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ON THE EXPECTED TOTAL NUMBER OF INFECTIONS FOR
VIRUS SPREAD ON A FINITE NETWORK

BY ANTAR BANDYOPADHYAY AND FARKHONDEH SAJADI

Indian Statistical Institute, Delhi Centre

In this work we consider a simple SIR infection spread model on a finite
population of n agents represented by a finite graph G. Starting with a fixed
set of initial infected vertices the infection spreads in discrete time steps,
where each infected vertex tries to infect its neighbors with a fixed proba-
bility β ∈ (0,1), independently of others. It is assumed that each infected
vertex dies out after an unit time and the process continues till all infected ver-
tices die out. This model was first studied by [Ann. Appl. Probab. 18 (2008)
359–378]. In this work we find a simple lower bound on the expected number
of ever infected vertices using breath-first search algorithm and show that it
asymptotically performs better for a fairly large class of graphs than the upper
bounds obtained in [Ann. Appl. Probab. 18 (2008) 359–378]. As a by prod-
uct we also derive the asymptotic value of the expected number of the ever
infected vertices when the underlying graph is the random r-regular graph
and β < 1

r−1 .

1. Introduction.

1.1. Background and motivation. Often it is observed that the normal opera-
tion of a system which is organized in a network of individual machines or agents
is threatened by the propagation of a harmful entity through the network. Such
harmful entities are often termed as viruses. For example, the Internet, as a net-
work, is threatened by the computer viruses and worms, which are self-replicating
pieces of code that propagate in a network of computers.

In this work we consider a simple virus spread model on a finite network of
agents, and our goal is to determine an approximation of the total amount of in-
fection without specifying the underlying network. The model we consider is a
particular susceptible infected removed (SIR) model, which was first introduced in
this context by Draief, Ganesh and Massoulié [7]. In this model, each susceptible
agent, can be infected by its infected neighbors at a rate, proportional to their num-
ber and remains infected till it is removed after an unit time. While it is infected,
it has the potential to infect its neighbors. In general, removal can correspond to
a quarantining of a machine from the network or patching the machine. In this
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model, it is assumed that once a node is removed, it is “out of the network.” That
is, it can no longer be susceptible or infected. Such a model is justified, provided
the epidemic spread happens at a much faster rate than the rate of patching of the
susceptible machines.

Like in [7], our goal is to study the total number of vertices that eventually
become infected (and hence removed) without specifying the underlying network.
In [7], the authors derived an explicit upper bound of the expected number of
vertices ever infected which depends on both the size of the network as well as
the infection rate β ∈ (0,1). This bound also needed an assumption of “small”
value for β . Unfortunately, the work [7] did not provide any indication whether
the derived upper bound is a good approximation of the quantity of interest. In
this work we derive a simple lower bound of the expected number of vertices ever
infected which works for every infection rate 0 < β < 1. From application point
of view, our lower bound is based on the breadth-first search (BFS) algorithm
and hence is easily computable for any general finite network G. We also prove
that, under certain assumptions on the qualitative behavior of the underlying graph,
namely if it “locally looks like a tree,” then our lower bound is asymptotically exact
for “small” β , thus providing a good approximation when the network is “large.”
For such graphs G, the range we cover for β always includes the range in which
the upper bound obtained in [7] holds and in all these cases, the upper bound over
estimates the expected total number of infections. So our lower bound provides a
better approximation.

1.2. Model. We consider a closed population of n agents, connected by a net-
work structure, given by an undirected graph G = (V ,E) with vertex set V , con-
taining all the agents and edge set E. A vertex can be in either of the three states,
namely, susceptible (S), infected (I ) or removed (R). At the beginning, the initial
set of infected vertices is assumed to be nonempty and all others are susceptible.
The evolution of the epidemic is described by the following discrete time model:

• After a unit epoch of time, each infected vertex instantaneously tries to infect
each susceptible neighbor with probability β ∈ (0,1) independent of all others.

• Each infected vertex is removed from the network after an unit time.

