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Endogeny for the
Logistic Recursive Distributional Equation
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Abstract. In this article we prove the endogeny and bivariate uniqueness property
for a particular “max-type” recursive distributional equation (RDE). The RDE we
consider is the so called logistic RDE, which appears in the proof of the ζ(2)-limit
of the random assignment problem using the local weak convergence method proved
by D. Aldous [Probab. Theory Related Fields 93 (1992)(4), 507 – 534]. This article
provides a non-trivial application of the general theory developed by D. Aldous and
A. Bandyopadhyay [Ann. Appl. Probab. 15 (2005)(2), 1047 – 1110]. The proofs
involves analytic arguments, which illustrate the need to develop more analytic tools
for studying such max-type RDEs.
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1. Introduction and the main result

Fixed-point equations have found many applications in various fields of math-
ematics. In probability theory they are usually referred as distributional iden-
tities. A recent article by Aldous and Bandyopadhyay [5] provides a general
framework to study certain type of distributional identities which arise in a
variety of settings.

Given a measurable space (S,S) write P (S) for the set of all probabilities
on S. According to [5], a recursive distributional equation (RDE) is a fixed-point
equation on P (S) defined as

X
d
= g (ξ; (Xj : 1 ≤ j ≤∗ N)) on S, (1)
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where it is assumed that (Xj)j≥1 are S-valued random variables with identical
distribution and are (stochastically) independent, and their common distribu-
tion is same as that of the random variable X, and are independent of the
pair (ξ,N). Here ξ is a measurable function taking value on some measurable
space, say (Λ,Z), N is a non-negative integer valued random variable, which
may take the value ∞ and g is a given S-valued function. (In the above equa-
tion by “≤∗ N” we mean the left hand side is “≤ N” if N < ∞, and “< N”
otherwise). In (1) the distribution of X is unknown, while the distribution of
the pair (ξ,N) and the function g are assumed to be known quantities. Perhaps
a more conventional (analytic) way of writing the equation (1) would be

µ = T (µ) , (2)

where T : P (S)→ P (S) is a function defined as

T (µ) := dist
(
g (ξ; (Xj : 1 ≤ j ≤∗ N))

)
where (ξ,N) is as above and (Xj)j≥1 are independent and identically distributed
(i.i.d.) with common distribution µ ∈ P (S) and these sets of random variables
are stochastically independent.

As outlined in [5] in many applications RDEs play a very crucial role. Ex-
amples include study of Galton-Watson branching processes and related ran-
dom trees, probabilistic analysis of algorithms with suitable recursive structure
[11,15,16], statistical physics models on trees [2,3,6,12], and statistical physics
and algorithmic questions in the mean-field model of distance [1,2,4,7,8,19]. In
many of these applications, particularly in the last two types mentioned above,
often one needs to construct a particular tree indexed stationary process related
to a given RDE, which is called a recursive tree process (RTP) [5]. More pre-
cisely, suppose the RDE (1) has a solution, say µ. Then as shown in [5], using
the consistency theorem of Kolmogorov [9], one can construct a process, say
(Xi)i∈V , indexed by V :=

(
∪d≥1Nd

)
∪ {∅}, such that

(i) Xi ∼ µ ∀ i ∈ V
(ii) for each d ≥ 0, (Xi)|i|=d are independent

(iii) Xi = g (ξi; (Xij : 1 ≤ j ≤∗ Ni)) ∀ i ∈ V
(iv) Xi is independent of

{
(ξi′ , Ni′)

∣∣ |i′| < |i|} ∀ i ∈ V ,

(3)

where (ξi, Ni)i∈V are taken to be i.i.d. copies of the pair (ξ,N), and by | · |
we mean the length of a finite word. The process (Xi)i∈V is called an invari-
ant recursive tree process (RTP) with marginal µ. The i.i.d. random variables
(ξi, Ni)i∈V are called the innovation process. In some sense, an invariant RTP
with marginal µ is an almost sure representation of a solution µ of the RDE (1).
Here we note that there is a natural tree structure on V . Taking V as the vertex
set, we join two words i, i′ ∈ V by an edge, if and only if, i′ = ij or i = i′j, for
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some j ∈ N. We will denote this tree by T∞. The empty-word ∅ will be taken
as the root of the tree T∞. For simplicity we will write ∅j = j for j ∈ N.

