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Abstract

In this paper we consider a new type of urn scheme, where the selection probabilities
are proportional to a weight function, which is linear but decreasing in the proportion
of existing colours. We refer to it as the de-preferential urn scheme. We establish the
almost-sure limit of the random configuration for any balanced replacement matrix R.
In particular, we show that the limiting configuration is uniform on the set of colours if
and only if R is a doubly stochastic matrix. We further establish the almost-sure limit of
the vector of colour counts and prove central limit theorems for the random configuration
as well as for the colour counts.
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1. Introduction

1.1. Background and motivation

Various kinds of random reinforcement models have attracted much interest in recent years
[8], [16], [20]–[22], [24]–[26], [30], [36], [39], [41], [42], [47]. Urn schemes, which were
first studied by Pólya [48], are perhaps the simplest reinforcement models. They have many
applications and generalizations [6]–[8], [11]–[13], [16], [17], [20], [21], [24], [25], [30]–[33],
[35], [36], [39], [40], [45], [46], [48]. In general, reinforcement models typically adhere to the
structure of ‘rich get richer’, which has also been termed positive reinforcement. However,
there have been some studies on negative reinforcement models in the context of percolation,
such as the forest fire-type models from the point of view of self-destruction [1], [2] [18], [19],
[23], [27], [28], [49], [52]–[55], [57], and frozen percolation-type models from the point of
view of stagnation [4], [10], [56], [58], [59]. For urn schemes, a type of negative reinforcement
has been studied in which balls can be thrown away from as well as added to the urn [24],
[29], [37], [38], [45], [60]. In such models, it is usually assumed that the model is tenable, that
is, regardless of the stochastic path taken by the process, it is never required to remove a ball
of a colour not currently present in the urn. Perhaps the most famous of such schemes is the
Ehrenfest urn [29], [45], which models the diffusion of a gas between two chambers of a box.
There are some models without tenability, such as the OK Corral model [37], [38], [60] or the
simple harmonic urn [24] in two colours. Typically, these are used for modeling destructive
competition.

Received 17 January 2018; revision received 19 October 2018.
∗ Postal address: Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Delhi Centre, 7 SJS Sansanwal
Marg, New Delhi 110016, India.
∗∗ Email address: antar@isid.ac.in
∗∗∗ Email address: gursharn.kaur24@gmail.com

1176

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.55
Downloaded from https://www.cambridge.org/core. Indian Statistical Institute (Delhi), on 25 Jan 2019 at 04:35:53, subject to the Cambridge Core terms of use,

http://www.appliedprobability.org
mailto:antar@isid.ac.in?subject=Adv. Appl. Prob.%20paper%2016947
mailto:gursharn.kaur24@gmail.com?subject=Adv. Appl. Prob.%20paper%2016947
https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.55
https://www.cambridge.org/core


Linear de-preferential urn models 1177

Recently, there has been some interest in random graphs [9], [50], [51], where attachment
probabilities of a new vertex are decreasing functions of the degree of the existing vertices.
In most cases, such models also lead to negative reinforcement. They have been referred to
as de-preferential attachment models [9] as opposed to usual ‘preferential’ attachment models
[3], [14]. Motivated by this later set of works, in this paper we present a specific model of the
de-preferential urn scheme where the selection probabilities are linear, but decreasing functions
of the proportion of colours. As we will see in the sequel these models usually lead to negative
reinforcement, provided the replacement scheme is ‘positive’ in nature!

De-preferential urn schemes are natural models for modelling problems with resource
constraints, in particular, multiserver queueing systems with capacity constraints [43], [44].
For such cases, it is desirable that all agents have equal loads at the steady-state limit. In this
work we show that, for a linear de-preferential urn scheme, such a limit is obtained under fairly
general conditions on the replacement mechanism.

1.2. Model description

In this work we only consider balanced urn schemes with k colours, indexed by S :=
{0, 1, . . . , k − 1 }. More precisely, if R := ((Ri,j ))0≤i,j≤k−1 denotes the replacement matrix,
that is, Ri,j ≥ 0 denotes the number of balls of colour j to be placed in the urn when the
colour of the selected ball is i, then, for a balanced urn, all row sums of R are constant. In
this case, dividing all entries by the common row total, we may assume that R is a stochastic
matrix. We will also assume that the starting configuration U0 := (U0,j )0≤j≤k−1 is a probability
distribution on the set of colours S. As we will see from the proofs of our main results, this
apparent loss of generality can be easily removed.