Mathematically, at an integer multiple of unit time, say t , if a susceptible vertex
v has Iv(t) neighbors who are infected, then the probability of v being infected
instantaneously is 1 − (1 − β)Iv(t) and each susceptible vertex gets infected inde-
pendently. Also an infected vertex remains in the network only for an unit time,
after that it tries to infect its susceptible neighbors and then it is immediately re-
moved. As pointed out by [7], this is a simple model, falling in the class of models
known as Reed–Frost models, where infection period is deterministic and is same
for every vertex.

It is interesting to note here that, the model is essentially same as the i.i.d.
Bernoulli bond percolation model [8] with parameter β . This is because the set
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of ever infected (or removed) vertices is same as the union of connected open
components of i.i.d. Bernoulli bond percolation on G, containing all the initial in-
fected vertices. Although for percolation, it is customary to work with an infinite
graph G. If G is the complete graph Kn, then this model is fairly well studied in lit-
erature and is known as the binomial random graph, also known as Erdős–Rényi
random graph [4, 9]. Percolation on general finite graphs has also been studied
in literature, particularly, the behavior of the giant component in the critical and
super-critical regimes has been studied extensively [2, 5, 6, 10]. Our work falls
in to the same domain, but we only study the size of the connected component of
a given set of vertices and mainly for the sub-critical regime. More precisely, we
derive asymptotic limit of the expected size of connected cluster of a set of vertices
in the sub-critical regime for graphs with bounded degree and large girth. The girth
of a finite graph is the size of the smallest cycle and thus the graphs we consider
locally look like trees.

2. Main results and proofs. We will denote by YG,I , the total number of
vertices ever infected when the epidemic runs on a network G and the infection
starts at the vertices in I ⊆ V . Note that YG,I implicitly depends on the size of the
network.

We begin with a simple upper bound for E[YG,I ] for graphs with bounded de-
gree. This bound is used in the proofs of the main results stated later.

PROPOSITION 2.1. Suppose G := (V ,E) is a finite graph such that the degree
of each vertex is bounded by � ≥ 2. Let I ⊆ V be the set of vertices which are
initially infected. Then for β < 1

�−1 we have

E
[
YG,I ] ≤ 1 + β

1 − (� − 1)β
|I |.(2.1)

We would like to point out that this upper bound is a better bound than that
obtained in the Theorem 2.3 of [7]. Also it works for a larger set of parameter
values.

PROOF OF PROPOSITION 2.1. From definition of the model, we get

E
[
YG,I ] ≤ ∑

v0∈I

(
1 +

∞∑
d=1

πd(v0)β
d

)
,(2.2)

where πd(v0) is number of self-avoiding paths of length d ≥ 1 starting at the
vertex v0. Since the maximum degree of G is bounded by �, so we must have
πd(v0) ≤ �(� − 1)d−1 for all d ≥ 1 and v0. This completes the proof. �

In the following subsection we present the results, when the epidemic starts
with only one infected vertex. We generalize these results for epidemic starting
with more than one infection, which are presented in Section 2.2.
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In both cases, our results relay on a specific search algorithm, known as breadth-
first search (BFS). For sake of completeness we briefly describe the algorithm here.

Given a finite graph with a linear ordering of its vertices and a starting vertex called
the root, the BFS algorithm begins at the root and inspects all the neighboring vertices.
Then for each of those neighboring vertices in turn, it inspects their neighboring vertices
which were unvisited, and continues this way till there are no unvisited vertices.

It is worth noting that the BFS algorithm produces a spanning tree of the given
graph, but is not necessarily unique. The BFS spanning tree depends on the choice
of the root, and it may also depend on the ordering of the vertices. Note that if the
graph is a tree, then the BFS spanning tree is unique, and it is just the graph itself.

2.1. Starting with only one infected vertex. Our first result gives a lower bound
of the expected total number of vertices ever infected starting with exactly one
infected vertex.

