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a b s t r a c t

We consider the randomwalk in an i.i.d. random environment on the infinite d-regular tree
for d ≥ 3.We consider the tree as a Cayley graph of the free product of finitelymany copies
of Z and Z2 and define the i.i.d. environment as invariant under the action of this group.
Under a mild non-degeneracy assumption we show that the walk is always transient.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this short notewe consider a randomwalk in random environment (RWRE)model on a regular treewith degree d ≥ 3,
where the environment at the vertices is independent and is also ‘‘identically distributed’’ (i.i.d.). We make this notion of i.i.d.
environment rigorous by first defining a translation invariant model on a group G which is a free product of finitely many
groups, G1,G2, . . . ,Gk and H1,H2, . . . ,Hr , where each Gi ∼= Z and each Hj ∼= Z2 with d = 2k + r . Observing the fact that
the Cayley graph of G is a regular tree with degree d, we transfer back the model on the d-regular tree we started with. We
prove that under a mild non-degeneracy assumption such a walk is always transient.

1.1. Basic setup

Cayley graph: Let G be a group defined above, that is, G is a free product of k + r ≥ 2 groups, namely G1,G2, . . . ,Gk with
k ≥ 0 and H1,H2, . . . ,Hr with r ≥ 0, where each Gi ∼= Z and each Hj ∼= Z2 and d = 2k + r ≥ 3. Suppose Gi = ⟨ai⟩ for
1 ≤ i ≤ k and Hj = ⟨bj⟩ where b2j = e for 1 ≤ j ≤ r . Here by ⟨a⟩ we mean the group generated by a single element a. Let
S := {a1, a2, . . . , ak} ∪


a−11 , a−12 , . . . , a−1k


∪ {b1, b2, . . . , br} be a generating set for G. We note that S is a symmetric set,

that is, s ∈ S ⇐⇒ s−1 ∈ S.
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We now define a graph Ḡ with vertex set G and edge set E :=

{x, y}

yx−1 ∈ S

. Such a graph Ḡ is called a (left) Cayley

Graph of G with respect to the generating set S. Since G is a free product of groups which are isomorphic to either Z or Z2,
it is easy to see that Ḡ is a graph with no cycles and is regular with degree d, thus it is isomorphic to the d-regular infinite
tree which we will denote by Td. We will abuse the terminology a bit and will write Td for the Cayley graph of G. We will
consider the identity element e of G as the root of Td. We will write N (x) for the set of all neighbors of a vertex x ∈ Td.
Notationally, N (x) =


y ∈ G

yx−1 ∈ S

. Observe that from definition N (e) = S. For x ∈ G, define the mapping θx : G→ G

by θx (y) = yx, then θx is an automorphism of Td. We will call θx the translation by x. For a vertex x ∈ Td and x ≠ e, we
denote by |x|, the length of the unique path from the root e to x and |e| = 0. Further, if x ∈ Td and x ≠ e, then we define←−x
as the parent of x, that is, the penultimate vertex on the unique path from e to x.
Random Environment: Let S := Se be a collection of probability measures on the d elements of N (e) = S. To simplify
the presentation and avoid various measurability issues, we assume that S is a Polish space (including the possibilities that
S is finite or countably infinite). For each x ∈ Td, Sx is the push-forward of the space S under the translation θx, that is,
Sx := S ◦θ−1x . Note that the probabilities on Sx have support on N (x). That is to say, an elementω(x, ·) of Sx, is a probability
measure satisfying

ω (x, y) ≥ 0 ∀y ∈ Td and


y∈N(x)

ω (x, y) = 1.

Let BSx denote the Borel σ -algebra on Sx. The environment space is defined as the measurable space (Ω, F ) where

Ω :=

x∈Td

Sx, F :=

x∈Td

BSx . (1)

An element ω ∈ Ω will be written as

ω (x, ·)

x ∈ Td

. An environment distribution is a probability P on (Ω, F ). We will

denote by E the expectation taken with respect to the probability measure P .
Random Walk: Given an environment ω ∈ Ω , a random walk (Xn)n≥0 is a time homogeneous Markov chain taking values
in Td with transition probabilities

Pω


Xn+1 = y

Xn = x

= ω (x, y) .

