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Abstract
In this work, we consider a modification of the usual branching random walk (BRW),
where we give certain independent and identically distributed (i.i.d.) displacements
to all the particles at the n-th generation, which may be different from the driving
increment distribution. We call this process last progeny modified branching random
walk (LPM-BRW). Depending on the value of a parameter, θ , we classify the model
into three distinct cases, namely, the boundary case, below the boundary case, and
above the boundary case. Under very minimal assumptions on the underlying point
process of the increments, we show that at the boundary case, θ = θ0, where θ0
is a parameter value associated with the displacement point process, the maximum
displacement converges to a limit after only an appropriate centering, which is of the
form c1n − c2 log n. We give an explicit formula for the constants c1 and c2 and show
that c1 is exactly the same, while c2 is 1/3 of the corresponding constants of the usual
BRW[2].We also characterize the limiting distribution.We further show that below the
boundary, θ < θ0, the logarithmic correction term is absent. For above the boundary,
θ > θ0, the logarithmic correction term is exactly the same as that of the classical
BRW. For θ ≤ θ0, we further derive Brunet–Derrida-type results of point process
convergence of our LPM-BRW to a Poisson point process. Our proofs are based on a
novel method of coupling themaximum displacement with a linear statistic associated
with a more well-studied process in statistics, known as the smoothing transformation.
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1 Introduction

1.1 Introduction and Background

Branching randomwalk (BRW)was introducedbyHammersley [22] in the early 1970s.
Over the last five decades, it has received a lot of attention from various researchers
in probability theory and statistical physics. The model, as such, is very simple to
describe. It starts with one particle at the origin. After a unit amount of time, the
particle dies and gives birth to a number of similar particles, which are placed at
possibly different locations on the real line R. These particles at possibly different
places on R form the so-called first generation of the process and can be described
through a point process, say Z on R. After another unit time, each of the particles in
the first generation behaves independently and identically as that of the parent, that is
it dies, but before that, it produces a bunch of offspring particles which are displaced
by independent copies of Z . The particles in generation one behave independently but
identically of one another. The process then continues in the next unit of time and so
on. The dynamics so produced is called a branching random walk (BRW).

Let N := Z(R) be the offspring distribution of the underlying branching process.
As will be clear in the sequel (see Sect. 1.3), without loss of any generality throughout
this article we will assume that P(N ≥ 1) = 1. As otherwise, all of our results will
hold when the process is supercritical and we conditioned on its survival.

Let Rn denote the position of the right-most particle in the generation n. In the
seminal works, Hammersley [22], Kingman [24], and Biggins [10] proved that under
very minimal condition of the displacement point process Z ,

Rn

n
−→ γ a.s., (1.1)

where γ > 0 is a constant associated with the displacement point process Z . It
is worth mentioning here that if we forget about the position of the particles and
only keep count of the number of particles, then it forms a Galton–Watson branch-
ing process with progeny distribution given by Z (R). As noted in Aldous and
Bandyopadhyay [4], the arguments of Hammersley [22] can be used to claim that
if median (Rn+1) − median (Rn) remains bounded above, then the sequence of ran-
dom variables (Rn − median (Rn))n≥0 remains tight. Similar arguments also appear
in Dekking and Host [20].

From historical point of view, it is interesting to note here that Biggins [10] wrote:
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“Of course pride of place in the open problems goes to establishingmore detailed
results than (1.1) of the kinds that are already available for branching Brownian
motion.”

Indeed, McKean [31] showed that for similar continuous time version with Branch-
ing Brownian Motion (BBM), the maximum position, when centered by its median,
converges weakly to a traveling wave solution. Later Bramson [14, 16] gave detailed
order of the centering and showed that an “extra” logarithmic term appears, which later
was termed as the Bramson correction. Later Lalley and Sellke [26] gave a different
probabilistic interpretation of the travelingwave limit through certain conditional limit
theorem and using a new concept called the derivative martingales.

In a series of papers, Bramson and Zeitouni [15, 17] showed that under fairly
general conditions, (Rn − median (Rn))n≥0 remains tight. And in 2009, two groups
of researchers, Hu and Shi [23] andAddario-Berry andReed [1], independently proved
that Rn

n has a second-order fluctuation which was identified as− 3
2 log n in probability.

Finally, in 2013, Aïdékon [2] proved that Rn − γ n + 3
2 log n converges in law to

a randomly shifted Gumbel distribution, essentially settling the long-standing open
problem of Biggins [10]. We refer to [33] for an excellent review of the classical and
recent results on BRW.

In recent days more generally, it is expected that this behavior for the maximum is
shared by the universality class of what is known as the “log-correlated fields." We
refer to [6] for a detailed review of such generalization and results there in.

In this work, we consider amodified version of the classical BRW. Themodification
is done at the last generationwherewe add i.i.d. displacements of a specific form. Since
the modifications have been done only at the last generation, so we call this model last
progeny modified branching random walk or abbreviate it as LPM-BRW. The model
is described in more detail in the following subsection. We establish several results
similar toAïdékon [2] for ourmodel and show that the limit has the desired universality.
Further work on large deviation for the same model and centered limits for a similar
but inhomogeneous displacements can be found in [21] and [7], respectively.

While we were preparing this manuscript Maillard and Mallein [29] considered
a general framework for characterizing the limiting distribution of what they called
“branching-type structure" via a fixed point of an operator referred to as the branching
convolution introduced by Bertoin and Mallein [9] on the set of all point processes
endowed with an appropriate topology. They mentions in their paper that our model is
an example of their general framework (see fifth bullet point on page 2 of [29]). It is
worth nothing here that [29] does not provide any general proof of convergence after
appropriate centering but gives characterization of the limit given convergence. Our
detailed analysis in this work provides a set of non-trivial and concrete cases where
the result of [29] may be applied for characterization of the limit.

1.2 Model

Let Z = ∑
j≥1 δξ j be a point process on R and N := Z(R) < ∞ a.s. At the 0-th

generation, we start with an initial particle at the origin. At time n ≥ 1, each of the
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Fig. 1 Last progeny modified branching random walk (LPM-BRW)

particles at generation (n− 1) gives birth to a random number of offspring distributed
according to N . The offsprings are then given random displacements independently
and according to a copy of the point process Z .

For a particle v we shall denote its generation by |v|, i.e., |v| = n if v belongs to
the n-th generation. Let S(v) denote the position of the particle v, which is the sum
of all the displacements the particle v and its ancestors have received. The stochastic

process
{
S(v)

∣
∣
∣ |v| = n

}

n≥0
is typically referred to as the classical branching random

walk (BRW). The quantity of interest is the maximum position, typically denoted by
Rn := max|v|=n S(v), is also the right-most position as discussed above.

In our model, we introduce two parameters. One is a positive real number, which
we denote by θ > 0. The other one is a positively supported distribution, which
we will denote by μ ∈ P(R̄+). The parameter θ should be thought of as a scal-
ing parameter for the extra displacement we give to each individual at the n-th
generation. This extra displacement is as follows. At a generation n ≥ 1, we give
additional displacements to each of the particles at the generation n, which are of the
form 1

θ
Xv := 1

θ
(log Yv − log Ev), where {Yv}|v|=n are i.i.d. μ, while {Ev}|v|=n are

i.i.d. Exponential (1), and they are independent of each other and also of the process
(S(u))|u|≤n . We denote by R∗

n(θ, μ) the maximum position of this last progeny mod-
ified branching random walk (LPM-BRW). If the parameters θ and μ are clear from
the context, then we will simply write this as R∗

n . A schematic of the process is given
below.
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1.3 Assumptions

Before we state our assumptions, we introduce the following important quantities. For

a point process Z =
N∑

j=1
δξ j , we will write

m (θ) := E

[∫

R

eθx Z (dx)

]

= E

⎡

⎣
N∑

j=1

eθξ j

⎤

⎦ ,

where θ ∈ R, whenever the expectation exists. Naturally, m is the moment generating
function of the point process Z . Further, we define ν (t) := logm (t) for t ∈ R,
whenever m (t) is defined.

