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Abstract

We consider the generalization of the Pólya urn scheme with possibly infinitely many
colors, as introduced in [37], [4], [5], and [6]. For countably many colors, we prove
almost sure convergence of the urn configuration under the uniform ergodicity assump-
tion on the associated Markov chain. The proof uses a stochastic coupling of the
sequence of chosen colors with a branching Markov chain on a weighted random
recursive tree as described in [6], [31], and [26]. Using this coupling we estimate the
covariance between any two selected colors. In particular, we re-prove the limit theorem
for the classical urn models with finitely many colors.
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1. Introduction

Pólya urn schemes and their various generalizations have been a key element of study for
random processes with reinforcements. Starting from the seminal work of Pólya [35], various
types of urn schemes with finitely many colors have been widely studied in the literature. See
[33] for an extensive survey of the known classical results; some of the modern works can be
found in [24], [25], [3], [17], [8], [9], [12], [10], and [11].

Pólya urn models with colors indexed by a general Polish space were first introduced by
Blackwell and MacQueen [7]. They showed that the so-called Ferguson distribution [16] on the
set of probabilities on a Polish space can be obtained as a limit of a Pólya-type urn model. Other
seminal work on urn models with possibly infinitely many colors was done by Hoppe [22, 23]
in the context of population genetics. He introduced a new type of urn scheme [22], where
at each step with some positive probability a new color can be introduced. Several authors
studied this slightly different model in the context of the Griffiths–Engen–McCloskey (GEM)
model, the Poisson–Dirichlet distribution, and the Ewens sampling formula [13, 20, 21, 38].
It was also observed that Hoppe’s urn scheme has a deep relation with certain combinatorial
stochastic processes, known as the Chinese restaurant process [1, 34]. It is to be noted here
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that one of the key ingredient in studying these urn models is the fact that the sequence of
colors are exchangeable.

A somewhat different generalization for balanced urn schemes with infinitely many colors
was introduced in [37] and subsequently in the papers [4], [5], and [6]. These models are
significantly different than the two other models discussed above. Typically for this class of
models the observed color sequence need not be exchangeable, and a hence new method of
analysis was introduced in [4], [5], and [6]. These works have since generated a lot of interest
and such models are now receiving considerable attention [26, 27, 31]. In this paper we will
consider the infinite color balanced urn model as introduced in [4], [5], and [6], where the color
set is countably infinite.

1.1. Model

In this work we will consider the same generalization of the Pólya urn scheme with infinitely
many colors as defined in [4], [5], and [6]. However, we will focus on the special case where
the set of colors is countably infinite, which will be denoted by S. We follow a similar frame-
work and notation to [4], [5], and [6]. For the sake of completeness, we will provide a brief
description of the model.

Let R be an S× S (infinite) matrix with non-negative entries, representing the replacement
scheme. We will assume that R is balanced, that is, each row sum is equal and finite. In that
case it is customary to take R to be a stochastic matrix (see [6] for details).

We let Un := (Un,v)v∈S ∈ [0,∞)S denote the random configuration of the urn at time n≥ 0.
We will view it as an infinite vector (with non-negative entries) that is in �1 ≡ �1(S) and can
thus also be viewed as a (random) finite measure on S. Intuitively, we will define Un, such that
if Zn is the randomly chosen color at the (n+ 1)th draw, then the conditional distribution of Zn,
given the ‘past’, will satisfy, for all z ∈ S,

P(Zn = z |Un, Un−1, . . . , U0)∝Un(z).

Formally, starting with a non-random U0 ∈ �1, we define (Un)n≥0 ⊆ �1 recursively as

Un+1 =Un + RZn , (1.1)

where Rz denotes the zth row of the matrix R, and

P(Zn = z |Un, Un−1, . . . , U0)= Un,z

n+ t
, (1.2)

where U0 is a �1-vector with total mass denoted by 0 < t <∞, that is,
∑

v∈S U0,v = t ∈ (0,∞).
Observe that one can now associate with such an urn model a Markov chain (Xn)n≥0 on

the countable state space S, with transition matrix R and initial distribution U0/t. Conversely,
given any Markov chain (Xn)n≥0, on the countable state space S, with transition matrix R and
a vector U0 ∈ �1, one can associate a balanced urn model (Un)n≥0, satisfying equations (1.1)
and (1.2). We describe this as a Markov chain associated with the urn model (Un)n≥0.