Let N0 := N ∪ {0}. For each ω ∈ Ω , we denote by Px
ω the law induced by (Xn)n≥0 on


(Td)

N0 , G

, where G is the σ -algebra

generated by the cylinder sets, such that

Px
ω (X0 = x) = 1. (2)

The probability measure Px
ω is called the quenched law of the random walk (Xn)n≥0, starting at x. We will use the notation

Ex
ω for the expectation under the quenched measure Px

ω .
Following Zeitouni (2004), we note that for every B ∈ G, the function

ω → Px
ω (B)

is F -measurable. Hence, we may define the measure Px on

Ω × (Td)

N0 , F ⊗ G

by the relation

Px (A× B) =

A
Px

ω (B) P (dω) , ∀A ∈ F , B ∈ G.

With a slight abuse of notation, we also denote the marginal of Px on (Td)
N0 by Px, whenever no confusion occurs. This

probability distribution is called the annealed law of the random walk (Xn)n≥0, starting at x. We will use the notation Ex for
the expectation under the annealed measure Px.

1.2. Main results

Throughout this paper we will assume that the following holds:

(A1) P is a product measure on (Ω, F ) with ‘‘identical’’ marginals, that is, under P the random probability laws

ω (x, ·)


x ∈ Td


are independent and ‘‘identically’’ distributed in the sense that

P ◦ θ−1x = P, (3)

for all x ∈ G.
(A2) For all 1 ≤ i ≤ d,

E [|logω (e, si)|] <∞. (4)

It is worth noting that under this assumption ω (x, y) > 0 almost surely (a.s.) with respect to the measure P for all
x ∈ Td and y ∈ N (x).
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The following is our main result.

Theorem 1. Under assumptions (A1) and (A2) the randomwalk (Xn)n≥0 is transient Pe-a.s., that is,Pe (limn→∞ |Xn| = ∞) = 1.

An immediate question that arises is whether the above walk has a speed which may be zero. The following result
provides a partial answer to this question with (A2) replaced by the usual uniform ellipticity condition.

(A3) There exists ϵ > 0 such that

P (ω (e, si) > ϵ ∀1 ≤ i ≤ d) = 1. (5)

Theorem 2. Under assumptions (A1) and (A3) with ϵ > 1
2(d−1) we have Pe-a.s.

lim inf
n→∞

|Xn|

n
> 0. (6)

Note that the condition ϵ > 1
2(d−1) is compatible with the ellipticity condition (5) as d ≥ 3.

1.3. Remarks

Random walk in Random Environment (RWRE) model on the one dimensional integer lattice Z was first introduced by
Solomon (1975) where he gave explicit criteria for the recurrence and transience of the walk for i.i.d. environment. Since
then a large variety of results have been discovered for RWRE in Zd, yet there are many challenging problems which are still
left open (see Bogachev et al. (2006) for a non-technical survey and Zeitouni (2004), Sznitman (2004) for more technical
details).

Perhaps the earliest known results for RWRE on trees are by Lyons and Pemantle (1992). In that paper they consider
a model on rooted trees known as random conductance model. In that model, the random conductances along each path
from vertices to the root are assumed to be independent and identically distributed. The random walk is then shown to be
recurrent or transient depending on how large the value of the average conductance is.

In our setup, the assumption (A1) essentially says that the random transition laws

ω (x, ·)

x ∈ Td

are independent

and identically distributed (i.i.d.). On Td we introduced the group structure to define identically distributed and we made the
probability law P invariant under translations by the group elements. Hence the RWREmodel in this article is different from
the random conductance model discussed above. It is interesting to note that the only example where the two models agree
is the deterministic environment of the simple symmetric walk on Td.