We now state our main assumptions. Throughout this paper, we will assume the
following three conditions hold:

(A1) m (θ) < ∞ for all θ ∈ (−ϑ,∞) for some ϑ > 0.
(A2) The point process Z is non-trivial, and the extinction probability of the underly-

ing branching process is 0. In other words, P(N = 1) < 1, P(Z({t}) = N ) < 1
for any t ∈ R, and P(N ≥ 1) = 1.

(A3) N has finite (1 + p)-th moment for some p > 0.

Remark 1.1 (A1) implies thatm is infinitely differentiable on (−ϑ,∞). Together with
(A3), it also implies that there exists q > 0, such that, for all θ ∈ [0,∞),

E

[(∫

R

eθx Z(dx)

)1+q
]

< ∞. (1.2)

Proof of this is given in the appendix (see Proposition A.1).
Notice also that under Assumptions (A1) and (A2), ν(t) is strictly convex in

(−ϑ,∞). Though this is a well-known fact, we are unable to find an exact reference
for this. So a proof of this has been given in the Appendix as Proposition A.2.

1.4 Motivation

Our main motivation to study this new LPM-BRW model is what we will see in the
sequel that there is a nice coupling of R∗

n with a linear statistic, which is an additive
martingale associated with BRW (see Corollary 3.6 for details). For such statistics,
asymptotics can be computed using various martingale techniques, some of which
are known. This novel connection is indeed the reason the model intrigued us. As
illustrated in this article, our model is one example where this coupling technique
works. This connection is novel and we believe that it has potential of many more
applications.

The other motivation, and perhaps more straightforward one, is to be able to com-
pare our results with the existing ones in the context of the classical BRW (such as,
asymptotics derived in [2]). We see a difference appears in the constant factor in front
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of the Bramson correction (see Theorem 2.2), but the final weak limit remains the
same. This in turn shows that the centered asymptotic results are heavily dependent
on the displacements given at the end nodes, but not the limit. While doing this com-
parison, we also have been able to get the exact constant for the centered limit which
was earlier not known (see Remark 2.6 for the details).

1.5 Outline

In Sect. 2, we state the main results. Section3 provides our main tool: the coupling
between the maximum statistic and a linear statistic. In Sect. 4, we state and prove a
few asymptotic results about the associated linear statistic, which we later use in the
proofs of the main results. We end with Sect. 5, where we give all the details of the
proofs. For the sake of completeness, proofs of a few elementary results are provided
in the Appendix.

2 Main Results

We start by defining a constant related to the underlying driving point process Z , which
we denote by θ0. Let

θ0 := inf

{

θ > 0 : ν(θ)

θ
= ν′(θ)

}

.

The fact that ν(θ) is strictly convex ensures that the above set is at most singleton. If
it is a singleton, then as illustrated in Fig. 2, θ0 is the unique point in (0,∞) such that
a tangent line from the origin to the graph of ν(θ) touches the graph at θ = θ0. And if
it is empty, then by definition θ0 takes value ∞, and there does not exist any tangent
line from the origin to the graph of ν(θ) on the right half-plane.

Remark 2.1 It is worth noting that ν(θ)/θ is strictly decreasing for θ ∈ (0, θ0) and
strictly increasing for θ ∈ (θ0,∞). Therefore, as shown in Fig. 3, when θ0 is finite, it
is the unique point of minimum for ν(θ)/θ .

Remark 2.2 Note that

ν(θ)

θ
= lim

n→∞
1

nθ
logE [Wn(θ)] ,

where Wn(θ) = Wn(θ, 0) is as defined in (4.2). The quantity ν(θ)/θ is often referred
to as the “annealed free energy.” The so-called quenched free energy, denoted by
F(θ), can be defined as

F(θ) := lim
n→∞

1

nθ
E

[
logWn(θ)

]
.
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Fig. 2 Illustration of θ0

Fig. 3 Graph of y = ν(x)/x

Using Jensen’s inequality, it is easy to see that they satisfy the inequality

F(θ) ≤ ν(θ)

θ
.

Whether θ0 is finite or infinite can be characterized by the fact that θ0 < ∞, if and
only if,
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lim
θ→∞

(
ν(θ) − θ

(
lim
x→∞ ν′(x)

))
< 0.

In the sequel we will see that θ0 will be a point of phase transition for our pro-
cess. Indeed, it may be viewed as the critical inverse temperature of the model, as it
minimizes the limiting “free energy" (see Remark 2.2). We thus classify our model
into three different classes depending on the parameter θ is below, equal, or above the
quantity θ0.We term these as below the boundary case (BBC), the boundary case (BC),
and above the boundary case (ABC), respectively, rather than sub-critical, critical, and
super-critical. We adopt to this terminology following Biggins and Kyprianou [13]
because our θ = θ0 corresponds to what they call the boundary case.

2.1 Almost Sure Asymptotic Limit

Our first result is a strong law of large number-type result, which is similar to (1.1).

Theorem 2.1 For every non-negatively supported probability μ 	= δ0 that admits a
finite mean, almost surely

R∗
n(θ, μ)

n
→

{
ν(θ)
θ

if θ < θ0 ≤ ∞;
ν(θ0)
θ0

if θ0 ≤ θ < ∞.
(2.1)

Remark 2.3 Note that the almost sure limit remains the same as ν(θ0)
θ0

for both the BC
and the ABC.

2.2 Centered Asymptotic Limits

The centered asymptotic limits vary in the three different cases depending on the value
of the parameter θ as described above. We thus state the results separately for the three
cases.

2.2.1 The Boundary Case (� = �0 < ∞)

Theorem 2.2 Assume that μ admits a finite mean, then there exists a random variable
H∞

θ0
, which may depend on θ0, such that

R∗
n − ν (θ0)

θ0
n + 1

2θ0
log n ⇒ H∞

θ0
+ 1

θ0
log〈μ〉, (2.2)

where 〈μ〉 is the mean of μ.

Remark 2.4 Notice that the coefficient for the linear term, which is ν(θ0)/θ0, is exactly
the same as that of the centering of Rn , as proved by Aïdékon [2]. However, the
coefficient for the logarithmic term is 1/3-rd of that of the centering of Rn , as shown
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byAïdékon [2]. The limiting distribution is also similar to that obtained byAïdékon [2],
which is a randomly shifted Gumbel distribution.

In fact, as we will see from the proof of the above theorem, we also have the
following result (see Sect. 5):

Theorem 2.3 Assume that μ admits a finite mean. Let

Ĥ∞
θ0

= 1

θ0

[

log D∞
θ0

+ 1

2
log

(
2

πσ 2

)]

, (2.3)

where

D∞
θ0

a.s.=== lim
n→∞ − 1

m (θ0)
n

∑

|v|=n

(θ0S(v) − nν (θ0)) e
θ0S(v), (2.4)

σ 2 := E

⎡

⎣ 1

m (θ0)

∑

|v|=1

(θ0S(v) − ν (θ0))
2 eθ0S(v)

⎤

⎦ . (2.5)

Then

R∗
n − ν (θ0)

θ0
n + 1

2θ0
log n − Ĥ∞

θ0
⇒ 1

θ0

[
log〈μ〉 − log E

]
, (2.6)

where E ∼ Exponential (1) and 〈μ〉 is the mean of μ.

Remark 2.5 We note here that the H∞
θ0

in Theorem 2.2 has the same distribution as

Ĥ∞
θ0

− 1
θ0
log E , where E ∼ Exponential (1) and is independent of Ĥ∞

θ0
.