Bandyopadhyay and Thacker [5] and Mailler and Marckert [31] have observed that the
asymptotic properties of the urn model so defined are determined by the asymptotic properties
of the associated Markov chain. In fact they have shown [5, 31] that the urn sequence (Un)n≥0
has the same law as that of a branching Markov chain with transition matrix R, initial distribu-
tion U0/t, and defined on a random recursive tree. In Section 2 we provide the details of this
representation.

https://doi.org/10.1017/jpr.2020.37 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.37


Strong convergence of infinite color balanced urns 855

1.2. Main result

In this paper we consider the case when R is irreducible, aperiodic, and positive recurrent.
From the classical theory (see Section XV.7 of [15] for the details), it is well known that, in
that case, the chain has a unique stationary distribution, say π , satisfying the equation

πR= π .

Moreover, such a chain is ergodic, that is, for any u, v ∈ S,

lim
n→∞ Rn(u, v)= πv,

where Rn is the n-step transition matrix, which is simply the n-fold composition of R with
itself. Note that as S is countable, Rn is just the n-fold multiplication of R.

In this work we will further assume that the chain is uniformly ergodic. For the sake of
completeness, we provide the definition here. (One often uses a version with summation over
v in (1.3); we need only the version below.)

Definition 1. A Markov chain with transition matrix R on a countable state space S is called
uniformly ergodic if there exist positive constants, 0 < ρ < 1 and C > 0, such that, for any time
n≥ 1 and for any states u, v ∈ S,

|Rn(u, v)− πv| ≤Cρn. (1.3)

We note here that if S is finite then an irreducible and aperiodic chain is necessarily uni-
formly ergodic (see Theorem 4.9 of [29]). However, when S is infinite (even countable) there
are ergodic chains which are not uniformly ergodic (see e.g. [19]).

Our main result is as follows.

Theorem 1. Consider an urn model (Un)n≥0 as defined by the equations (1.1) and (1.2),
with colors indexed by a countably infinite set S, a balanced replacement matrix R, and an
initial configuration U0. We assume that R is a stochastic matrix which is irreducible, ape-
riodic, positive recurrent with stationary distribution π , and uniformly ergodic. That is, it
satisfies (1.3).

(i) Then, as n→∞,
Un

n+ t
−→ π a.s., (1.4)

where the convergence is coordinate-wise and also in �1.

(ii) For any v ∈ S, let Nn,v :=∑n
k=0 1{Zk=v}, denote the number of times the color v is chosen

up to time n. Then, as n→∞,

Nn,v

n+ 1
−→ πv a.s., (1.5)

where the convergence is coordinate-wise and also in �1.

1.3. Background and motivation

It is known (see e.g. Theorems 3.3(a) and 3.4(a) of [5]) that under our set-up, as n→∞,

Un

n+ t

p−→ π,
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and also, for any v ∈ S,

P(Zn = v)= E[Un,v]

n+ t
−→ πv.

Recall that Zn denotes the randomly chosen color at the (n+ 1)th draw from the urn, when
its (random) configuration is Un. Our result strengthens this result to strong convergence.
However, we would like to point out that the results in [5, Theorems 3.3(a) and 3.4(a)] only
need assumption of ergodicity for the associated Markov chain, while our main result in this
work needs a stronger assumption of uniform ergodicity of the associated Markov chain.
As discussed above, the two assumptions are identical when S is finite. It is worthwhile to
note here that for S finite our result is essentially the classical result for Freedman–Pólya–
Eggenberger-type urn models [2, 3, 18, 24]. The classical results mainly use three types of
technique, namely martingale techniques [8, 9, 12, 18], stochastic approximations [28], and
embedding into continuous-time pure birth processes [2, 3, 24, 25]. Typically the analysis of
a finite color urn is heavily dependent on the Perron–Frobenius theory [36] of matrices with
positive entries and the Jordan decomposition of finite-dimensional matrices [2, 3, 8, 12, 18,
24, 25]. Unfortunately such techniques are unavailable when S is infinite, even when count-
able. Our method bypasses the use of such techniques and instead uses the newer approach
developed in [5] and [31]. Our extra assumption (uniform ergodicity) is needed only when S
infinite. Thus the result stated above re-proves the classical result for the finite color urn model
using the new technique. The result essentially completes the work developed in [5] and [31]
for the case when S is countable. We would like to note here that similar results for a null
recurrent case (when the chain is a random walk) has been derived in [31] and [26].

