�
an − (1 − φ)

�
, (18)

where the last equality follows from (7). The other two parts of the right-hand side of the Eq. (17) are bounded in absolute

value by

P
�
Ecn

�
≤ 2K exp (−αKn)

because of (16). Now observe that from Eq. (8) we get that an ∼ C (φ) n
− 1

dφ where dφ = − log 2

logφ
is the Hausdorff dimension

of the generalized Cantor set. Thus using (17) and (18) we conclude that

E [|Rn − (1 − 2φ)|]

an
−→ 2 a.s. n −→ ∞.

This completes the proof using (8). �



Author's personal copy

A. Bandyopadhyay, F. Sajadi / Statistics and Probability Letters 82 (2012) 2103–2107 2107

4. Final remarks

It is worth noting here that our proofs depend on the recursive nature of the generalized Cantor distribution (see Eq. (4)).

Thus, unfortunately, they do not have obvious extensions to other singular distributions. It will be interesting to derive a

version of Theorem 1 for a general singular distribution with no mass and flat parts. Intuitively it seems that the final limit

should be the length of the longest flat part. It will be more interesting if Theorem 2 can also be generalized to general

singular distributions with no mass and flat parts, where (1− 2φ) is replaced by the length of the longest flat part and dφ is

replaced by the Hausdorff dimension of the support.
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