Remark 2.6 One advantage of the above result is that we have been able to identify

the exact additive constant, which is 1
2 log

(
2

πσ 2

)
, for the result in Eq. (2.6). As far as

we know, this was not discovered in any of the earlier works.

Remark 2.7 It is worth mentioning here that D∞
θ0

is indeed the almost sure limit of a
derivative martingale defined by

Dn := −
∑

|v|=n

(θ0S(v) − ν(θ0)n)eθ0S(v)−ν(θ0)n

The idea of the derivative martingale originates from Lalley and Sellke [26], and later
it also appears in Biggins and Kyprianou [12] as well as in Aïdékon [2].D∞

θ0
> 0 a.s.

under our assumptions and is a solution to a linear recursive distributional equation
(RDE) given by



d���

∑

|v|=1

eθ0S(v)−ν(θ0)
v, (2.7)

where the 
v’s are independent copies of 
.
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2.2.2 Below the Boundary Case (� < �0 ≤ ∞)

Theorem 2.4 Assume that μ admits a finite mean, then for θ < θ0 ≤ ∞, there exists
a random variable H∞

θ , which may depend on θ , such that

R∗
n − ν (θ)

θ
n ⇒ H∞

θ + 1

θ
log〈μ〉, (2.8)

where 〈μ〉 is the mean of μ.

Remark 2.8 We note that in this case the logarithmic correction disappears.

Once again, just like in the boundary case, here too we have the following result
also:

Theorem 2.5 Assume that μ admits a finite mean. Let

Ĥ∞
θ = 1

θ
log D∞

θ ,

where

D∞
θ

a.s.=== lim
n→∞

1

m (θ)n

∑

|v|=n

eθ S(v), (2.9)

which is also the mean 1 solution of the following linear RDE



d���

∑

|v|=1

eθ S(v)−ν(θ)
v, (2.10)

where the 
v’s are independent copies of 
. Then

R∗
n − ν (θ)

θ
n − Ĥ∞

θ ⇒ 1

θ

[
log〈μ〉 − log E

]
, (2.11)

where E ∼ Exponential (1) and 〈μ〉 is the mean of μ.

Remark 2.9 It is to be noted that the random variable H∞
θ in Theorem 2.4 has the

same distribution as Ĥ∞
θ − 1

θ
log E , where E ∼ Exponential (1) and is independent

of Ĥ∞
θ .

Remark 2.10 Biggins and Kyprianou [13] showed that under our assumptions, the
solutions to the linear RDE given in (2.10) are unique up to a scale factor whenever
they exist. Therefore D∞

θ is indeed the unique solution to the linear RDE (2.10) with
mean 1.
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2.2.3 Above the Boundary Case (�0 < � < ∞)

Theorem 2.6 Suppose μ = δ1 and Z is non-lattice, that is, P(Z(aZ + b) = N ) < 1
for all a > 0 and b ∈ R, then for θ0 < θ < ∞, there exists a constant cθ ∈ R, which
may depend on θ , such that

R∗
n − ν (θ0)

θ0
n + 3

2θ0
log n ⇒ H∞

θ0
+ cθ , (2.12)

where H∞
θ0

is as in Theorem 2.2.

Remark 2.11 We would like to point out here that for the ABC, we have been able to
prove the centered limit only for μ = δ1. For technical reasons which will be clear
from the proof, the general case may give a different result. See Remark 4.2 for more
detail.

2.3 Brunet–Derrida-Type Results

In this section, we present results of the type Brunet and Derrida [18] for convergence
of the extremal point processes. Their conjecture for the classical BRWwas proven by
Madaule [28]. Here we present similar results for our LPM-BRW. It is to be noted that
the convergence of the point processes mentioned here is under the vague convergence
topology on the set of all counting measures on R.

FollowingMadaule [28], we now introduce point processes formed by the particles
of appropriately re-centered branching random walks. For any θ < θ0 ≤ ∞, we
consider

Zn(θ) =
∑

|v|=n

δ{θ S(v)−log Ev−nν(θ)−log D∞
θ }, (2.13)

where D∞
θ is defined in Theorem 2.5. And for θ = θ0 < ∞, we consider

Zn(θ0) =
∑

|v|=n

δ{
θ0S(v)−log Ev−nν(θ0)+ 1

2 log n−log D∞
θ0

− 1
2 log

(
2

πσ2

)}, (2.14)

where D∞
θ0

and σ 2 are as in Theorem 2.3.
Our first result is the weak convergence of the point processes (Zn (θ))n≥0.

Theorem 2.7 For θ < θ0 ≤ ∞ or θ = θ0 < ∞,

Zn(θ)
d−→ Y,

where Y is a Poisson point process on R with intensity measure e−x dx.

Following is a slightly weaker version of the above theorem, which is essentially a
point process convergence of the appropriately centered LPM-BRW model.
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Theorem 2.8 For θ < θ0 ≤ ∞,

∑

|v|=n

δ{θ S(v)−log Ev−nν(θ)}
d−→

∑

j≥1

δζ j+log D∞
θ

,

and for θ = θ0 < ∞,

∑

|v|=n

δ{
θ0S(v)−log Ev−nν(θ0)+ 1

2 log n
} d−→

∑

j≥1

δ
ζ j+log D∞

θ0
+ 1

2 log
(

2
πσ2

),

where Y = ∑
j≥1 δζ j is a Poisson point process on R with intensity measure e−x dx,

which is independent of the BRW.

Now, we denote Ymax as the right-most position of the point process Y , and we
write Y as the point process Y seen from its right-most position, that is,

Y =
∑

j≥1

δζ j−Ymax .

The following result is an immediate corollary of the above theorem, which confirms
that the Brunet–Derrida Conjecture holds for our model when θ < θ0 ≤ ∞ or
θ = θ0 < ∞.

Theorem 2.9 For θ < θ0 ≤ ∞ or θ = θ0 < ∞,

∑

|v|=n

δ{θ S(v)−log Ev−θR∗
n (θ,δ1)}

d−→ Y .

Remark 2.12 Madaule [28] showed the convergence of the centered point process,
obtained in the classical setup, to a decorated Poisson point process. As defined in [28],
a decorated Poisson point process can be described as follows: Let Z = ∑

i≥1 δζi

be a Poisson point process with intensity λe−αx dx , and let {Xi }i≥1 be independent
copies of a point process X, where Xi = ∑

j≥1 δχi, j . Then, the point process Q =∑
i≥1

∑
j≥1 δζi+χi, j is called a decorated Poisson point process with decoration X. In

Madaule’s work [28] the distribution of the decoration was left undescribed, which
was later described in Mallein [30]. It is worth noting that, in our case, the decoration
disappears. This is due to the fact that for both BC and BBC,

max|v|=n

eθ S(v)

Wn(θ)

P−→ 0, (2.15)

as mentioned in (4.7) and (4.9). However, as noted in Remark 4.2, (2.15) does not
hold for the ABC. This added complication is the main reason that the results for the
ABC remain open.
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Remark 2.13 The point process Y can be described explicitly in the following way:
Let N = ∑

j≥1 δz j be a homogeneous Poisson point process on R+ with intensity 1
and E ∼ Exponential (1) be independent of N . Then

Y d= δ0 +
∑

j≥1

δ− log(1+(z j /E)).

3 Coupling Between aMaximum and a Linear Statistic

We start by defining a few operators on the space of probabilities which will help us to
state and prove the coupling. In the sequel, P(A) will mean the set of all probabilities
on a measurable space (A,A), R̄ = [−∞,∞], R̄+ = [0,∞] and dist(X) represents
the distribution of a random variable X . Let us also recall that Z = ∑

j≥1 δξ j denotes
a point process on R and N := Z(R) < ∞ a.s.