THEOREM 2.1. Let G := (V ,E) be an arbitrary finite graph and v0 ∈ V be
a fixed vertex of it. Let T be a spanning tree of the connected component of G

containing the vertex v0 and rooted at v0. Let YT,{v0} be the total number of vertices
ever infected when the epidemic runs only on T and starting with exactly one
infection at v0. Then

E
[
YT,{v0}] ≤ E

[
YG,{v0}] for all 0 < β < 1.(2.3)

Moreover, if T is a BFS spanning tree of the connected component of v0 rooted
at v0, then

E
[
YT,{v0}] ≤ E

[
Y T ,{v0}] ≤ E

[
YG,{v0}] for all 0 < β < 1.(2.4)

PROOF. Suppose T is a spanning subtree of G with root v0. Then by the stan-
dard coupling we get

E
[
YT,{v0}] ≤ E

[
YG,{v0}],

for any 0 < β < 1.
To prove the second part, we note that if T is a spanning tree of G with root v0,

then dG(v, v0) ≤ dT (v, v0) for all v ∈ V , where dG and dT are the graph dis-
tance functions on G and T , respectively. Moreover, the BFS algorithm preserves
the distances, so if T is a BFS spanning tree with root v0, then we must have
dG(v, v0) = dT (v, v0) for all v ∈ V . Thus dT (v, v0) ≤ dT (v, v0) for all v ∈ V .
Thus

E
[
YT,{v0}] = ∑

v∈V

βdT (v,v0) ≤ ∑
v∈V

βdT (v,v0) = E
[
Y T ,{v0}],

as 0 < β < 1. �
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Let LBG,{v0} := E[Y T ,{v0}] be the lower bound obtained through BFS algorithm
for a BFS spanning tree T of G, rooted at v0. Then from the proof of Theorem 2.1
we get that

LBG,{v0} = ∑
v∈V

βdG(v,v0),(2.5)

which is free of the choice of the BFS spanning tree. Later, we will see that this
helps us to generalize the lower bound for epidemic starting with more than one
infected vertex.

For our next result we use the following graph theoretic notations. Given a graph
G and a fixed vertex v0 of G and a positive integer d ≥ 1, we denote by Nd(G,v0),
the induced sub-graph of G with vertices which are at a graph distance at most d

from v0.

THEOREM 2.2. Let Gn be a connected graph on n vertices and {(Gn, v
n
0 )}n≥1

be a sequence of rooted graphs with roots {vn
0 }n≥1 such that there exists a se-

quence αn = �(logn) with Nαn(Gn, v
n
0 ) is a tree for all n ≥ 1. Then, there exists

0 < β0 ≤ 1, such that for all 0 < β < β0,∣∣E[
YGn,{vn

0 }] − LBGn,{vn
0 }∣∣ −→ 0 as n → ∞(2.6)

and therefore E[YGn,{vn
0 }]

LBGn,{vn
0 } −→ 1 as n → ∞.

PROOF. Let Tn be a BFS spanning tree rooted at vn
0 of the graph Gn and

as defined earlier let LBGn,{vn
0 } = E[Y Tn,{vn

0 }]. Denote ∂∗
αn

Nαn(Gn, v
n
0 ) the set of

infected vertices in Gn after αn units of time starting with one infected vertex vn
0 .

Then

LBGn,{vn
0 } ≤ E

[
YGn,{vn

0 }]
≤ E

[
YNαn(Gn,vn

0 ),{vn
0 }] + nE

[∣∣∂∗
αn

Nαn

(
Gn,v

n
0
)∣∣]

(2.7)
≤ E

[
YNαn(Gn,vn

0 ),{vn
0 }] + n2βαn

≤ LBGn,{vn
0 } + n2βαn.

The last inequality follows from the fact that by assumption Nαn(Gn, v
n
0 ) is a

tree and hence is a subtree of Tn. This proves (2.6) since by assumption αn =
�(logn). The last part of the theorem follows from the fact that LBGn,{vn

0 } ≥ 1.
�

Although the assumption in the above theorem may seem to be very restrictive,
it is satisfied in many examples. The method of the proof on the other hand, helps
us to generalize the result for a large class of graphs including certain random
graphs.
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Before we state our next result we recall that a sequence of rooted random or
deterministic graphs {(Gn, v

n
0 )}n≥1 with roots {vn

0 }n≥1 converges to a random or
deterministic graph (G∞, v∞

0 ) in the sense of local weak convergence (l.w.c) [1],

and we write (Gn, v
n
0 )

l.w.c.−→ (G∞, v∞
0 ), if for any d ≥ 1,

P
(
Nd

(
Gn,v

n
0
) ∼= Nd

(
G∞, v∞

0
)) −→ 1 as n → ∞.(2.8)