Denote by Un := (Un,j )0≤j≤k−1 ∈ [0, ∞)k the random configuration of the urn at time n.
Also, let Fn := σ(U0, U1, . . . , Un) be the natural filtration. We define a random variable Zn

by

P(Zn = j | Fn) ∝ wθ

(
Un,j

n + 1

)
, 0 ≤ j ≤ k − 1,

where wθ : [0, 1] → R+ is given by

wθ(x) = θ − x.

We will consider θ ≥ 1 as a parameter for the model. Note that Zn represents the colour chosen
at the (n + 1)th draw. Starting with U0, we define (Un)n≥0 recursively as

Un+1 = Un + χn+1R, (1)

where χn+1 := (χn+1,0, χn+1,1, . . . , χn+1,k−1) and χn+1,j = 1(Zn = j) for 0 ≤ j ≤ k − 1.
We call the process (Un)n≥0 a linear de-preferential urn scheme with initial configuration

U0 and replacement matrix R. In this work we study the asymptotic properties of the following
two processes.

Random configuration of the urn. Observe that, for all n ≥ 0,

k−1∑
j=0

Un,j = n + 1. (2)

This holds because R is a stochastic matrix and U0 is a probability vector. Thus, the random
configuration of the urn, namely, Un/(n + 1) is a probability mass function. Furthermore,

P(Zn = j | Fn) = θ

kθ − 1
− 1

kθ − 1

Un,j

n + 1
, 0 ≤ j ≤ k − 1. (3)
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1178 A. BANDYOPADHYAY AND G. KAUR

Thus, UnA/(n + 1) is the conditional distribution of the (n + 1)th selected colour, namely Zn,
given U0, U1, . . . , Un, where

Ak×k = θ

kθ − 1
Jk − 1

kθ − 1
Ik, (4)

and Jk := 1	1 is the k × k matrix with all entries equal to 1 and Ik is the k × k identity matrix.
Color count statistics. Let Nn := (Nn,0, . . . , Nn,k−1) be the vector of length k whose j th

element is the number of times colour j was selected in the first n trials, that is,

Nn,j =
n∑

m=1

χm,j =
n−1∑
m=0

I(Zm = j), 0 ≤ j ≤ k − 1, (5)

and

Nn =
n∑

m=1

χm for all n ≥ 1.

It easily follows from (1) that
Un+1 = U0 + Nn+1R. (6)

1.3. Outline

In Section 2 we present the main results of the paper, with the proofs given in Section 3 and
Section 4.

2. The main results

We define a new k × k stochastic matrix, namely,

R̂ := RA = 1

kθ − 1
(θJk − R), (7)

where A is as defined in (4). As we state in the sequel, the asymptotic properties of (Un)n≥0
and (Nn)n≥0 depend on whether the stochastic matrix R̂ is irreducible or reducible. We begin
by stating a necessary and sufficient condition for R̂ to be irreducible.

2.1. A necessary and sufficient condition for R̂ to be irreducible

We start with the following definitions, which are needed for stating our main results.

Definition 1. A directed graph G = (V, 
E) is called the graph associated with a k×k stochastic
R = ((Ri,j ))0≤i,j≤k−1 if

V = {0, 1, . . . , k − 1} and 
E = {(−→i, j) | Ri,j > 0; i, j ∈ V}.
Definition 2. A stochastic matrix R is called a star if there exists a j ∈ {0, 1, . . . , k − 1} such
that

Ri,j = 1 for all i �= j .

In this case we say that j is the central vertex.

By definition, for the graph associated with a star replacement matrix, there is a central
vertex such that each vertex other than the central vertex has only one outgoing edge and that
is towards the central vertex. We note that in the definition of a star we allow the central vertex
to have a self loop. A graph associated with a star matrix with five vertices is given in Figure 1.
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Linear de-preferential urn models 1179
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Figure 1: Graph of a star matrix, with 0 as the central vertex.

As we will see in the sequel, the asymptotic properties will depend on the irreducibility of
the (new) stochastic matrix R̂, as defined in (7). The following lemma provides a necessary
and sufficient condition for R̂ to be irreducible.

Proposition 1. Let R be a k × k stochastic matrix with k ≥ 2. Then R̂ is irreducible if and
only if either θ > 1 or θ = 1, but R is not a star.

2.2. Asymptotics of the random configuration of the urn

2.2.1. Case when R̂ is irreducible. Our first result concerns the almost-sure asymptotic property
of the colour proportions.

Theorem 1. Let R̂ be irreducible. Then, for every starting configuration U0,

Un,j

n + 1
→ μj a.s. for all 0 ≤ j ≤ k − 1,

where μ = (μ0, μ1, . . . , μk−1) is the unique solution of the matrix equation

(θ1 − μ)R = (kθ − 1)μ. (8)

Remark 1. (a) Note that if we define ν = μA then it follows from (4) and (8) that ν is the
unique solution of the matrix equation νR̂ = ν. Furthermore, from (8) we have μ = νR.