1.4. Discussion on the assumption of uniform ergodicity

As discussed above, when S is finite the assumption of uniform ergodicity is equivalent
to the assumption of ergodicity of the associated Markov chain [29]. In particular, it holds
for irreducible and aperiodic chains. However, when S is infinite it is indeed a much stronger
assumption. Necessary and sufficient conditions under which a chain is uniformly ergodic can
be found in [32]. In particular, an irreducible and aperiodic chain on a countable state space is
uniformly ergodic if and only if the so-called Doeblin’s condition is satisfied (see Section 16.2
of [32]). This condition is satisfied by many Markov chains on a countably infinite state space,
but it is indeed restrictive. We will need this assumption in the proof we provide in Section 3.
However, we feel that this condition is not necessary in general. In fact we make the following
conjecture.

Conjecture 1. Consider an urn model (Un)n≥0 as defined by equations (1.1) and (1.2), with
colors indexed by a countably infinite set S, a balanced replacement matrix R, and an initial
configuration U0. Assume that R is a stochastic matrix which is irreducible, aperiodic, positive
recurrent with stationary distribution π . Then the convergence in (1.4) and (1.5) holds a.s. and
also in �1.

1.5. Outline

In the following section we provide some details about the representation of a balanced urn
in terms of a branching Markov chain on a weighted random recursive tree, which is our main
tool to prove Theorem 1. Section 3 provides the proof of Theorem 1. In Section 4 we discuss a
non-trivial application of our main result.
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2. Coupling of branching Markov chains and urn models

It is known from [37], [5], [31], and [26] that the law for the entire sequence of randomly
selected colors (Zn)n≥0 can be represented in terms of a branching Markov chain on a random
recursive trees. For the sake of completeness, we will briefly discuss this representation here.
We will later use this representation to prove the main result of the paper.

2.1. Weighted random recursive tree

Random recursive trees (RRT) are well studied in the literature; see Chapter 6 of [14]. The
weighted version for RRT has been introduced and defined in [26]. For n≥−1, let Tn be the
random recursive tree on n+ 2 vertices, with o as the root and the other vertices labeled as
{w0, w1, . . . , wn}, where the increasing subscripts of the vertices indicate the order in which
they are attached. The root is given some initial weight t > 0. Every other node has weight 1.
Initially we start with T−1, which consists only of the root, denoted by o. Now we construct
recursively the sequence of trees (Tn)n≥−1, where the parent of the incoming node in Tn is
chosen in proportion to its weight, that is, the parent is the root o, with probability t/(n+ t+ 1),
and any other vertex with probability 1/(n+ t+ 1). Define the infinite random recursive tree as

T :=
⋃

n≥−1

Tn.

2.2. Branching Markov chain on RRT

The definition for branching Markov chains on the random recursive tree, which we abbre-
viate as BMC on RRT, as discussed in the context of this paper, is detailed in [5] and [31]. To
facilitate reading of this paper, we briefly discuss the BMC on RRT as given in [5].

Recall that the set of colors is indexed by a set S. Let � �∈ S be a symbol. We say that a
stochastic process (Wn)n≥−1 with state space S ∪� is a branching Markov chain on T , starting
at the root o and at a position W−1 =� if, for any n≥ 0 and for any z ∈ S,

P(Wn = z |Wn−1, Wn−2, . . . , W−1;Tn)=
{

U0(z)/t if
←
wn= o,

R(Wj, z) if
←
wn=wj,

where
←
wn is the parent of the vertex wn in Tn. We denote the vertices of Tn as

{o, w0, w1, . . . , wn}.