THEOREM 2.3. Let {(Gn, v
n
0 )}n≥1 be a sequence of rooted deterministic or

random graphs with deterministic or randomly chosen roots {vn
0 }n≥1. Suppose that

for each Gn the maximum degrees of a vertex is bounded by a fixed constant,
namely � ≥ 2. Suppose there is a rooted deterministic or random tree T with
root ρ such that (

Gn,v
n
0
) l.w.c.−→ (T , ρ) as n → ∞.(2.9)

Let LBGn,{vn
0 } := E[Y Tn,{vn

0 }] where Tn is a BFS spanning tree rooted at vn
0 of the

graph Gn. Then for β < 1
�−1(

E
[
YGn,{vn

0 }] − LBGn,{vn
0 }) −→ 0 as n → ∞.(2.10)

Moreover for β < 1
�−1 we have

lim
n→∞ LBGn,{vn

0 } = lim
n→∞ E

[
YGn,{vn

0 }] = E
[
YT ,{ρ}] < ∞.(2.11)

PROOF. Let Tn be a BFS spanning tree rooted at vn
0 of the graph Gn, and

also as defined earlier let LBGn,{vn
0 } = E[Y Tn,{vn

0 }]. Fix d ≥ 1 and En be the event
[Nd(Gn, v

n
0 ) ∼= Nd(T , ρ)]. Note that En depends on d . Now from Theorem 2.1,

LBGn,{vn
0 } ≤ E

[
YGn,{vn

0 }] = E
[
YGn,{vn

0 }1En

] + E
[
YGn,{vn

0 }1Ec
n

]
.(2.12)

Now under our assumption, the degree of any vertex of Gn is bounded by � and
β < 1

�−1 , so using inequality (2.1), we get

E
[
YGn,{vn

0 }1Ec
n

] ≤ 1 + β

1 − (� − 1)β
P

(
Ec

n

)
.(2.13)

Further note that if En occurs, Nd(Gn, v
n
0 ) is a tree rooted at vn

0 and hence it is
then a sub-tree of Tn. Thus if En occurs, Nd(Gn, v

n
0 ) = Nd(Tn, v

n
0 ). Like earlier,

let ∂∗
dNd(Tn, v

n
0 ) be the set of infected vertices in Tn after d units of time starting

with one infected vertex vn
0 . Then we have

E
[
YGn,{vn

0 }1En

] ≤ E
[
YNd(Tn,vn

0 ),{vn
0 }1En

] + E
[
YGn,∂∗

d Nd(Tn,vn
0 )1En

]
≤ LBGn,{vn

0 } + 1 + β

1 − (� − 1)β
E

[∣∣∂∗
dNd

(
Tn, v

n
0
)∣∣](2.14)

≤ LBGn,{vn
0 } + β(1 + β)�(β(� − 1))d−1

1 − (� − 1)β
.
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For the second inequality, we use (2.1). For the last inequality, note that there
are at most �(� − 1)d−1 self-avoiding paths of length d from vn

0 and each
path has probability βd of infections occurring all along the path. Therefore
E[|∂∗

dNd(Tn, v
n
0 )|] ≤ β�(β(� − 1))d−1.

Now under assumption (2.9), we have limn→∞ P(Ec
n) = 0, so we conclude that

for any d ≥ 1,

0 ≤ lim sup
n→∞

(
E

[
YGn,{vn

0 }] − LBGn,{vn
0 }) ≤ β(1 + β)�(β(� − 1))d−1

1 − (� − 1)β
.

This proves (2.10) by taking d → ∞ as β < 1
�−1 .

Now for proving (2.11), we first observe that from (2.9) the degree of any vertex
of T is also bounded by �. So using (2.1), we get that for β < 1

�−1

E
[
YNd(T ,ρ),{ρ}] ≤ 1 + β

1 − (� − 1)β
.