Definition 3.1 (Maximum Operator) The operator MZ : P(R̄) → P(R̄) defined by

MZ (η) = dist

(

max
j

{ξ j + X j }
)

,

where {X j } j≥1 are i.i.d. η ∈ P(R̄) and are independent of Z , will be called the
Maximum Operator.

Remark 3.1 Observe that Mn
Z (η) is the distribution of the maximum of the positions of

the particles after adding i.i.d. displacements from η to the particles at n-th generation:

Mn
Z (η) = dist

(

max|v|=n
{S(v) + Xv}

)

.

In particular, Rn ∼ Mn
Z (δ0) and R∗

n ∼ Mn
Z (η), where η is the distribution of

1
θ
log(Yv/Ev) for a particle v at generation n.

Definition 3.2 (Linear Operator) The operator LZ : P(R̄+) → P(R̄+) defined by

LZ (μ) = dist

⎛

⎝
∑

j≥1

eξ j Y j

⎞

⎠ ,

where {Y j } j≥1 are i.i.d. μ ∈ P(R̄+) and are independent of Z , will be called the
Linear or Smoothing Operator.

Remark 3.2 Observe that Ln
Z (μ) is the distribution of

∑
|v|=n e

S(v)Yv .

Definition 3.3 (Link Operator) The operator E : P(R̄+) → P(R̄) defined by

E(μ) = dist

(

log
Y

E

)

,
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where E ∼ Exponential (1) and Y ∼ μ ∈ P(R̄+) and they are independent, will be
called the Link Operator.

Definition 3.4 For a ≥ 0 and b ∈ R, the operator�a,b on the set of all point processes
is defined by

�a,b(Z) =
∑

j≥1

δaζ j−b,

whereZ = ∑
j≥1 δζ j . Sometimeswemay denote�a,0 by�a for notational simplicity.

The following result is one of the most important observations, and it links the
operators defined above. As an immediate corollary, we get a very useful coupling
between the LPM-BRW and the linear statistic associated with the linear operator.

Theorem 3.5 (Transforming Relationship) For all n ≥ 1,

Mn
Z ◦ E = E ◦ Ln

Z . (3.1)

Proof We first note that it is enough to show that Eq. (3.1) holds for n = 1, as
the general case then follows by a trivial induction. To this end, let Z = ∑

j≥1 δξ j ,
{E j } j≥1 are i.i.d. Exponential (1), {Y j } j≥1 are i.i.d. μ, and they are independent of
each other. Now,

MZ ◦ E(μ) = dist

(

max
j

(

ξ j + log
Y j

E j

))

= dist

(

max
j

(

log
eξ j Y j

E j

))

= dist

(

− log

(

min
j

E j

eξ j Y j

))

=dist

(

−log
E1

∑
j≥1 e

ξ j Y j

)

= E ◦ LZ (μ).

(3.2)

Note that the second-to-last equality in (3.2) comes from the fact that, conditionally on

Z and {Y j } j≥1, the random variables

{
E j

eξ j Y j

}

j≥1
are independent and the conditional

distribution of
E j

eξ j Y j
is Exponential

(
eξ j Y j

)
. Thus, using standard properties of expo-

nential distribution, we conclude that conditionally on Z and {Y j } j≥1, the distribution

of min j
E j

eξ j Y j
is Exponential

(∑
j≥1 e

ξ j Y j

)
. ��

Corollary 3.6 Let θ > 0 and μ ∈ P(R̄+). Then for any n ≥ 1,

θR∗
n (θ, μ)

d= log Yμ
n (θ) − log E, (3.3)
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where Yμ
n (θ) := ∑

|v|=n e
θ S(v)Yv , {Yv}|v|=n are i.i.d.μ, and E ∼ Exponential (1) and

is independent of Yμ
n . In other words,

P
(
R∗
n(θ, μ) ≤ x

) = E

[
e−eθx ∑

|v|=n e
θ S(v)Yv

]
. (3.4)

Proof Observe that

dist
(
θR∗

n (θ, μ)
) = Mn

�θ (Z) ◦ E(μ)

= E ◦ Ln
�θ (Z)(μ) = dist

(
log Yμ

n − log E
)
.

��

4 A Few Auxiliary Results on the Linear Statistic

In this section, we provide a few convergence results related to the linear operator,
Ln
Z , as defined in the previous section and associated linear statistic, which is defined

in the sequel (see Eq. (4.2)).
We start by observing that if we consider the point process �θ,νZ (θ)(Z), then

ν�θ,νZ (θ)(Z)(α) = logE

[∫

R

eαθx−ανZ (θ) Z(dx)

]

= νZ (αθ) − ανZ (θ).

Differentiating this with respect to α, we get

ν′
�θ,νZ (θ)(Z)(α) = θν′

Z (αθ) − νZ (θ).

Now, taking α = 1, we have ν�θ,νZ (θ)(Z)(1) = 0, and

ν′
�θ,νZ (θ)(Z)(1) = θν′

Z (θ) − νZ (θ)

⎧
⎪⎨

⎪⎩

> 0 if θ0 < θ < ∞;
= 0 if θ = θ0 < ∞;
< 0 if θ < θ0 ≤ ∞.

Therefore, using [27, Theorem 1.6], we have

Ln
�θ,νZ (θ)(Z)(μ)

w−→
{

δ0 if θ = θ0 < ∞;
μ∞

θ if θ < θ0 ≤ ∞,
(4.1)

where for all θ < θ0, μ∞
θ 	= δ0 is a fixed point of L�θ,νZ (θ)(Z) and has the same mean

as μ. Since μ∞
θ 	= δ0 is a fixed point of L�θ,νZ (θ)(Z), we also have μ∞

θ ({0}) = 0 for
all θ < θ0.
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We now define the linear statistic associated with the linear operator Ln
Z .

Wn(a, b) :=
∑

|v|=n

eaS(v)−nb. (4.2)

To simplify the notations, sometimes we may write Wn(a, 0) as Wn(a). From the
definition of the operator L , we get that

Ln
�a,b(Z)(δ1) = dist (Wn(a, b)) .

Since {Wn(θ, νZ (θ))}n≥1 is a non-negativemartingale, it converges a.s. Therefore (4.1)
implies that almost surely,

Wn(θ, νZ (θ)) →
{
0 if θ = θ0 < ∞;
D∞

θ if θ < θ0 ≤ ∞,
(4.3)

for some positive random variable D∞
θ with E[D∞

θ ] = 1, and the distribution of D∞
θ

is a solution to the linear RDE (2.10).
The following proposition provides convergence results of Wn(a, b) for various

values of a and b.

Proposition 4.1 For any a > 0 and b ∈ R, almost surely

Wn(a, b) →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if a < θ0, b > ν(a); (i)
D∞
a if a < θ0, b = ν(a); (i i)

∞ if a < θ0, b < ν(a); (i i i)
0 if θ0 < ∞, a ≥ θ0, b ≥ aν(θ0)/θ0; (iv)

∞ if θ0 < ∞, a ≥ θ0, b < aν(θ0)/θ0. (v)

To prove this proposition, we use the following elementary result. We provide the
proof for sake of completeness.

Lemma 4.2 Let f : [0,∞) → R be a continuously differentiable convex function and
S be a convex subset of [0,∞) × R satisfying

• (x, y) ∈ S for all 0 < x < x0 and y > f (x) and
• (x, y) /∈ S for all 0 < x < x0 and y < f (x),

for some x0 > 0. Then

S ⊆ {
(x, y) : y ≥ Tx0(x)

}
,

where Tx0(·) denotes the tangent line to f at x0.

Proof We define a function g : [0,∞) → R̄ as

g(x) = inf {y : (x, y) ∈ S} .
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We first show that g is convex. Take any x1, x2 such that g(x1), g(x2) < ∞. By
definition of g, for every ε > 0, there exist y1 < g(x1)+ε and y2 < g(x2)+ε such that
(x1, y1), (x2, y2) ∈ S. So for any α ∈ (0, 1), (αx1 + (1−α)x2, αy1 + (1−α)y2) ∈ S.
Therefore

g(αx1 + (1 − α)x2) ≤ αy1 + (1 − α)y2 < αg(x1) + (1 − α)g(x2) + ε.