2.3. Representation theorems

The coupling of (Zn)n≥0 and (Wn)n≥0 is given in detail in [5] and [31]. Here we follow the
same notation as in [5]. The following representation is available in Theorem 2.1 of [5]:

(Zn)n≥0
d= (Wn)n≥0. (2.1)

3. Proof of the main results

Recall that Tn denotes the weighted RRT with n+ 2 vertices; for convenience we also use
Tn to denote its vertex set {o, w0, w1, . . . , wn}. Let T ′n := Tn \ {o} = {w0, w1, . . . , wn}, the set
of n+ 1 vertices excluding the root. Note that the RRT Tn is random, but the vertex set is
non-random.
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For u, w ∈ Tn, let d(u, w) denote the graph distance between u and w. In particular, d(o, u)
is the depth of u, which we also denote by d(u).

We begin by proving the following lemma, where ρ is as in Definition 1.

Lemma 1. Let L(u, w) denote the least common ancestor for the vertices u, w in the random
recursive tree (RRT). Given the RRT Tn, we have for some suitable constant C > 0

Cov(1{Wu=v}, 1{Ww=v} | Tn)≤Cρmax (d(u,L(u,w)),d(w,L(u,w)) ≤Cρd(u,w)/2. (3.1)

Proof. Let Pn denote the conditional probability given the RRT Tn. By definition,

Cov(1{Wu=v}, 1{Ww=v} | Tn)= Pn(Wu = v, Ww = v)− Pn(Wu = v)Pn(Ww = v).

With L(u, w) denoting the least common ancestor between u and w, it is easy to see that

Pn(Wu = v, Ww = v)=
∑
s∈S

Pn(WL(u,w) = s)Rd(u,L(u,w))(s, v)Rd(w,L(u,w))(s, v).

Thus

Cov(1{Wu=v}, 1{Ww=v} | Tn)

=
∑
s∈S

Pn(WL(u,w) = s)Rd(u,L(u,w))(s, v)Rd(w,L(u,w))(s, v)

−
∑

s,s′∈S

Pn(WL(u,w) = s)Pn(WL(u,w) = s′)Rd(u,L(u,w))(s, v)Rd(w,L(u,w))(s′, v)

=
∑
s∈S

Pn(WL(u,w) = s)Rd(u,L(u,w))(s, v)

×
[

Rd(w,L(u,w))(s, v)−
∑
s′∈S

Pn(WL(u,w) = s′)Rd(w,L(u,w))(s′, v)

]
=
∑
s∈S

Pn(WL(u,w) = s)Rd(u,L(u,w))(s, v)

×
[

(Rd(w,L(u,w))(s, v)− πv)−
∑
s′∈S

Pn(WL(u,w) = s′)(Rd(w,L(u,w))(s′, v)− πv)

]
.

The last equality is obtained by adding and subtracting πv inside the final square bracket. Recall
that we have assumed uniform ergodicity for the Markov chain, so for both s,s′ we have

|Rd(w,L(u,w))(s, v)− πv|< Cρd(w,L(u,w)),

which implies that
|Cov(1{Wu=v}, 1{Ww=v} | Tn)| ≤ 2Cρd(w,L(u,w)).

The first inequality in (3.1) follows by symmetry. The second inequality is obvious as
0 < ρ < 1. �
Lemma 2. Fix r with 0 < r < 1 and define

An = An(r) :=E

∑
u∈T ′n

rd(u), (3.2)

Bn = Bn(r) :=E

∑
u,w∈T ′n

rd(u,w). (3.3)
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Then, for some constant C (possibly depending on r and t) and all n≥ 1,

An ≤Cnr, (3.4)

Bn ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cn2r 1

2
< r < 1,

Cn log (n+ 1) r= 1

2
,

Cn 0 < r <
1

2
.