In the applications mentioned above the variables (Xi)i∈V of a RTP are
often used as auxiliary variables to define or to construct some useful random
structures. In those cases typically the innovation process defines the “inter-
nal” variables while the RTP is constructed “externally” using the consistency
theorem. It is then natural to ask whether the RTP is measurable only with
respect to the i.i.d. innovation process (ξi, Ni).

Definition 1. An invariant RTP with marginal µ is called endogenous, if the
root variable X∅ is almost surely measurable with respect to the completion of
the σ-algebra

G := σ
({

(ξi, Ni)
∣∣ i ∈ V }) .

This notion of endogeny has been the main topic of discussion in [5]. The
authors provide a necessary and sufficient condition for endogeny in the general
setup [5, Theorem 11]. Some other concepts similar to endogeny can be found
in [6].

In this article we provide a non-trivial application of the theory developed
in [5]. The example we consider here arise from the study of the asymptotic
limit of random assignment problem using local-weak convergence method [4].
A detailed background of this example is given in Section 2.

1.1. Main result. The following RDE plays the central role in deriving the
asymptotic limit of the random assignment problem [4],

X
d
= min

j≥1
(ξj −Xj) on R, (4)

where (Xj)j≥1 are i.i.d. with same law as X and are independent of (ξj)j≥1 which
are points of a Poisson point process of rate 1 on (0,∞), that is, ξ1 ≤ ξ2 ≤ · · · ≤
ξk ≤ · · · a.s. and the collection (ξi − ξi−1)i≥1 are i.i.d. random variables with
Exponential (1) distribution. Here we write ξ0 ≡ 0. It is known [4] that the
RDE (4) has a unique solution as the logistic distribution, given by

P (X ≤ x) =
1

1 + e−x
, x ∈ R. (5)

For this reason we will call RDE (4) the logistic RDE. The following is our main
result.

Theorem 1. The invariant recursive tree process with logistic marginals asso-
ciated with the RDE (4) is endogenous.

This result though looks technical, but provides a concrete example falling
under the general theory developed in [5]. The proof of Theorem 1 involves
analytic techniques, thus this work also demonstrate the need of developing
analytic tools for studying max-type RDEs in general.
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1.2. Outline of rest of the paper. The next section provides the background
and motivation for deriving our main result. In Sections 3 we prove the bivariate
uniqueness property of the logistic RDE (4) and finally Section 4 gives the proof
the main result.

2. Background and motivation for logistic RDE

For a given n × n matrix of costs (Cij), consider the problem of assigning n
jobs to n machines in the most “cost effective” way. Thus the task is to find a
permutation π of {1, 2, . . . , n}, which solves the following minimization problem

An := min
π

n∑
i=1

Ci,π(i). (6)

This problem has been extensively studied in literature for a fixed cost matrix,
and there are various algorithms to find the optimal permutation π. A prob-
abilistic model for the assignment problem can be obtained by assuming that
the costs are independent random variables each with Uniform[0, 1] distribution.
Although this model appears to be quite simple, careful investigations of it in
the last few decades have shown that it has enormous richness in its structure.
See [2, 18] for survey and other related works.

Our interest in this problem is from another perspective. In 2001, Aldous [4]
showed

lim
n→∞

E[An] = ζ(2) =
π2

6
, (7)

confirming the earlier work of Mézard and Parisi [13], where they computed the
same limit using non-rigorous arguments based on the replica method [14]. It is
also known that the limit exists and it is universal for any i.i.d. cost distribution
with density f such that f(0) = 1 (see [1]). So for calculation of the limiting
constant one can assume that Cij’s are i.i.d. with Exponential distribution with
mean n and then write the objective function An in the normalized form,

An
d
= min

π

1

n

n∑
i=1

Ci,π(i). (8)

In [4], the limit ζ(2) was identified in terms of an optimal matching problem on
an infinite tree with random edge weights, described as follows:

Let T∞ := (V , E) be the canonical infinite rooted labeled tree, as
before, where ∅ is the root. For every vertex i ∈ V , let (ξij)j≥1 be
points of a Poisson point process of rate 1 on (0,∞), and they are
independent as i varies. Define the weight of the edge e = (i, ij) ∈ E
as ξij.
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This structure is called Poisson weighted infinite tree and henceforth abbrevi-
ated as PWIT.