As ε > 0 is arbitrary, we have

g(αx1 + (1 − α)x2) ≤ αg(x1) + (1 − α)g(x2),

and this is true for all α ∈ (0, 1). Therefore g is convex.
Let Tx (.) be the tangent line to f at x . Since f is continuously differentiable, Tx

converges pointwise to Tx0 as x → x0. Note that g = f in (0, x0). Therefore, for all
x ∈ (0, x0), Tx is also the tangent line to g at x . Since g is convex, we have g ≥ Tx
for all x ∈ (0, x0). Hence, g ≥ Tx0 . This completes the proof. ��
Proof of Proposition 4.1 Proof of (i),(ii), and (iii). Noting that

Wn(a, b) = Wn(a, ν(a)) · en(ν(a)−b)

(i), (ii), and (iii) follows from (4.3).
Proof of (iv). For a ≥ θ0, we have

Wn(a, b) =
∑

|v|=n

eaS(v)−nb ≤
⎛

⎝
∑

|v|=n

e(aS(v)−nb)θ0/a

⎞

⎠

a/θ0

= Wn (θ0, bθ0/a)a/θ0

=
(
Wn (θ0, ν(θ0)) · en(ν(θ0)−bθ0/a)

)a/θ0

SinceWn(a, b) is non-negative, using (4.3), we get that for a ≥ θ0 and bθ0/a ≥ ν(θ0),

Wn(a, b) → 0 a.s.

Proof of (v). Using (i) and (iii), we know that there exists N ⊂ � with P(N ) = 0
such that for all ω /∈ N and (a, b) ∈ [(0, θ0) × R] ∩ Q

2,

Wn(a, b)(ω) →
{
0 if b > ν(a);
∞ if b < ν(a).

For any ω /∈ N and any subsequence {nk}, we define

S ({nk}, ω) =
{

(c, d) : lim sup
k→∞

Wnk (c, d)(ω) < ∞
}

.
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Now, suppose (c1, d1), (c2, d2) ∈ S ({nk}, ω). Then for any α ∈ (0, 1),

lim sup
k→∞

Wnk (αc1 + (1 − α)c2, αd1 + (1 − α)d2) (ω)

= lim sup
k→∞

∑

|v|=nk

exp (α [c1S(v)(ω) − nkd1] + (1 − α) [c2S(v)(ω) − nkd2])

≤ α

⎡

⎣lim sup
k→∞

∑

|v|=nk

exp (c1S(v)(ω) − nkd1)

⎤

⎦

+ (1 − α)

⎡

⎣lim sup
k→∞

∑

|v|=nk

exp (c2S(v)(ω) − nkd2)

⎤

⎦

= α

[

lim sup
k→∞

Wnk (c1, d1)(ω)

]

+ (1 − α)

[

lim sup
k→∞

Wnk (c2, d2)(ω)

]

< ∞.

Therefore S ({nk}, ω) is convex. As Q2 is dense in R
2, the conditions in Lemma 4.2

hold for the convex function ν, the convex set S ({nk}, ω), and the point θ0. Thus for
any a ≥ θ0 and any b < aν(θ0)/θ0, we have (a, b) /∈ S ({nk}, ω), which implies

lim sup
k→∞

Wnk (a, b)(ω) = ∞.

This holds for all subsequence {nk} and all ω /∈ N . Hence for all a ≥ θ0 and all
b < aν(θ0)/θ0, we have

Wn(a, b) → ∞ a.s. ��

We recall thatWn(θ) = Wn(θ, 0). The following corollary is a simple consequence
of Proposition 4.1.

Corollary 4.3 Almost surely

logWn(θ)

nθ
→

{
ν(θ)
θ

if θ < θ0 ≤ ∞;
ν(θ0)
θ0

if θ0 ≤ θ < ∞.

Remark 4.1 To understandwhy the limit in Corollary 4.3 becomes constant for θ ≥ θ0,
let us consider

F(θ) = lim
n→∞

logWn(θ)

nθ
.

Notice that [Wn(θ)]1/θ is indeed the �θ -norm of the sequence {eSv }|v|=n . Thus, it is
non-increasing in θ . Therefore, F(θ) is also non-increasing in θ . Now by the Cauchy-
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Schwarz inequality, we get that for any θ1, θ2 > 0,

(Wn(θ1 + θ2))
2 ≤ Wn(2θ1) · Wn(2θ2).

Since dyadic rational numbers are dense in the real numbers, this gives us that for any
α ∈ (0, 1),

Wn(αθ1 + (1 − α)θ2) ≤ Wn(θ1)
α · Wn(θ2)

1−α,

whichmeans that logWn(θ) is convex in θ , and therefore so is θF(θ). Now, for θ < θ0,
F(θ) = ν(θ)/θ . So by Remark 2.1, the left derivative of F is 0 at θ0. Hence the right
derivative is greater than or equal to 0 at θ0, by convexity of the function θ �→ θF(θ).
Using again this convexity, it is now easy to show that F′(θ) ≥ 0 for all θ ≥ θ0; hence,
F(θ) ≥ F(θ0) for all θ ≥ θ0. But since F is non-increasing, it has to be constant for
θ ≥ θ0.

Proposition 4.4 For θ < θ0 ≤ ∞ or θ = θ0 < ∞,

Yμ
n (θ)

Wn(θ)

P−→ 〈μ〉,

where 〈μ〉 is the mean of μ and Yμ
n (θ) is as defined in Corollary 3.6.

Proof Recall that as in (4.3), for θ < θ0 ≤ ∞,

Wn(θ, ν(θ)) → D∞
θ a.s. (4.4)

For θ0 < ∞, Aïdékon and Shi [3] have shown that under the assumptions in Sect. 1.3,

√
n Wn(θ0, ν(θ0))

P−→
(

2

πσ 2

)1/2

D∞
θ0

, (4.5)

where σ 2 and D∞
θ0

are as mentioned in Sect. 2.2.1. Also, Hu and Shi [23] have proved
that under the assumptions in Sect. 1.3, for θ0 < θ < ∞,

1

log n

(

logWn(θ) − ν(θ0)

θ0
θn

)
P−→ − 3θ

2θ0
. (4.6)

Now, observe that

Yμ
n (θ)

Wn(θ)
− 〈μ〉 =

∑

|v|=n

(
eθ S(v)

∑
|u|=n e

θ S(u)

)

(Yv − 〈μ〉) .