(3.5)

Much more precise asymptotic formulas can be derived by the same method, but we do not
need them.

Proof. Recall that wn is the (n+ 1)th coming vertex, and assume that wn is attached to
w ∈ Tn−1. Then, for all u ∈ Tn−1,

d(u, wn)= d(u, w)+ 1.

Hence

An = An−1 +Erd(wn)

= An−1 + 1

n+ t
E

( ∑
u∈T ′n−1

rd(u)+1

)
+ t

n+ t
r

=
(

1+ r

n+ t

)
An−1 + tr

n+ t
.

Consequently, by induction and using A0 = r,

An = r
n∑

k=0

(
t

k+ t

n∏
j=k+1

(
1+ r

j+ t

))
= rt

n∑
k=0

�(n+ 1+ t+ r)

�(n+ 1+ t)

�(k+ t)

�(k+ 1+ t+ r)
. (3.6)

By standard asymptotics for the gamma function (following from Stirling’s formula), this
yields

An ≤ rt
n∑

k=0

C
(n+ 1)r

(k+ 1)r+1
≤C(n+ 1)r, (3.7)

showing (3.4).
For (3.5) we argue similarly. We have

Bn = Bn−1 + 2E

( ∑
u∈T ′n−1

rd(u,wn)

)
+ 1

= Bn−1 + 2

n+ t
E

( ∑
u,w∈T ′n−1

rd(u,w)+1

)
+ 2t

n+ t
E

( ∑
u∈T ′n−1

rd(u,o)+1

)
+ 1

=
(

1+ 2r

n+ t

)
Bn−1 + 2rt

n+ t
An−1 + 1
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and, with A−1 := 0, using B0 = 1,

Bn =
n∑

k=0

((
1+ 2rt

k+ t
Ak−1

) n∏
j=k+1

(
1+ 2r

j+ t

))
. (3.8)

We use the crude estimate Ak−1 ≤ k and estimate the product in (3.8) using gamma functions
as in (3.6)–(3.7) (with r replaced by 2r). This yields

Bn ≤C
n∑

k=0

n∏
j=k+1

(
1+ 2r

j+ t

)
≤C

n∑
k=0

(n+ 1)2r

(k+ 1)2r
.

This implies (3.5) by a simple summation. �

3.1. Proof of the Theorem 1

Proof. We observe that the basic recursion (1.1) can also be written as

Un+1 =Un + χn+1R,

where χn+1 = (χn+1,v)v∈S is such that χn+1,Zn = 1 and χn+1,u = 0 if u �= Zn. In other words,

Un+1 =Un + RZn ,

where RZn is the Znth row of the matrix R. Hence

Un+1 =U0 +
n+1∑
k=1

χkR, (3.9)

Un+1 −U0

n+ t
= 1

n+ t

n+1∑
k=1

χkR. (3.10)

To prove (1.4), by (3.10) and since

n+ 1

n+ t
−→ 1 as n→∞,

it is enough to show that

1

n+ 1

n+1∑
k=1

χkR−→ π in �1(S), a.s. (3.11)

Since R is balanced, the mapping x �→ xR is a bounded map �1(S)→ �1(S), and since
furthermore πR= π , to prove (3.11) it is enough to show that, as n→∞,

1

n+ 1

n+1∑
k=1

χk −→ π in �1(S), a.s. (3.12)

Both sides of (3.12) can be regarded as probability distributions on S, and therefore the
convergence in �1 is equivalent to convergence of every coordinate, that is, to

1

n+ 1

n+1∑
k=1

χk,v −→ πv a.s. for every v ∈ S. (3.13)
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Moreover, (1.5) is just another way to write (3.13). Hence, to show the theorem it suffices to
show (3.13).

Recall that χk,v = 1{Zk−1=v}. From Theorem 3.3(a) of [5] (which is easily extended to
general t), it follows that

1

n+ 1
E

[
n+1∑
k=1

χk,v

]
= 1

n+ 1

n∑
k=0

P(Zk = v)−→ πv as n→∞.