Let Kr
n,n be the complete bipartite graph on 2n vertices with a root selected

uniformly at random. Suppose we also equip it with i.i.d. Exponential edge
weights with mean n. Then one can show [2,4] that in the sense of Aldous-Steel
local weak convergence Kr

n,n converges to the PWIT. Moreover heuristically
the random assignment problem on Kr

n,n has a “natural” analog to the limit
structure, which is to consider the “optimal” (in sense of minimizing the “total
cost”) matching problem on PWIT. Naturally PWIT being an infinite graph
with edge weights each having mean at least 1, the “total cost” of any matching
is infinite a.s., and hence minimization “total cost” is not quite meaningful.
However, Aldous [4] showed that it is possible to make a sensible definition of
“optimal matching” on PWIT which minimizes the “average edge weight”. This
construction is quite hard, and we refer the readers to [2, 4] for the technical
details. Here we only provide the basic essentials to understand the motivation
for our work.

Consider the heuristic description of the “optimal” matching problem on
PWIT and suppose we define variables Xi for each vertex i as follows

Xi = Total cost of a maximal matching on the subtree Ti
∞

− Total cost of a maximal matching on the forest Ti
∞ \ {i},

(9)

where Ti
∞ is the subtree rooted at the vertex i. Here by “total cost” we mean

the sum total of all the edge weights in the matching. As noted above, both
the “total costs” appearing in (9) are infinity almost surely. Thus rigorously
speaking Xi is not well defined. But at the heuristic level if we ignore this,
then simple manipulation yields that they must satisfy the following recurrence
relation (see [4, Section 4.2])

Xi = min
j≥1

(ξij −Xij) . (10)

This is of course the recurrence relation for a RTP associated with the logistic
RDE (4). Thus one can now construct the Xi-variables externally as the RTP
associated with the logistic RDE and then use them to redefine the optimal
matching on PWIT. This is the construction given in [4] which also provides a
characterization of the optimal matching on the PWIT. Finally one can then
derive the ζ(2)-limit for the random assignment problem.

Once again a natural question would be to figure out whether the random
variables Xi’s are truly external or not, in other words to see whether the
RTP is endogenous or not (see [4, Remarks (4.2.d) and (4.2.e)]). This is our
main motivation for this work. Theorem 1 proves that the Xi-variables can
be defined using only the edge-weights. In other words they have no “external
randomness” in them. Some other significance of this result has also been
pointed out in [5, Section 7.5].
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3. Bivariate uniqueness for the logistic RDE

In this section we prove the bivariate uniqueness property for the logistic RDE (4).

Theorem 2. Consider the following bivariate RDE(
X
Y

)
d
=

(
minj≥1 (ξj −Xj)
minj≥1 (ξj − Yj)

)
, (11)

where (Xj, Yj)j≥1 are i.i.d. pairs with same joint distribution as (X, Y ) and are
independent of (ξj)j≥1 which are points of a Poisson process of rate 1 on (0,∞).
Then the unique solution of this RDE is given by a “diagonal measure”, namely,
µ↗ := dist (X,X) where X has the logistic distribution.

3.1. Proof of Theorem 2. First observe that if the equation (11) has a so-
lution then, the marginal distributions of X and Y solve the logistic RDE (4),
and hence they are both logistic. Further by inspection µ↗ is a solution of (11).
So it is enough to prove that µ↗ is the only solution of (11).

Let µ(2) be a solution of (11). Now consider the points {(ξj; (Xj, Yj)) | j ≥ 1}
as a point process, say P on (0,∞) × R2. Since (ξj)j≥1 is a Poisson point

process on (0,∞) of rate 1 and (Xj, Yj)j≥1 are i.i.d. random vectors on R2

with distribution µ(2) which are independent of the Poisson process (ξj)j≥1,

thus P is a Compound Poisson process on (0,∞) × R2 with mean intensity
ρ(t; (x, y)) dt d(x, y) := dt µ(2)(d(x, y)) (see [10, Lemma 6.4.VI]). Thus if G(x, y)
:= P (X > x, Y > y), for x, y ∈ R, then

G(x, y) = P

(
min
j≥1

(ξj −Xj) > x, and, min
j≥1

(ξj − Yj) > y

)
= P

(
No points of P are in{

(t; (u, v))
∣∣ t− u ≤ x, or, t− v ≤ y

} )
= exp

(
−

∫ ∫ ∫
{

(t;(u,v))

∣∣ t−u≤x, or, t−v≤y
}ρ(t; (u, v)) dt d (u, v)

)

= exp

(
−
∫ ∞

0

[
H̄(t− x) + H̄(t− y)−G(t− x, t− y)

]
dt

)
= H̄(x) H̄(y) exp

(∫ ∞
0

G(t− x, t− y) dt

)
,

(12)

where H̄ is the right tail of logistic distribution, defined as

H̄(x) =
e−x

(1 + e−x)
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for x ∈ R. The last equality follows from properties of the logistic distribution
(see Proposition 3(c)). For notational convenience in this paper we will write
F̄ (·) := 1− F (·) for any distribution function F .