(b) Since Un,j /(n + 1) is a bounded random variable, we obtain

E[Un,j ]
n + 1

→ μj a.s. for all 0 ≤ j ≤ k − 1,

where μ satisfies (8).

(c) It is worth noting here that the uniform distribution of both stochastic matrices R and R̂ is
the unique stationary distribution if and only if R is doubly stochastic, that is, when 1R = 1.

Our next result is a central limit theorem for the colour proportions.

Theorem 2. Suppose that R̂ is irreducible. Then there exists a k × k variance–covariance
matrix � ≡ �(θ, k) such that

Un − nμ

σn

⇒ Nk(0, �),

where, for k ≥ 3,

σn =
{√

n log n if k = 3, θ = 1, and one of the eigenvalues of R is −1,√
n otherwise,

(9)
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1180 A. BANDYOPADHYAY AND G. KAUR

and, for k = 2 and θ ∈ [1, 3
2 ],

σn =
{√

n log n if the eigenvalues of R are 1 and λ = (1 − 2θ)/2,√
n if the eigenvalues of R are 1 and λ > (1 − 2θ)/2.

(10)

Remark 2. (a) Note that � is necessarily a positive semidefinite matrix because of (2).

(b) It is worth noting here that the scaling is always by
√

n for any parameter value θ ≥ 1
when k ≥ 4. However, for a small number of colours, namely k ∈ {2, 3}, and certain specific
parameter values, as given in (9) and (10), the scaling has an extra factor of

√
log n.

2.2.2. Case when R̂ is reducible. By Proposition 1 we know that R̂ can be reducible if and only
if R is a star and θ = 1. Suppose that R is a star with k ≥ 2 colours. Then, without loss of
generality, we can write

R =

⎛
⎜⎜⎜⎝

α0 α1 . . . αk−1
1 0 . . . 0
...

...
. . .

...

1 0 . . . 0

⎞
⎟⎟⎟⎠ with

k−1∑
j=0

αj = 1 and αj ≥ 0 for all j, (11)

by taking 0 as the central vertex. Taking θ = 1, the matrix R̂ is

R̂ = 1

k − 1

⎛
⎜⎜⎜⎝

1 − α0 1 − α1 . . . 1 − αk−1
0 1 . . . 1
...

...
. . .

...

0 1 . . . 1

⎞
⎟⎟⎟⎠ , (12)

which is clearly reducible. In the next theorem we establish the limit of the urn configuration.

Theorem 3. Let θ = 1, and let the replacement matrix R be the star matrix given in (11) with

R �=
[

0 1
1 0

]
.

Then
Un,0

n + 1
→ 1 a.s.

Furthermore, there exists a random variable W ≥ 0 with E[W ] > 0 such that

Un,j

nγ
→ αj

k − 1
W a.s. for all j = 1, 2, . . . , k − 1,

where γ = (1 − α0)/(k − 1) < 1.

Remark 3. (a) In the trivial case when γ = 0 or (α0 = 1) we have

Un,0 = U0,0 + n

and
Un,j = U0,j for all j = 1, 2, . . . , k − 1.

That is, only colour 1 is reinforced at every time n in the urn.
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Linear de-preferential urn models 1181

(b) When

R =
[

0 1
1 0

]
,

we obtain

R̂ =
[

1 0
0 1

]
.

Note that then R̂ is the reinforcement rule for the classical Pólya urn scheme. Now, using (1),
we have

E[Un+1 | Fn] = Un + Un

n + 1
= (n + 2)

Un

n + 1
,

which implies that each coordinate of the vector Un/(n+1) is a positive martingale and, hence,
converges. Moreover, by exchangeability and arguments similar to the classical Pólya urn, we
can easily show that

Un,0

n + 1
→ Z a.s.,

where Z ∼ Beta(U0,0, U0,1).

2.3. Asymptotics of the colour count statistics

2.3.1. R̂ is irreducible.

Theorem 4. Suppose that R̂ is irreducible. Then

Nn,j

n
→ 1

kθ − 1
[θ − μj ] a.s. for all 0 ≤ j ≤ k − 1,

where μ = (μ0, μ1, . . . , μk−1) satisfies (8).

Theorem 5. Suppose that R̂ is irreducible. Then there exists a variance–covariance matrix �̃

such that
Nn − n(θ1 − μ)/(kθ − 1)

σn

⇒ N(0, �̃),

where σn is given in (9) and (10). Moreover,

� = R	�̃R, (13)

where � is as in Theorem 2.