We define

Mn(θ) := max|v|=n

eθ S(v)

∑
|u|=n e

θ S(u)
= eθRn

Wn(θ)
.
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We recall that Wn(a) = Wn(a, 0). For θ ∈ (0, θ0), we choose any θ1 ∈ (θ, θ0). Then
we get

Mn(θ) ≤ [Wn(θ1)]θ/θ1

Wn(θ)
≤ [Wn(θ1, ν(θ1))]θ/θ1 · e−nθ

(
ν(θ)
θ

− ν(θ1)

θ1

)

Wn(θ, ν(θ))

Since ν is strictly convex, ν(θ)/θ is strictly decreasing for θ ∈ (0, θ0). Therefore
using (4.4), we get

Mn(θ) → 0 a.s. (4.7)

For θ = θ0 < ∞, we choose any θ2 ∈ (θ0,∞). Observe that

Mn(θ0) ≤ [Wn (θ2)]θ0/θ2

Wn(θ0)
=

[
nθ2/θ0Wn (θ2, θ2ν(θ0)/θ0)

]θ0/θ2

nWn(θ0, ν(θ0))
. (4.8)

Now, using (4.5), the denominator on the right-hand side of (4.8) goes to ∞ in prob-
ability, and by (4.6), the numerator goes to 0 in probability. Therefore, we obtain

Mn(θ0)
P−→ 0. (4.9)

Let F be the σ -field generated by the branching random walk, and Y ∼ μ. Then,
using [11, Lemma 2.1], which is a particular case of [25, Lemma 2.2], we get that for
every 0 < ε < 1/2,

P

(∣
∣
∣
∣
Yμ
n (θ)

Wn(θ)
− 〈μ〉

∣
∣
∣
∣ > ε

∣
∣
∣
∣F

)

≤ 2

ε2

(∫ 1
Mn (θ)

0
Mn(θ)t · P (|Y − 〈μ〉| > t) dt +

∫ ∞
1

Mn (θ)

P (|Y − 〈μ〉| > t) dt

)

,

which, by (4.7), (4.9), and dominated convergence theorem, converges to 0 in prob-
ability as n → ∞. Then by taking expectation and using dominated convergence
theorem again, we get

lim
n→∞P

(∣
∣
∣
∣
Yμ
n (θ)

Wn(θ)
− 〈μ〉

∣
∣
∣
∣ > ε

)

= 0.

This completes the proof. ��
Remark 4.2 We note here that Proposition 4.4 holds only when θ < θ0 ≤ ∞ or
θ = θ0 < ∞. It is not clear that the conclusion of this proposition holds for the ABC,
that is, when θ0 < θ < ∞. In fact, in that case, eθRn = �P (Wn(θ)) (follows from [2,
Theorem 1.1] and the proof of Theorem 2.6 given below). Thus, (4.9) does not hold
for the ABC.
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5 Proofs of TheMain Results

In this sectionweprove themain theorems.We start by proving the centered asymptotic
limits: proving first Theorems 2.2 and 2.4 and then Theorems 2.3 and 2.5. Proof of
Theorem 2.6 is given there after. We then prove the almost sure asymptotic limit,
Theorem 2.1. Finally we end by proving the Brunet–Derrida-type results, Theorem 2.7
and Theorem 2.8.

5.1 Proof of Theorems 2.2 and 2.4

Proof Proposition 4.4, together with (4.4), gives us that for θ < θ0 ≤ ∞,

Yμ
n (θ) · e−nν(θ) P−→ D∞

θ · 〈μ〉. (5.1)

This implies

log Yμ
n (θ) − log E − nν(θ)

P−→ log D∞
θ − log E + log〈μ〉, (5.2)

where E ∼ Exponential (1) and is independent of {Yv : |v| = n}n≥0 and also inde-
pendent of the BRW. Similarly, combining Proposition 4.4 and (4.5), we obtain that

Yμ
n (θ0) · √

n · e−nν(θ0) P−→
(

2

πσ 2

)1/2

· D∞
θ0

· 〈μ〉, (5.3)

which implies

log Yμ
n (θ0)− log E−nν(θ0)+ 1

2
log n

P−→ 1

2
log

(
2

πσ 2

)

+ log D∞
θ0

− log E+ log〈μ〉.
(5.4)

Now, combining (5.2) and (5.4) together with Corollary 3.6 gives us the required
result. ��

5.2 Proof of Theorems 2.3 and 2.5

Proof By using a similar argument as in (3.2), we observe that

θR∗
n(θ, μ) − log Yμ

n (θ) = max|v|=n
(θ S(v) + log Yv − log Ev) − log

⎛

⎝
∑

|u|=n

eθ S(u)Yu

⎞

⎠

= − log

⎛

⎝min|v|=n
Ev

(
eθ S(v)Yv

∑
|u|=n e

θ S(u)Yu

)−1
⎞

⎠

d= − log E,
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where E ∼ Exponential (1). Now, using Proposition 4.4, we obtain that for θ < θ0 ≤
∞ or θ = θ0 < ∞,

θR∗
n(θ, μ) − logWn(θ) ⇒ log〈μ〉 − log E .

This, together with (4.4) and (4.5), completes the proof. ��

5.3 Proof of Theorem 2.6

Proof From [28, Theorem2.3], it follows that under our assumptions, for θ0 < θ < ∞,
there exists a positive random variable Dθ , which may depend on θ , such that

logWn(θ) − ν(θ0)

θ0
θn + 3θ

2θ0
log n ⇒ logDθ + θ

θ0
log D∞

θ0
, (5.5)

whereDθ is independent of D∞
θ0
. Since Wn(θ) = Y δ1

n (θ), using Corollary 3.6, we get
that for θ0 < θ < ∞,

R∗
n(θ) − ν (θ0)

θ0
n + 3

2θ0
log n ⇒ 1

θ0
log D∞

θ0
+ 1

θ
logDθ − 1

θ
log E, (5.6)

where E ∼ Exponential (1). We write the limiting random variable as H∞
θ . Now, for

u such that |u| = 1, we define

R∗(u)
n−1(θ) :=

(

max
v>u,|v|=n

S(v) − 1

θ
log Ev

)

− S(u).

Note that {R∗(u)
n−1(θ)}|u|=1 are i.i.d. and have the same distribution as R∗

n−1(θ). Now,

R∗
n(θ) = max|u|=1

(

max
v>u,|v|=n

S(v) − 1

θ
log Ev

)

= max|u|=1

(
S(u) + R∗(u)

n−1(θ)
)

.

This implies

R∗
n(θ) − ν (θ0)

θ0
n + 3

2θ0
log n

= max|u|=1

(

S(u) − ν (θ0)

θ0
+ R∗(u)

n−1(θ) − ν (θ0)

θ0
(n − 1) + 3

2θ0
log n

)

. (5.7)
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For θ0 < θ < ∞, let Gθ,n be the distribution function of R∗
n(θ) − ν(θ0)

θ0
n + 3

2θ0
log n,

and it converges pointwise to Gθ . Now, (5.7) tells us that

Gθ,n(x) = E

⎡

⎣
∏

|u|=1

Gθ,n−1

(

x − S(u) + ν(θ0)

θ0
+ 3

2θ0
log

(

1 − 1

n

))
⎤

⎦ , (5.8)

which implies

Gθ (x) = E

⎡

⎣
∏

|u|=1

Gθ

(

x − S(u) + ν(θ0)

θ0

)
⎤

⎦ (5.9)

If we define gθ : (0,∞) → [0, 1] as gθ (t) = Gθ (− log t), then from (5.9) we have

gθ (t) = E

⎡

⎣
∏

|u|=1

gθ

(

te
S(u)− ν(θ0)

θ0

)
⎤

⎦ . (5.10)

Now, ifGθ0,n is the distribution function of R
∗
n(θ0)− ν(θ0)

θ0
n+ 1

2θ0
log n, and it converges

pointwise to Gθ0 , then by defining gθ0 : (0,∞) → [0, 1] as gθ0(t) = Gθ0(− log t), a
similar argument gives us

gθ0(t) = E

⎡

⎣
∏

|u|=1

gθ0

(

te
S(u)− ν(θ0)

θ0

)
⎤

⎦ . (5.11)

Since both gθ and gθ0 are non-degenerate survival functions, (5.10) and (5.11), in
conjunction with [5, Theorem 1.1], imply that gθ (t) = gθ0(te

cθ ), for some cθ ∈ R.
Consequently, we get Gθ (x) = Gθ0(x − cθ ), which means

H∞
θ

d= H∞
θ0

+ cθ . (5.12)

This completes the proof. ��
An alternative proof From [8, Theorem 1], we know

E[e−tDθ ] =
{
e−(aθ t)θ0/θ

if t ≥ 0;
∞ if t < 0,

(5.13)

for some aθ > 0. An alternative way to derive (5.12) from (5.6) is to show that

Dθ

E
d= aθ

Eθ/θ0
. (5.14)
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Using an argument similar to that in Example 9.17 of [34], together with (5.13), we
obtain that for any x > 0,

P

(
aθ E

Dθ

> x

)

=E

[

P

(

E >
xDθ

aθ

∣
∣
∣
∣Dθ

)]

=E

[

e
− xDθ

aθ

]

=e−xθ0/θ =P
(
Eθ/θ0 > x

)
.