The following simple lemma reduces the bivariate problem to a univariate
problem.

Lemma 1. For any two random variables U and V , U = V a.s. if and only if

U
d
= V

d
= U ∧ V .

Proof. First of all, if U = V a.s. then U ∧ V = U a.s.

Conversely suppose that U
d
= V

d
= U ∧ V . Fix a rational q, then under our

assumption,

P(U ≤ q < V ) = P(V > q)−P(U > q, V > q) = P(V > q)−P(U ∧V > q) = 0

A similar calculation will show that P (V ≤ q < U) = 0. These are true for any
rational q, thus P (U 6= V ) = 0.

Thus if we can show that X ∧ Y also has logistic distribution, then from
the lemma above we will be able to conclude that X = Y a.s., and hence the
proof will be complete. Put g(·) := P (X ∧ Y > ·), we will show g = H̄. Now,
for every fixed x ∈ R, by definition g(x) = G(x, x). So using (12) we get

g(x) = H̄2(x) exp

(∫ ∞
−x
g(s) ds

)
, x ∈ R. (13)

Notice that from (26) (see Proposition 3(c)) g = H̄ is a solution of this non-
linear integral equation (13), which corresponds to the solution µ(2) = µ↗ of
the original equation (11). To complete the proof of Theorem 2 we need to
show that this is the only solution. For that we will prove that the operator
associated with (13) (defined on an appropriate space) is monotone and has
unique fixed-point as H̄. The techniques we will use here are similar to Eulerian
recursion [17], and are heavily based on analytic arguments.

Let F be the set of all functions f : R→ [0, 1] such that

• H̄2(x) ≤ f(x) ≤ H̄(x) for all x ∈ R,

• f is continuous and non-increasing.

Observe that by definition H̄ ∈ F. Further from (13) it follows that g(x) ≥
H̄2(x), as well as, g(x) = P (X ∧ Y > x) ≤ P (X > x) = H̄(x) for all x ∈ R.
Note also that g being the tail of the random variable X ∧ Y , is continuous
(because both X and Y are continuous random variables) and non-increasing.
So it is appropriate to search for solutions of (13) in F.

Let T : F→ F be defined as

T (f)(x) := H̄2(x) exp

(∫ ∞
−x
f(s) ds

)
, x ∈ R. (14)
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Note that this operator T is not same as the general operator defined in Sec-
tion 1, henceforth by T we will mean the specific operator defined above. Propo-
sition 1 of Section 3.2 shows that T does indeed map F into itself. Observe that
the equation (13) is nothing but the fixed-point equation associated with the
operator T , that is,

g = T (g) on F. (15)

We here note that using (26) (see Proposition 3(c)) T can also be written as

T (f)(x) := H̄(x) exp

(
−
∫ ∞
−x

(
H̄(s)− f(s)

)
ds

)
, x ∈ R, (16)

which will be used in the subsequent discussion.

Define a partial order 4 on F as, f1 4 f2 in F if f1(x) ≤ f2(x) for all x ∈ R,
then the following result holds.

Lemma 2. T is a monotone operator on the partially ordered set (F,4).

Proof. Let f1 4 f2 be two elements of F, so from definition f1(x) ≤ f2(x), for
all x ∈ R. Hence ∫ ∞

−x
f1(s) ds ≤

∫ ∞
−x
f2(s) ds ∀ x ∈ R

⇒ T (f1)(x) ≤ T (f2)(x) ∀ x ∈ R
⇒ T (f1) 4 T (f2).

Put f0 = H̄2, and for n ∈ N, define fn ∈ F recursively as, fn = T (fn−1).
Now from Lemma 2 we get that if g is a fixed-point of T in F then,

fn 4 g ∀ n ≥ 0. (17)

If we can show fn → H̄ point wise, then using (17) we will get H̄ 4 g, so from
definition of F it will follow that g = H̄, and our proof will be complete. For
that, the following lemma gives an explicit recursion for the functions {fn}n≥0.