Note that |1{Zk=v} −E1{Zk=v}| ≤ 1. Therefore, from the Strong Law of Large Numbers for
correlated random variables [30, Theorem 1], it follows that if we prove

∑
n≥0

1

n+ 1
Var

(
1

n+ 1

n∑
k=0

1{Zk=v}

)
<∞,

then, as n→∞,

1

n+ 1

n+1∑
k=1

χk,v = 1

n+ 1

n∑
k=0

1{Zk=v} −→ πv a.s.,

which will complete the proof. In other words, if we define

Jn,v :=Var

(
n∑

k=0

1{Zk=v}

)
, (3.14)

then it suffices to show that ∞∑
n=1

1

n3
Jn,v <∞. (3.15)

Now, recalling (2.1), (3.14) can be expanded as

Jn,v =Var

(
n∑

k=0

1{Wk=v}

)
=

∑
u,w∈T ′n

Cov(1{Wu=v}, 1{Ww=v}). (3.16)

We use the conditional covariance formula to get

Cov(1{Wu=v}, 1{Ww=v})

=E[Cov(1{Wu=v}, 1{Ww=v} | Tn)]+Cov(E[1{Wu=v} | Tn],E[1{Ww=v} | Tn]). (3.17)

Now, using Lemma 1, we obtain

Cov(1{Wu=v}, 1{Ww=v} | Tn)≤Cρd(u,w)/2,

where d(u,w) denotes the graph distance between u and w, and C is a suitable positive constant.
Therefore, from (3.16)–(3.17), the contribution to Jn,v from the first part of (3.17) is at most

CE

( ∑
u,w∈T ′n

ρd(u,w)/2

)
=CB(ρ1/2),

where we recall (3.3) and take r := ρ1/2.
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For the second part on the right-hand side of (3.17), we have that, given Tn, the distribution
of Wu is (U0/t)Rd(u). Hence

E(1{Wu=v} | Tn)= (U0/t)Rd(u)(v),

and thus it follows from the uniform ergodicity assumption (1.3) that

|E(1{Wu=v} | Tn)− πv| ≤Cρd(u).

Consequently ∑
u,w∈T ′n

Cov(E[1{Wu=v} | Tn], E[1{Ww=v} | Tn])

=Var

(∑
u∈T ′n

E[1{Wu=v} | Tn]

)

=Var

(∑
u∈T ′n

(E[1{Wu=v} | Tn]− πv)

)

≤E

(∑
u∈T ′n

(E[1{Wu=v} | Tn]− πv)

)2

≤E

(
C
∑
u∈T ′n

ρd(u)

)2

=CE

∑
u,w∈T ′n

ρd(u)+d(w)

≤CE

∑
u,w∈T ′n

ρd(u,w)

=CBn(ρ),

where we use the fact that d(u)+ d(w)≥ d(u, w) and 0 < ρ < 1 to obtain the last inequality.
Hence the contribution to Jn,v from the second part of (3.17) is at most CBn(ρ).

Combining the contributions from the two parts of (3.17), we have thus shown that, recalling
0 < ρ < 1,

Jn,v ≤CBn(ρ1/2)+CBn(ρ)≤CBn(ρ1/2).

Hence we can use Lemma 2 and conclude (3.15), which completes the proof. �

4. Random walk with linear reinforcement on the star graph

In this section we consider a linearly reinforced random walk model on the countably infi-
nite star graph. We will show that the almost sure convergence for the local times for this walk
can be derived using our main result stated in Section 1.2.