Moreover from the definition, YNd(T ,ρ),{ρ} ↑ YT ,{ρ} as d → ∞. So by the mono-
tone convergence theorem, we have

lim
d→∞ E

[
YNd(T ,ρ),{ρ}] = E

[
YT ,{ρ}] ≤ 1 + β

1 − (� − 1)β
< ∞.(2.15)

Fix ε > 0, since β < 1
�−1 , so we can find d ≥ 1 such that

∣∣E[
YT ,{ρ}] − E

[
YNd(T ,ρ),{ρ}]∣∣ < ε(2.16)

and

β(1 + β)�(β(� − 1))d−1

1 − (� − 1)β
< ε.(2.17)

Further, as the degree of any vertex of T is bounded by �, so arguing similarly to
the derivation of the equation (2.13), we conclude

E
[
YNd(T ,ρ),{ρ}1Ec

n

] ≤ 1 + β

1 − (� − 1)β
P

(
Ec

n

)
.(2.18)

Further combining (2.13) and the first inequality of (2.14), we get∣∣E[
YGn,{vn

0 }] − E
[
YNd(Gn,vn

0 ),{vn
0 }1En

]∣∣
≤ β(1 + β)�(β(� − 1))d−1

1 − (� − 1)β
+ 1 + β

1 − (� − 1)β
P

(
Ec

n

)
(2.19)

≤ ε + 1 + β

1 − (� − 1)β
P

(
Ec

n

)
,
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where the last equality follows from (2.17). Finally,∣∣E[
YGn,{vn

0 }] − E
[
YT ,{ρ}]∣∣ ≤ ∣∣E[

YGn,{vn
0 }] − E

[
YNd(Gn,vn

0 ),{vn
0 }1En

]∣∣
+ ∣∣E[

YNd(Gn,vn
0 ),{vn

0 }1En

] − E
[
YNd(T ,ρ),{ρ}]∣∣

+ ∣∣E[
YNd(T ,ρ),{ρ}] − E

[
YT ,{ρ}]∣∣

≤ 2ε + 2(1 + β)

1 − (� − 1)β
P

(
Ec

n

)
,

where the last inequality follows from equations (2.16), (2.17), (2.18) and (2.19)
and also observing the fact that

E
[
YNd(Gn,vn

0 ),{vn
0 }1En

] = E
[
YNd(T ,ρ),{ρ}1En

]
.

Now under our assumption (2.9) we have P(En) −→ 1. So we conclude that

lim
n→∞ E

[
YGn,{vn

0 }] = E
[
YT ,{ρ}].(2.20)

This completes the proof using (2.10). �

An immediate and interesting application of the above theorem is the following
result which gives an explicit formula for the limit of epidemic spread on a ran-
domly selected r-regular graph when the infection starts from an randomly chosen
vertex.

THEOREM 2.4. Suppose Gn is a graph selected uniformly at random from the
set of all r-regular graphs on n vertices where we assume nr is an even number.
Let vn

0 be an uniformly selected vertex of Gn. Then for β < 1
r−1 ,

lim
n→∞ E

[
YGn,{vn

0 }] = 1 + β

1 − (r − 1)β
.(2.21)

We note that in this case, the upper bound given in [7] is 1
1−rβ

when β < 1
r

which is strictly bigger than the exact answer given in (2.21).

PROOF OF THEOREM 2.4. It is known [1, 9] that if Gn is a graph selected
uniformly at random from the set of all r-regular graphs on n vertices, where nr is
even and vn

0 be a randomly selected vertex of Gn then

(
Gn,v

n
0
) l.w.c.−→ (Tr , φ),(2.22)

where Tr is the infinite r-regular tree with root say φ. Now E[YTr ,φ] = 1 +
rβE[Sr,β] where Sr,β is the total size of a sub-critical Galton–Watson branching
process with progeny distribution Binomial(r −1, β). The result then follows from
Theorem 2.3 and the fact E[Sr,β] = 1

1−(r−1)β
[3]. �
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2.2. Starting with more than one infected vertex. Now suppose instead of
one infected vertex, we start with k infected vertices given by I := {v0,1, v0,2, . . . ,

v0,k}. The following theorem gives a lower bound similar to that of Theorem 2.1.