This proves (5.14), which implies (5.12). ��

5.4 Proof of Theorem 2.1

Proof (Upper bound). Take any θ > 0 and let β = min(θ, θ0). Using Markov’s
inequality, we get that for every ε > 0,

P

(
R∗
n(θ, μ)

n
− ν(β)

β
> ε

)

≤ e−n(βε+ν(β))/2 · E
[
eβR∗

n (θ,μ)/2
]
.

Now, using Corollary 3.6, we have

E

[
eβR∗

n (θ,μ)/2
]

= E

⎡

⎢
⎣

⎛

⎝
∑

|v|=n

eθ S(v)Yv

⎞

⎠

β/(2θ)
⎤

⎥
⎦ · E

[
E−β/(2θ)

]

≤ E

⎡

⎣
√ ∑

|v|=n

eβS(v)Y β/θ
v

⎤

⎦ · �

(

1 − β

2θ

)

≤

√
√
√
√
√E

⎡

⎣
∑

|v|=n

eβS(v)Y β/θ
v

⎤

⎦ · �

(

1 − β

2θ

)

=
√
enν(β) · 〈μ〉β/θ · �

(

1 − β

2θ

)

,

where 〈μ〉β/θ is the (β/θ)-th moment of μ. So for every ε > 0, we have

∞∑

n=1

P

(
R∗
n(θ, μ)

n
− ν(β)

β
> ε

)

< ∞. (5.15)

Therefore using the Borel–Cantelli Lemma, we obtain for all θ > 0, almost surely

lim sup
n→∞

R∗
n(θ, μ)

n
≤

{
ν(θ)
θ

if θ < θ0 ≤ ∞;
ν(θ0)
θ0

if θ0 ≤ θ < ∞.
(5.16)
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(Lower bound). For u such that |u| = m ≤ n, we define

R∗(u)
n−m(θ, μ) :=

(

max
v>u,|v|=n

S(v) + 1

θ
log(Yv/Ev)

)

− S(u).

Note that {R∗(u)
n−m(θ, μ)}|u|=m are i.i.d. and have the same distribution as R∗

n−m(θ, μ).
Now,

R∗
n(θ, μ) = max|u|=m

(

max
v>u,|v|=n

S(v) + 1

θ
log(Yv/Ev)

)

= max|u|=m

(
S(u) + R∗(u)

n−m(θ, μ)
)

≥ S(ũm) + max|u|=m

(
R∗(u)
n−m(θ, μ)

)
,

where

ũm := arg max|u|=m

(
R∗(u)
n−m(θ, μ)

)
.

Now, for any ε ∈ (0, 1) and for θ < θ0 ≤ ∞ or θ = θ0 < ∞,

P

(
R∗
n(θ, μ)

n
− ν(θ)

θ
< −ε

)

≤ P

(

S(ũ[√n]) + max
|u|=[√n]

(
R∗(u)

n−[√n](θ, μ)
)

< n

(
ν(θ)

θ
− ε

))

≤ P

(

max
|u|=[√n]

(
R∗(u)

n−[√n](θ, μ)
)

< n

(
ν(θ)

θ
− ε

2

))

+ P

(
S(ũ[√n]) < −nε

2

)

≤ E

[

P

(

R∗
n−[√n](θ, μ) < n

(
ν(θ)

θ
− ε

2

))N[√n]
]

+ e−nεϑ/4 · E
[
e−ϑS(ũ[√n])/2

]
.

Now, Corollary 4.3, together with Corollary 3.6 and Proposition (4.4), implies that for
θ < θ0 and also for θ = θ0 < ∞,

R∗
n(θ, μ)

n

p−−→ ν(θ)

θ
.

Therefore for all large enough n,

P

(

R∗
n−[√n](θ, μ) < n

(
ν(θ)

θ
− ε

2

))

< ε.
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Observe, N[√n] < n implies at least [√n] − �log2 n� many particles have given birth
to only one offspring. Therefore

P

(
N[√n] < n

)
≤ (P(N = 1))[

√
n]−�log2 n� .

For the second term, we have

E

[
e−ϑS(ũ[√n])/2

]
≤ E

[
W[√n](−ϑ/2)

]
= e[√n]ν(−ϑ/2).

Therefore we have for all large enough n,

P

(
R∗
n(θ, μ)

n
− ν(θ)

θ
< −ε

)

≤ εn + (P(N = 1))[
√
n]−�log2 n� + e−nεϑ/4+[√n]ν(−ϑ/2).

Since for every ε ∈ (0, 1),

∞∑

n=1

P

(
R∗
n(θ, μ)

n
− ν(θ)

θ
< −ε

)

< ∞, (5.17)

using the Borel–Cantelli Lemma, we obtain that for 0 < θ < θ0 or θ = θ0 < ∞,

lim inf
n→∞

R∗
n(θ, μ)

n
≥ ν(θ)

θ
a.s. (5.18)

To get an appropriate lower bound for θ0 < θ < ∞, we need the following result;
the proof of this is given at the end of this proof.

Proposition 5.1 For any positively supported probability μ with finite mean, almost
surely

log Yμ
n (θ)

nθ
→

{
ν(θ)
θ

if θ < θ0 ≤ ∞;
ν(θ0)
θ0

if θ0 ≤ θ < ∞.

Now observe that

θR∗
n(θ, μ) = max|v|=n

(θ S(v) + log Yv − log Ev) ≥ max|v|=n
(θ S(v) + log Yv) − log Evn ,

where

vn = arg max|v|=n
(θ S(v) + log Yv) .
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Observe

Yμ
n (θ + θ0) =

∑

|v|=n

e(θ+θ0)S(v)Yv ≤ Wn(θ0) · emax|v|=n(θ S(v)+log Yv).

Therefore we have

θR∗
n(θ, μ)

n
≥ log Yμ

n (θ + θ0)

n
− logWn(θ0)

n
− log Evn

n
.

Since E[| log Evn |] is finite, the Borel–Cantelli Lemma implies that the last terms on
the right-hand side converge to 0 a.s. By Corollary 4.3 and Proposition 5.1, the first
and the second terms a.s. converge to (θ + θ0)ν(θ0)/θ0 and ν(θ0), respectively. Thus
whenever θ0 < ∞, we obtain that for all θ > θ0,

lim inf
n→∞

R∗
n(θ, μ)

n
≥ ν(θ0)

θ0
a.s. (5.19)

This, together with (5.16) and (5.18), completes the proof. ��

5.4.1 Proof of Proposition 5.1

Proof Corollary 3.6 says that

θR∗
n(θ, μ)

d�� log Yμ
n (θ) − log E .

Since E[| log E |] < ∞, (5.15) and (5.17), together with the Borel–Cantelli Lemma,
imply that for θ < θ0 ≤ ∞ and also for θ = θ0 < ∞,

log Yμ
n (θ)

nθ
→ ν(θ)

θ
a.s.

and for θ0 < θ < ∞,

lim sup
n→∞

log Yμ
n (θ)

nθ
≤ ν(θ0)

θ0
a.s.

So for any a > 0 and b ∈ R, we have almost surely

Yμ
n (a, b) := Yμ

n (a) · e−nb →

⎧
⎪⎨

⎪⎩

0 if a < θ0, b > ν(a);
∞ if a < θ0, b < ν(a);
0 if θ0 < ∞, a ≥ θ0, b > aν(θ0)/θ0.