Let us consider a special type of vertex-reinforced nearest neighbor random walk (Xn)n≥0 on
an infinite star graph, with a loop at the root. We denote the root by v0 and the other vertices by
vi, i≥ 1. Each edge is regarded as a pair of directed edges in opposite directions; the notation
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(vi, vj) indicates that the edge is from vi to vj. We impose on the walk the condition that v0 is a
special vertex, in the sense that, whenever the walker takes the edge (vj, v0), for any j, it puts
an additional weight of αj := (αj,i)i≥0 on the vertices, such that

∑
i αj,i <∞. If the edge taken

is (v0, vj), j �= 0, then no vertex is reinforced.
Initially, X0 ≡ v0, the walker is at the root and jumps to one of the adjacent neighbors with

probability proportional to the given weights δi, such that δ :=∑i≥0 δi <∞. At any time n≥ 1,
the transition probabilities for the random walk are governed by

P(Xn+1 = vj | Xn = vi)=
⎧⎨⎩

�n,j∑
k �n,k

when i= 0,

1{j=0} for i≥ 1,
(4.1)

where �n,j denotes the weight at the vertex vj at time n.
Observe that if we let σk denote the random time at which the weights are updated for the

kth time, then σk+1 = σk + Yk+1, where Yk+1 ∈ {1, 2} is a random variable such that

P(Yk+1 = 1 |�0, �σ1 , . . . , �σk )= �σk,0∑
j �σk,j

.

Therefore the weight sequence at these updating random times can be coupled with an infinite
color urn model, as described below.

Consider the urn model with colors indexed by S := {0, 1, 2, . . .}, and an initial composition
U0 = (δi)i≥0. The replacement matrix is such that the jth row of the matrix is αj. Since the graph
is a star graph, for the random walk to take a step along (vi, v0), i �= 0, it implies that the walker
has jumped along the edge (v0, vi) according to the transition probabilities given by (4.1). So if
we consider the sequence of weights at time σ1, σ2, . . . , then the processes are coupled such
that

(�σn )n≥0 = (Un)n≥0. (4.2)

In particular, if
∑

i αj,i = 1 for each j, then the replacement matrix is a stochastic matrix.
Henceforth we assume that αj is a probability vector for every j≥ 0. We also assume that
the αj are such that the Markov chain corresponding to the replacement matrix is irreducible,
aperiodic, and uniformly ergodic.

A particular example of such a matrix is when α0 = (pj)j≥0, with pj > 0 and
∑

j pj = 1, and,
for j �= 0, αj,i = 1 if i= 0, and 0 otherwise. (Our conditions, including uniform ergodicity, are
easily verified.)

Theorem 2. Let Xn be a vertex-reinforced random walk on an infinite star graph with a loop at
the root, such that the replacement matrix is an irreducible, aperiodic, and uniformly ergodic
stochastic matrix. Let the transition probabilities of Xn be as in (4.1). If we let σn denote the
nth update time, then, as n→∞,

σn

n+ 1
−→ 2− π0 a.s. and in L1. (4.3)

Furthermore, for any j≥ 0, as n→∞,

�n,j

n+ δ
−→ πj

2− π0
a.s.,

where π is the stationary distribution of the coupled urn process as defined in (4.2).
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Proof. As observed earlier, σk+1 = σk + Yk+1, where Yk+1 ∈ {1, 2}, and

P(Yk+1 = 1 |�0, �σ1 , . . . , �σk )= �σk,0∑
j �σk,j

.

Let σ̃k :=∑k
i=0 1{Yj=1}. Then, from the conditional distribution of Yk above and from (4.2), we

have, using the coupling above,

σ̃n =
n∑

k=0

1{Zk=0} =Nn,0,

where Zk denotes the random color of the ball selected in the coupled urn model. From
Theorem 1(ii), we know that as n→∞, Nn,0/(n+ 1)−→ π0 a.s. Thus, as n→∞,

σ̃n

n+ 1
−→ π0 a.s.

Since σn = σ̃n + 2(n− σ̃n), (4.3) follows immediately. Since 0≤ σn/(n+ 1)≤ 1, the L1 con-
vergence in (4.3) follows by the dominated convergence theorem.

Let m(n) := sup{k : σk ≤ n}. Then it follows from (4.3) that, as n→∞,

m(n)

n+ 1
−→ 1

2− π0
a.s.

From (4.2) and Theorem 1(i), we have, as n→∞,

�n,j

n+ δ
= �σm(n),j

m(n)

m(n)

n+ δ
= Um(n),j

m(n)

m(n)

n+ δ
−→ πj

2− π0
a.s. �
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