THEOREM 2.5. Let G be an arbitrary finite graph and I := {v0,j }kj=1 be a
fixed set of k vertices. Let T be a spanning forest of the connected components of G

containing the vertices in I with exactly k trees which are rooted at the vertices
in I . Then

E
[
YT,I ] ≤ E

[
YG,I ]

for all 0 < β < 1.(2.23)

Moreover, if T is a breath-first-search spanning forest of the connected components
of G containing the vertices in I with exactly k trees which are rooted at the
vertices in I , then

E
[
YT,I ] ≤ E

[
Y T ,I ] ≤ E

[
YG,I ]

for all 0 < β < 1.(2.24)

Given a finite labeled graph G and a fixed set of vertices I = {v0,j }kj=1 of it,
by a breath-first-search spanning forest of the connected components of G con-
taining the vertices in I with exactly k trees which are rooted at the vertices in I ,
we mean a spanning forest of G with exactly k connected components which are
rooted at the vertices {v0,1, v0,2, . . . , v0,k}, that are obtained through the breath-
first-search algorithm, starting at some vertex v ∈ I and assuming that all the ver-
tices {v0,1, v0,2, . . . , v0,k} are at the same level. Alternately, we can consider a new
graph G∗ which is same as G except it has one “artificial” vertex, say v∗ which
is connected to the vertices v0,1, v0,2, . . . , v0,k through k “artificial” edges, and we
perform the BFS algorithm on G∗ starting with the vertex v∗, to obtain a BFS
spanning tree, say T ∗ of G∗ rooted at v∗. Then a breath-first-search spanning for-
est of G with exactly k trees which are rooted at the vertices {v0,1, v0,2, . . . , v0,k}
is given by the forest T ∗ \ {v∗}. This alternate description is quite useful in prac-
tice. Note that if {Ti}1≤i≤k are the k connected components, rooted, respectively,
at {v0,1, v0,2, . . . , v0,k} of T , a breath-first-search spanning forest of the connected
components of G containing the vertices in I , then the following identity holds for
every β ∈ (0,1):

E
[
Y T ,I ] =

k∑
i=1

E
[
Y Ti ,I

] = E[Y T ∗,{v∗}] − 1

β
.(2.25)

Using the above identity, we can now generalize all the results of the previous
section for epidemic spread starting with more than one infected vertex.

We write LBG,I for E[Y T ,I ] which is the lower bound of E[YG,I ] for starting
with k infected vertices given by I . Observe that from equation (2.25) we can write

LBG,I =
k∑

i=1

E
[
Y Ti ,I

]
,(2.26)
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where T = ⋃k
i=1 Ti is as above. It is worth nothing here that the lower bound

LBG,I does not depend on the choice of T , but the representation given in equa-
tion (2.26) uses a specific choice of T .

THEOREM 2.6. Let {(Gn, In)}n≥1 be a sequence of graphs where each Gn

has k-roots given by the set In := {vn
0,1, v

n
0,2, . . . , v

n
0,k} such that there exists a se-

quence αn = �(logn) with Nαn(Gn, In) := ⋃k
j=1 Nαn(Gn, v

n
0,j ) is a forest with k

components. Then, there exists 0 < β0 ≤ 1, such that for all 0 < β < β0,∣∣E[
YGn,In

] − LBGn,In
∣∣ −→ 0 as n → ∞(2.27)

and therefore E[YGn,In ]
LBGn,In

−→ 1 as n → ∞.

The proof of this result is similar to that of Theorem 2.2 and follows from the
identity (2.25). The details are thus omitted.

Our next result is parallel to the Theorem 2.3 which needs a generalization of
the concept of local weak convergence which was introduced by Wästlund [11].

We will say a sequence of random or deterministic graphs {Gn}n≥1 with k-roots
given by In := {vn

0,1, v
n
0,2, . . . , v

n
0,k}, n ≥ 1 converges to a random or deterministic

graph G∞ with k-roots say I∞ := {v∞
0,1, v

∞
0,2, . . . , v

∞
0,k} in the sense of local weak

convergence (l.w.c), and write (Gn, In)
l.w.c.−→ (G∞, I∞) if for any d ≥ 1,

P
(
Nd

(
Gn,v

n
0,j

) ∼= Nd

(
G∞, v∞

0,j

)
for all 1 ≤ j ≤ k

) −→ 1
(2.28)

as n → ∞.