Perhaps themodel closest to ourswas introduced by Rozikov (2001)where the author considered the casewith k = 0 and
r = d ≥ 3, that is, the group G is a free product for d copies of Z2. Our model is slightly more general from this perspective,
but more importantly in Rozikov (2001) to prove transience, it was assumed that

E
log ω (x, sx)

ω (x, s′x)

 <∞ (7)

and

E

log

ω (x, sx)
ω (x, s′x)


≠ 0, (8)

for every x ∈ Td and for two different elements s, s′ ∈ S (see the assumptionmade in the beginning of Section 7 and Theorem
5 of Rozikov (2001)). The first assumption (7) made in Rozikov (2001) is more general than our assumption (A2). However,
the second assumption made in Rozikov (2001), namely Eq. (8), may not be satisfied by certain environments (be it random
or non-random)which are covered by our formulation, for example, the condition (8) is not satisfied by the simple symmetric
random walk on Td. So neither our model is a subclass of the models studied by Rozikov (2001), nor our model covers all
cases discussed in there. So we believe our work is an important addition to the earlier work of Rozikov (2001) and none
makes the other redundant. Wewould also like to point out that the techniques used in our work are entirely different from
that of Rozikov (2001).

There have also been several other contributions on random trees, particularly on randomwalk on Galton–Watson trees
(Lyons, 1990; Lyons et al., 1995, 1996; Dembo et al., 2002; Peres and Zeitouni, 2008). It is worth pointing out here that a
random walk on a Galton–Watson tree (Lyons, 1990) satisfies the assumption (A1) and so does a random walk on a multi-
type Galton–Watson tree (Dembo and Sun, 2012).

Our last result (Theorem 2) is certainly far from satisfactory. We strongly believe that under the assumption (A1) and
(A3) the sequence of random variables


|Xn|
n


n≥0

has a Pe-almost sure limit which is non-random and strictly positive. A

similar conclusion has been derived for the special case of random walk on Galton–Watson trees (Lyons et al., 1995). This
and the central limit theorem for such walks will be studied in future work.
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2. Proofs of the main results

2.1. Proof of Theorem 1

Given an environmentω ∈ Ω , and a vertexσ ∈ Td which is not the root,wedefine the conductance of the edge

σ ,←−σ


as

C

σ ,←−σ


= ω(e, x1)


|σ |−1
k=1

ω(xk, xk+1)
ω(xk, xk−1)


, (9)

where e = x0, x1, x2, . . . , x|σ |−1 = ←−σ , x|σ | = σ is the unique path from the root e to the vertex σ . Further we define
Φ (σ ) := C


σ ,←−σ

−1. Suppose σ = αnαn−1 · · ·α1 where αi ∈ S and αi+1 ≠ α−1i and n = |σ |. More generally xk =
αkαk−1 · · ·α1 for 1 ≤ k ≤ n. Note that xk = αkxk−1 for all 1 ≤ k ≤ n. We can now rewrite Φ (σ ) as

Φ (σ ) =
1

ω(e, x1)

n−1
k=1

ω(xk, xk−1)
ω(xk, xk+1)

=


n−1
k=1

ωk

α−1k


ωk−1 (αk)


1

ωn−1 (αn)
, (10)

where we write ωk (s) := ω (xk, sxk) for any s ∈ S.
We will now show that there is a (non-random) sequence of positive real numbers (βn)n≥1 such that


∞

n=1 βn <∞ and
P-a.s.

lim
n→∞


σn∈Tn

d

βn (Φ (σn))
−1
= ∞, (11)

where Tn
d :=


x ∈ Td

 |x| = n

. Then by Corollary 4.2 in Lyons (1990), the randomwalk has to be transient. For this we will

show that P-a.s., there is a subset of vertices of Tn
d with size O


(d− 1)n−1


such that the Φ-value of these vertices is strictly

smaller than (d− 1)
n
2 .

Let BN0 denote the product σ -algebra on SN0 , and µ be a probability measure on

SN0 , BN0


such that (Yn)n≥0 ∈ SN0

forms a Markov chain on S with

µ

Yn = s

Yn−1 = t

=

1
d− 1

, s, t ∈ S with s ≠ t−1. (12)

It is easy to see that the chain (Yn)n≥0 is an aperiodic, irreducible and finite stateMarkov chain and its stationary distribution
is the uniform distribution on S. We shall assume that Y0 is uniformly distributed on S. Thus each Yn is also uniform on S.