Lemma 3. Let β0(s) = 1− s, 0 ≤ s ≤ 1. Define recursively

βn(s) :=

∫ 1

s

1

w

(
1− e−βn−1(1−w)

)
dw, 0 < s ≤ 1. (18)

Then for n ≥ 1,

fn(x) = H̄(x) exp
(
−βn−1(H̄(x))

)
, x ∈ R. (19)
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Proof. We will prove this by induction on n. Fix x ∈ R, for n = 1 we get

f1(x) = T (f0)(x)

= H̄(x) exp

(
−
∫ ∞
−x

(
H̄(s)− H̄2(s)

)
ds

)
[using (16)]

= H̄(x) exp

(
−
∫ ∞
−x
H̄(s)H(s) ds

)
= H̄(x) exp

(
−
∫ ∞
−x
H ′(s) ds

)
[using Proposition 3(a)]

= H̄(x) exp (−H(x))

= H̄(x) exp
(
−β0(H̄(x))

)
Now, assume that the assertion of the Lemma is true for n ∈ {1, 2, . . . , k},

for some k ≥ 1, then from definition we have

fk+1(x) = T (fk)(x)

= H̄(x) exp

(
−
∫ ∞
−x

(
H̄(s)− fk(s)

)
ds

)
[using (16)]

= H̄(x) exp

(
−
∫ ∞
−x
H̄(s)

(
1− e−βk−1(H̄(s))

)
ds

)
= H̄(x) exp

(
−
∫ 1

H̄(x)

1

w

(
1− e−βk−1(1−w)

)
dw

)
(20)

The last equality follows by substituting w = H(s) and thus from parts (a)
and (b) of Proposition 3 we get that dw

w
= H̄(s) ds and H(−x) = H̄(x). Finally

by definition of βn’s and using (20) we get fk+1 = T (fk).

To complete the proof it is now enough to show that βn → 0 point wise,
which will imply by Lemma 3 that fn → H̄ point wise, as n → ∞. Using
Proposition 2 (see Section 3.2) we get the following characterization of the
point wise limit of these βn’s.

Lemma 4. There exists a function L : [0, 1]→ [0, 1] with L(1) = 0, such that

L(s) =

∫ 1

s

1

w

(
1− e−L(1−w)

)
dw ∀ s ∈ [0, 1), (21)

and L(s) = limn→∞ βn(s) for all 0 ≤ s ≤ 1.

Proof. From the Proposition 2 we know that for any s ∈ [0, 1] the sequence
{βn(s)} is decreasing, and hence there exists a function L : [0, 1] → [0, 1] such
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that L(s) = limn→∞ βn(s). Now observe that βn(1 − w) ≤ β0(1 − w) = w for
all 0 ≤ w ≤ 1, and hence

0 ≤ 1

w

(
1− e−βn(1−w)

)
≤ βn(1− w)

w
≤ 1 ∀ 0 ≤ w ≤ 1.

Thus by taking limit as n → ∞ in (18) and using the dominated convergence
theorem along with part (a) of Proposition 2 we get that

L(s) =

∫ 1

s

1

w

(
1− e−L(1−w)

)
dw ∀ 0 ≤ s < 1.

The above lemma basically translates the non-linear integral equation (13)
to the non-linear integral equation (21), where the solution g = H̄ of (13) is
given by the solution L ≡ 0 of (21). So at first sight this may not lead us to the
conclusion. But fortunately, something nice happens for equation (21), and we
have the following result which is enough to complete the proof of Theorem 2.

Lemma 5. If L : [0, 1] → [0, 1] is a function which satisfies the non-linear
integral equation (21), namely,

L(s) =

∫ 1

s

1

w

(
1− e−L(1−w)

)
dw ∀ 0 ≤ s < 1,

and if L(1) = 0, then L ≡ 0.

Proof. First note that L ≡ 0 is a solution. Now let L be any solution of
(21), then L is infinitely differentiable on the open interval (0, 1), by repetitive
application of Fundamental Theorem of Calculus.

Consider η(w) := (1 − w)eL(1−w) + we−L(w) − 1, w ∈ [0, 1]. Observe, that
η(0) = η(1) = 0 as L(1) = 0. Now, from (21) we get that

L′(w) = − 1

w

(
1− e−L(1−w)

)
, w ∈ (0, 1).