Now, the exact similar argument as in the proof of Proposition 4.1(v) implies that for
θ0 < ∞, a ≥ θ0 and b < aν(θ0)/θ0,

Yμ
n (a, b) → ∞ a.s.

123



   34 Page 28 of 33 Journal of Theoretical Probability            (2025) 38:34 

Hence for θ0 < θ < ∞,

log Yμ
n (θ)

nθ
→ ν(θ0)

θ0
a.s.

This proves the proposition. ��

5.5 Proof of Theorem 2.7

Proof Rényi’s representation [32], togetherwith the generalized version of it byTikhov
(see equation (3) of Tikhov [35]), gives us the following lemma.

Lemma 5.2 Let
{
Ei,n : 1 ≤ i ≤ mn, n ≥ 1

}
be an array of independent random vari-

ables with Ei,n ∼ Exponential
(
λi,n

)
. Suppose for all n ≥ 1,

∑mn
i=1 λi,n = 1, and

limn→∞ maxmn
i=1 λi,n = 0. Then as n → ∞, the point process

mn∑

i=1

δEi,n

d−→ N ,

where N is a homogeneous Poisson point process on R+ with intensity 1.

Now, letF be theσ -algebra generated by the branching randomwalk.Weknow that,
conditionally on F ,

{
EvWn(θ)e−θ S(v)

}
are independent. Furthermore, conditionally

on F , EvWn(θ)e−θ S(v) follows Exponential
(
eθ S(v)

Wn(θ)

)
. Note that

∑

|v|=n

eθ S(v)

Wn(θ)
= 1,

and by (4.7) and (4.9), we also have that for θ < θ0 ≤ ∞ or θ = θ0 < ∞,

max|v|=n

eθ S(v)

Wn(θ)

P−→ 0.

Therefore by Lemma 5.2, for any positive integer k, Borel sets B1, B2, . . . , Bk and
non-negative integers t1, t2, . . . , tk , we have

P

⎛

⎝
∑

|v|=n

δEvWn(θ)e−θ S(v) (B1) = t1, . . . ,
∑

|v|=n

δEvWn(θ)e−θ S(v) (Bk) = tk

∣
∣
∣
∣
∣
∣
F

⎞

⎠

P−→ P (N (B1) = t1, . . . ,N (Bk) = tk) .
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Then, using the dominated convergence theorem, we get

P

⎛

⎝
∑

|v|=n

δEvWn(θ)e−θ S(v) (B1) = t1, . . . ,
∑

|v|=n

δEvWn(θ)e−θ S(v) (Bk) = tk

⎞

⎠

→ P (N (B1) = t1, . . . ,N (Bk) = tk) .

or equivalently (see Theorem 11.1.VII of Daley and Vere-Jones [19]),

∑

|v|=n

δEvWn(θ)e−θ S(v)
d−→ N . (5.20)

Now for N = ∑
j≥1 δz j , we take Y = ∑

j≥1 δ− log z j . Clearly, Y is an inhomo-
geneous Poisson point process on R with intensity measure e−x dx . Since − log(.) is
continuous and therefore Borel measurable, (5.20) implies that

Un :=
∑

|v|=n

δθ Sv−log Ev−logWn(θ)
d−→ Y . (5.21)

To simplify the notations, for all θ < θ0 ≤ ∞, we denote

An(θ) = nν(θ) + log D∞
θ ,

and for θ = θ0 < ∞, we denote

An(θ0) = nν(θ0) − 1

2
log n + log D∞

θ0
+ 1

2
log

(
2

πσ 2

)

.

Recall that by (4.4) and (4.5), for θ < θ0 ≤ ∞ or θ = θ0 < ∞,

An(θ) − logWn(θ)
P−→ 0.

Now, take any positive integer k, non-negative integers {ti }ki=1, and extended real num-
bers {ai }ki=1 and {bi }ki=1 with ai < bi for all i . We choose δ ∈ (

0,minki=1(bi − ai )/2
)
.

Then, we have

P (Un ((a1 − δ, b1 + δ)) ≤ t1, . . . ,Un ((ak − δ, bk + δ)) ≤ tk)

− P (|An(θ) − logWn(θ)| > δ)

≤ P (Zn(θ) ((a1, b1)) ≤ t1, . . . , Zn(θ) ((ak, bk)) ≤ tk)

≤ P (Un ((a1 + δ, b1 − δ)) ≤ t1, . . . ,Un ((ak + δ, bk − δ)) ≤ tk)

+ P (|An(θ) − logWn(θ)| > δ) .

Now, by (5.21), we have Un
d−→ Y . SinceY is a Poisson point process, it is continuous.

Therefore, allowing n → ∞ and then letting δ → 0, we obtain
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lim
n→∞P (Zn(θ) ((a1, b1)) ≤ t1, . . . , Zn(θ) ((ak, bk)) ≤ tk)

= P (Y ((a1, b1)) ≤ t1, . . . ,Y ((ak, bk)) ≤ tk) ,

or equivalently, Zn(θ)
d−→ Y . This completes the proof. ��

5.6 Proof of Theorem 2.8

Proof This is a slightly weaker version. It follows from arguments similar to those of
the proof of Theorem 2.7. ��

Appendix

Proposition A.1 Under assumptions (A1) and (A3), there exists q > 0 such that (1.2)
holds.

Proof Observe that

∫

R

eθx Z(dx) ≤ Ne
θ
(
maxNj=1 ξ j

)

, and e
θ
(
maxNj=1 ξ j

)

≤
∫

R

eθx Z(dx).

Now, using Hölder’s inequality, we have

E

[(∫

R

eθx Z(dx)

)1+q
]

≤ E

[

N 1+q · eθ(1+q)
(
maxNj=1 ξ j

)]

≤
(
E

[
N (1+q)2

]) 1
1+q ·

⎛

⎝E

⎡

⎣e
θ

(
(1+q)2

q

)(
maxNj=1 ξ j

)⎤

⎦

⎞

⎠

q
1+q

≤
(
E

[
N (1+q)2

]) 1
1+q ·

⎛

⎝E

⎡

⎣
∫

R

e
θ

(
(1+q)2

q

)

x
Z(dx)

⎤

⎦

⎞

⎠

q
1+q

=
(
E

[
N (1+q)2

]) 1
1+q ·

(
m

(
θ(1 + q)2/q

)) q
1+q

.

Then, by choosing q such that (1 + q)2 ≤ 1 + p, one gets (1.2). ��
Proposition A.2 Under assumptions (A1) and (A2), the function θ �→ ν(θ) is strictly
convex inside the open interval (−ϑ,∞).

Proof From Assumption (A1), we know that

m(θ) := E

[∫

R

eθx Z(dx)

]

< ∞,
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for all θ ∈ (−ϑ,∞). Therefore using dominated convergence theorem, we have for
all θ ∈ (−ϑ,∞),

m′(θ) = E

[∫

R

xeθx Z(dx)

]

< ∞,

and

m′′(θ) = E

[∫

R

x2eθx Z(dx)

]

< ∞.

From Assumption (A2), we have that P(Z({t}) = N ) < 1 for all t ∈ R. Therefore for
all t ∈ R,

E

[∫

R

(x − t)2eθx Z(dx)

]

> 0

⇒ E

[∫

R

x2eθx Z(dx)

]

− 2tE

[∫

R

xeθx Z(dx)

]

+ t2E

[∫

R

eθx Z(dx)

]

> 0

⇒ E

[∫

R

x2eθx Z(dx)

]

· E
[∫

R

eθx Z(dx)

]

>

(

E

[∫

R

xeθx Z(dx)

])2

⇒ m′′(θ)m(θ) >
(
m′(θ)

)2
.

Hence we have for all θ ∈ (−ϑ,∞),

ν′′(θ) = m′′(θ)m(θ) − (
m′(θ)

)2

(m(θ))2
> 0.

This proves the proposition. ��
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