Note that for a sequence deterministic graphs, (2.28) means that the event occurs
for “large” enough n.

THEOREM 2.7. Let (Gn)n≥1 be a sequence of deterministic or random
graphs. Suppose each Gn has deterministic or randomly chosen k-roots given by
In := {vn

0,1, v
n
0,2, . . . , v

n
0,k} and maximum degree of each Gn is bounded by a fixed

constant, namely � ≥ 2. Suppose T := ⋃k
j=1 Tj is a forest with k-rooted tress

with roots I∞ := {φ1, φ2, . . . , φk}. We assume that

(Gn, In)
l.w.c.−→ (T , I∞) as n → ∞.(2.29)

Then for β < 1
�−1 , (

E
[
YGn,In

] − LBGn,In
) −→ 0,(2.30)

as n → ∞. Moreover for β < 1
�−1 we have

lim
n→∞ LBGn,In = lim

n→∞ E
[
YGn,In

] = E
[
YT ,I∞] =

k∑
j=1

E
[
YTj ,{φj }].(2.31)
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PROOF. For each n ≥ 1, as above, we define a new rooted graph G∗
n with ar-

tificial vertex v∗
n which is connected to the k-roots in In of Gn through k artificial

edges. Also we consider T ∗ defined similarly with an artificial root φ∗ connect-
ing to {φ1, φ2, . . . , φk}. Then our assumption of local weak convergence (2.29) is
equivalent to (

G∗
n, v

∗
n

) l.w.c.−→ (
T ∗, φ∗)

.(2.32)

This together with relation (2.25) and Theorem 2.3 completes the proof. �

It is worth noting that in case {Tj }1≤j≤k are i.i.d. (if they are random) or iso-
morphic (if they are constant), then equation (2.31) can be reformulated as

lim
n→∞ LBGn,In = lim

n→∞ E
[
YGn,In

] = E
[
YT ,I∞] = kE

[
YT1,{φ1}].(2.33)

As in the case of starting with one infected vertex, the following theorem is an
immediate application of the above results.

THEOREM 2.8. Suppose Gn is a graph selected uniformly at random from the
set of all r-regular graphs on n vertices where we assume nr is an even number.
Let In := {vn

0,1, v
n
0,2, . . . , v

n
0,k} be k uniformly and independently selected vertices

of Gn. Then for β < 1
r−1 ,

lim
n→∞ E

[
YGn,In

] = k
1 + β

1 − (r − 1)β
.(2.34)

PROOF. Since the vertices in In are selected uniformly at random, from [1]
we have

(Gn, In)
l.w.c.−→ (Tr , I∞),(2.35)

where I∞ := {φ1, φ2, . . . , φk} and Tr is a forest with k infinite r-regular tree with
roots in I∞. The result then follows from Theorems 2.7 and 2.4. �

Once again we note that in this case, the upper bound k
1−rβ

given in [7] for

β < 1
r
, is strictly bigger than the exact answer given in (2.34), and the gap increases

with k, the initial number of infections.

3. Discussion. The goal of this study has been to get a better idea of the ex-
pected total number of vertices ever infected with as little assumption as possible
on the underlying graph G. Our approach has been to find an appropriate lower
bound of this expectation. Although an approximation from above with an upper
bound would be a more conservative and hence useful from practical point view.
Unfortunately, the known upper bounds (e.g., the ones derived in [7]) hold only
for “small” values of the parameter β and often are much larger than the exact
quantity. For an arbitrary finite network, we have obtained a lower bound of the
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expectation of the number of vertices ever infected for any value of the parameter β

which is computable through the breadth-first search algorithm. Theorems 2.2, 2.3,
2.6 and 2.7 show that this lower bound is asymptotically exact for a large class of
graphs when β value is “small,” which always includes the values of β for which
the upper bounds in [7] are defined.

As discussed in the Introduction in disguise, the work also provides lower bound
for the expected size of the cluster of i.i.d. Bernoulli bond percolation model on
finite graphs. Theorems 2.2, 2.3, 2.6 and 2.7 show that this bound is asymptotically
exact, but only in the sub-critical regime, for graphs with bounded degree with
large girth.
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