Thus differentiating the function η we get

η′(w) = e−L(w)
[
2−

(
eL(1−w) + e−L(1−w)

)]
≤ 0 ∀ w ∈ (0, 1). (22)

So the function η is decreasing in (0, 1) and is continuous in [0, 1] with boundary
values as 0, hence η ≡ 0. Thus we must have η′ ≡ 0, so from equation (22) we
get that eL(s) + e−L(s) = 2 for all s ∈ (0, 1). This implies L ≡ 0 on [0, 1].
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3.2. Some technical details. This section provides some of the technical
results which were needed in the previous section.

Proposition 1. The operator T maps F into F.

Proof. First note that if f ∈ F, then by definition T (f)(x) ≥ H̄2(x) for all
x ∈ R. Next by definition of F we get that f ∈ F⇒ f 4 H̄, thus∫ ∞

−x
f(s) ds ≤

∫ ∞
−x
H̄(s) ds ∀ x ∈ R

⇒ T (f)(x) ≤ H̄2(x) exp

(∫ ∞
−x
H̄(s) ds

)
= H̄(x) ∀ x ∈ R.

The last equality follows from (26) (see Proposition 3(c)). So,

H̄2(x) ≤ T (f)(x) ≤ H̄(x) ∀ x ∈ R. (23)

Now we need to show that for any f ∈ F we must have T (f) continuous
and non-increasing. From the definition T (f) is continuous (in fact, infinitely
differentiable). Moreover if x ≤ y be two real numbers, then∫ ∞

−x

(
H̄(s)− f(s)

)
ds ≤

∫ ∞
−y

(
H̄(s)− f(s)

)
ds,

because f 4 H̄. Also H̄(x) ≥ H̄(y), thus using (16) we get

T (f)(x) ≥ T (f)(y) (24)

So using (23) and (24) we conclude that T (f) ∈ F if f ∈ F.

Proposition 2. The following are true for the sequence of functions {βn}n≥0

defined in (18).

(a) For every fixed s ∈ (0, 1], the sequence {βn(s)} is decreasing.

(b) For every n ≥ 1, lims→0+ βn(s) exists, and is given by∫ 1

0

1

w

(
1− e−βn−1(1−w)

)
dw,

we will write this as βn(0).

(c) The sequence of numbers {βn(0)} is also decreasing.

Proof. (a) Notice that β0(s) = 1− s for s ∈ [0, 1], thus

β1(s) =

∫ 1

s

1− e−w

w
dw < 1− s = β0(s) ∀ s ∈ (0, 1].
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Now assume that for some n ≥ 1 we have βn(s) ≤ βn−1(s) ≤ · · · ≤ β0(s) for all
s ∈ (0, 1], if we show that βn+1(s) ≤ βn(s) for all s ∈ (0, 1] then by induction
the proof will be complete. For that, fix s ∈ (0, 1] then

βn+1(s) =

∫ 1

s

1

w

(
1− e−βn(1−w)

)
dw ≤

∫ 1

s

1

w

(
1− e−βn−1(1−w)

)
dw = βn(s).

This proves the part (a).

(b, c) First note that by trivial induction βn(s) ≥ 0 for every s ∈ (0, 1],
n ≥ 0. Thus from definition for every n ≥ 0, the limit lims→0+ βn(s) exists

in [0,∞] and is given by
∫ 1

0
1
w

(
1− e−βn−1(1−w)

)
dw. Now using (a) above we

conclude
βn+1(0) = lim

s→0+
βn+1(s) ≤ lim

s→0+
βn(s) = βn(0), (25)

for every n ≥ 0. Since β0(0) = 1, so we get βn(0) < ∞ for all n ≥ 0, and the
sequence is decreasing. This proves parts (b) and (c).

Finally, the following proposition lists some basic facts about the logistic
distribution function.

Proposition 3. Suppose X is a random variable with logistic distribution and
H (x) := P (X ≤ x) for x ∈ R be the distribution function of X. Then

(a) H is infinitely differentiable and H ′(·) = H(·)H̄(·), where H̄(·) = 1−H(·).

(b) H is symmetric around 0, that is, H(−x) = H̄(x) for all x ∈ R.