Let ηn = YnYn−1 · · · Y1. From Eq. (12) it follows that ηn is uniformly distributed on the set of vertices Tn
d . Now

1
n
logΦ (ηn) = o (1)+

1
n

n−1
k=1


logωk


Y−1k


− logωk−1 (Yk)



= o (1)+
1
n


s∈S

Nn−1(s−1)
j=1


logωkj(s−1)


s−1

− logωkj(s−1)−1 (s)


, (13)

where for each s ∈ S, k1

s−1

, k2


s−1

. . . , kNn−1(s−1)


s−1

are the time points kwhen Yk = s−1 and

Nn (s) =
n

k=1

1 (Yk = s) . (14)

Now consider the product space

Ω × SN0 , BΩ ⊗BN0 , P ⊗ µ


. By Theorems 6.5.5 and 6.6.1 of Durrett (2010) we have

P ⊗ µ-a.s. for all s ∈ S,

lim
n→∞

Nn (s)
n
=

1
d
. (15)

Further under assumption (A2) and using the Strong Law of Large Numbers for i.i.d. random variables we have P-a.s., for
every fixed s ∈ S,

lim
n→∞

1
Nn−1


s−1
 Nn−1(s−1)

j=1

logωkj(s−1)


s−1

= E


logω1


s−1


,

and also

lim
n→∞

1
Nn−1


s−1
 Nn−1(s−1)

j=1

logωkj(s−1)−1 (s) = E [logω1 (s)] .
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As S is a symmetric set of generators for G, therefore P ⊗ µ-a.s.,

lim
n→∞

1
n
logΦ(ηn) =

1
d


s∈S

E

logω1


s−1

− logω1 (s)


= 0. (16)

So by Fubini’s theorem, it follows that Eq. (16) holds µ-a.s., for every ω ∈ Ω a.s. with respect to P . Fix such an ω ∈ Ω . As
d ≥ 3, find 1

d−1 < ∆ < 1. Since almost sure convergence implies convergence in probability, so ∃Mω
µ ∈ N such that for all

n ≥ Mω
µ ,

µ


Φ (ηn) <


1
√

∆

n
>

1
2
. (17)

But recall that under µ, the distribution of ηn is uniform on the vertices of Tn
d , so

#

σn ∈ Td

Φ (σn) <


1
√

∆

n
d (d− 1)n−1

>
1
2

(18)

for all n ≥ Mω
µ . Let βn = ∆

n
2 . Observe that


∞

n=1 βn <∞. Now for n ≥ Mω
µ ,

σn∈Tn
d

βn (Φ (σn))
−1
≥


σn∈Tnd

Φ(σn)<


1√
∆

n
βn (Φ (σn))

−1
≥

1
2
d (d− 1)n−1 ∆n. (19)

By the choice of ∆ it follows that P-a.s. Eq. (11) holds, which completes the proof. �

2.2. Proof of Theorem 2

Let Dn := |Xn|, then

Dn =

n
i=1

(Di − Di−1)

=

n
i=1


Di − Di−1 − Ee

ω


Di − Di−1

X0, . . . , Xi−1


+

n
i=1

Ee
ω


Di − Di−1

X0, . . . , Xi−1


. (20)

But thenMn :=
n

i=1


Di − Di−1 − Ee

ω


Di − Di−1

X0, . . . , Xi−1


is a martingale with zero mean and bounded increments,

so by Theorem 3 of Azuma (1967)

Mn

n
→ 0 Pe-a.s. (21)

Further it is easy to see that

Di − Di−1 =


+1 if Xi−1 = e
+1 if Xi−1 ∉


e,←−X i−1


−1 if Xi−1 =

←−X i−1.

Thus,

Ee
ω


Di − Di−1

X0, . . . , Xi−1


= 1− 2× 1 (Xi−1 ≠ e) ω


Xi−1,
←−X i−1


.

Now under our assumption (A3) with ϵ > 1
2(d−1) there exists δ > 0 such that P-a.s.

ω

x,←−x


<

1
2
− δ (d− 1) ∀ x ∈ Td.

This is because ω

x,←−x


= 1−


x∼y,y≠←−x ω (x, y). Thus Pe-a.s.

lim inf
n→∞

1
n

n
i=1


1− 2× 1 (Xi−1 ≠ e) ω


Xi−1,
←−X i−1


> 2δ (d− 1) > 0. (22)

Finally, by (20) Dn = Mn +
n

i=1


1− 2× 1 (Xi−1 ≠ e) ω(Xi−1,

←−X i−1)

, so using Eqs. (21) and (22) we conclude that (6)

holds. �
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