(c) H̄ is the unique solution of the non-linear integral equation

H̄(x) = exp

(
−
∫ ∞
−x
H̄(s) ds

)
∀ x ∈ R. (26)

Proof. (a) and (b) trivially follows from the definition of H. For (c) notice that
the equation (26) is nothing but the Logistic RDE, this is because

P

(
min
j≥1

(ξj −Xj) > x

)
= exp

(
−
∫ ∞
−x
H̄(s) ds

)
∀ x ∈ R

where (Xj)j≥1 are i.i.d. with distribution function H and are independent of
(ξj)j≥1, which are points of a Poisson point process of rate 1 on (0,∞). Thus

from the fact that H̄ is the unique solution of logistic RDE (see [4, Lemma 5])
we conclude that H̄ is unique solution of equation (26).

4. Proof of Theorem 1

We note that by Theorem 2 the logistic RDE (4) has bivariate uniqueness prop-
erty. Thus by [5, Theorem 11 (b)] to prove endogeny for the logistic RDE (4)
all remains is to check the following technical continuity assumption.
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Proposition 4. Let S be the set of all probabilities on R2 and let Γ : S → S
be the operator associated with the RDE (11), that is,

Γ
(
µ(2)
) d

=

(
minj≥1 (ξj −Xj)
minj≥1 (ξj − Yj)

)
, (27)

where (Xj, Yj)j≥1 are i.i.d. with joint law µ(2) ∈ S and are independent of
(ξj)j≥1 which are points of a Poisson point process of rate 1 on (0,∞). Then Γ
is continuous with respect to the weak convergence topology when restricted to
the subspace S∗ defined as

S∗ :=
{
µ(2)

∣∣∣ both the marginals of µ(2) are logistic distribution
}
. (28)

Before we prove this proposition, it is worth mentioning that the operator Γ
is not continuous with respect to the weak convergence topology on the whole
space S. In fact, it is not difficult to see that the operator Γ is every where
discontinuous on S. But fortunately for applying [5, Theorem 11 (b)] we only
need the continuity of Γ when restricted to the subspace S∗.

Proof of Proposition 4. Let
{
µ

(2)
n

}∞
n=1
⊆ S? be such that µ

(2)
n

d−→ µ(2) where

µ(2) ∈ S?. We will show that Γ(µ
(2)
n )

d−→ Γ(µ(2)).

Let (Ω,F ,P) be a probability space such that there exists {(Xn, Yn)}∞n=1

and (X, Y ) random vectors taking values in R2, with (Xn, Yn) ∼ µ
(2)
n , n ≥ 1,

and (X, Y ) ∼ µ(2). Notice that by definition Xn
d
= Yn

d
= X

d
= Y , and each has

logistic distribution.

Fix x, y ∈ R, let Gn(x, y) := Γ(µ
(2)
n ) ((x,∞)× (y,∞)), then by exactly the

same argument as in the derivation of (12) we get

Gn(x, y) = H̄(x)H̄(y) exp

(
−
∫ ∞

0

Gn (t− x, t− y) dt

)
= H̄(x)H̄(y) exp

(
−
∫ ∞

0

P (Xn > t− x, Yn > t− y) dt

)
= H̄(x)H̄(y) exp

(
−
∫ ∞

0

P ((Xn + x) ∧ (Yn + y) > t) dt

)
= H̄(x)H̄(y) exp

(
−E

[
(Xn + x)+ ∧ (Yn + y)+

])
,

and a similar calculation will also give that

G(x, y) := Γ(µ(2)) ((x,∞)× (y,∞))

= H̄(x)H̄(y) exp
(
−E

[
(X + x)+ ∧ (Y + y)+

])
.
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Now to complete the proof all we need is to show

E
[
(Xn + x)+ ∧ (Yn + y)+

]
−→ E

[
(X + x)+ ∧ (Y + y)+

]
.

Since we assumed that (Xn, Yn)
d−→ (X, Y ) it follows

(Xn + x)+ ∧ (Yn + y)+ d−→ (X + x)+ ∧ (Y + y)+ ∀ x, y ∈ R.

Fix x, y ∈ R, define Zx,y
n := (Xn + x)+∧ (Yn + y)+, and Zx,y := (X + x)+∧

(Y + y)+. Observe that

0 ≤ Zx,y
n ≤ (Xn + x)+ ≤ |Xn + x| ∀ n ≥ 1.

But, |Xn + x| d= |X + x| for all n ≥ 1. So clearly {Zx,y
n }

∞
n=1 is uniformly inte-

grable. Hence we conclude (using the theorem of Billingsley [9, Theorem 25.12])
that E [Zx,y

n ] −→ E [Zx,y] . This completes the proof.
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