Remark 4. It is worth noting here that it follows from (5) that
∑k−1

j=0 Nn,j = n; thus, �̃ is a
positive semidefinite matrix. Furthermore, it follows from (13) that rank(�) ≤ rank(�̃) with
equality holding if and only if the replacement matrix R is nonsingular.

2.3.2. R̂ is reducible. Recall that R̂ has the form (12) when it is reducible.

Theorem 6. Let R be a star matrix with 0 as the central vertex and θ = 1 such that

R �=
[

0 1
1 0

]
.

Then
Nn,0

n
→ 0 a.s.

and
Nn,j

n
→ 1

k − 1
a.s. for all 1 ≤ j ≤ k − 1.
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1182 A. BANDYOPADHYAY AND G. KAUR

Remark 5. For

R =
[

0 1
1 0

]
,

using (6) and Remark 3(b), we obtain

Nn,0

n + 1
→ 1 − Z a.s.,

where, as before, Z ∼ Beta(U0,0, U0,1).

Theorem 7. Let R be a star matrix with 0 as the central vertex and θ = 1 such that

R �=
[

0 1
1 0

]
.

Then the following assertions hold.

(i) If γ = (1 − α0)/(k − 1) < 1
2 ,

1√
n

(
n

k − 1
1 − Nn,−

)
⇒ N

(
0,

1

k − 1
I − 1

(k − 1)2 J

)
,

where Nn,− = (Nn,1, . . . , Nn,k−1) and
Nn,0√

n

P−→ 0.

(ii) If γ = (1 − α0)/(k − 1) > 1
2 ,

1

nγ

(
n

k − 1
− Nn,j

)
P−→ αj

γ (k − 1)2 W for all j �= 0

and
Nn,0

nγ

P−→ 1

k − 1
W,

where W is as given in Theorem 3.

(iii) if γ = (1 − α0)/(k − 1) = 1
2 ,

Nn,− − n1/(k − 1) + Wα−/(k − 1)(1 − α0)√
n

⇒ N

(
0,

1

k − 1
I − 1

(k − 1)2 J

)
,

where α− = (α1, α2, . . . , αk−1) and
Nn,0

nγ

P−→ 1

k − 1
W.

Remark 6. Note that γ < 1
2 if and only if k ≥ 4 or k = 3 and α0 > 0, or k = 2 and α0 > 1

2 .

3. Proof of the necessary and sufficient condition for R̂ to be irreducible

Suppose that G and Ĝ are the directed graphs associated with the matrices R and R̂,
respectively, as defined earlier. Observe that R̂ is the product of two stochastic matrices,
R and A. The underlying Markov chain of R̂ can be seen as a two-step Markov chain, where
the first step is taken according to R and the second step is taken according to A. Recall from
(7) that

R̂ = 1

kθ − 1
(θJ − R).
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Linear de-preferential urn models 1183

u v l m

Figure 2.

Now, to show that the Markov chain associated with R̂ is irreducible, it is enough to show that
there exists a directed path between any two fixed vertices, say u and v, in Ĝ.

Clearly, for θ > 1, R̂uv > 0 for all u and v, and, thus, R̂ is irreducible. Therefore, we only
have to verify irreducibility for the θ = 1 case. For this, we first fix two vertices, say u and v.
From (7) we obtain

R̂uv = 1 − Ru,v

k − 1
. (14)

To complete the proof, we will show that there is a path from u to v of length at most 2. We
consider the following two cases.

Case 1: Ru,v < 1. In this case, from (14) we obtain R̂uv > 0. Therefore, (u, v) is an edge
in Ĝ and trivially there is a path of length 1 from u to v in Ĝ.

Case 2: Ru,v = 1. In this case u has no R neighbour other than v, that is, (u, v) is the only
incoming edge to v in G and, from (14),

R̂uv = 0.

As mentioned earlier for θ = 1 and k = 2, R̂ is reducible only when R is the Friedman urn
scheme, which is a star with two vertices. Thus, in the rest of the proof we take k > 2, and
show that R̂2

uv > 0, i.e. there is a path of length 2.
If R is not a star then there must exist a vertex l such that it leads to a vertex other than

the central vertex, say m, that is Rl,m > 0 (m �= v). See Figure 2. Now, according to the R̂

chain, there is a positive probability of going from u to l in one step (first take an R-step from
u to v, which happens with probability 1 in this case, as Ru,v = 1, and then take an A-step to
l with probability 1/(k − 1)) and a positive probability of going from l to v in one step (first
take an R-step from l to m with probability Rl,m, and then take an A-step to v with probability
1/(k − 1)). Therefore, there is path of length two in Ĝ from u to v and, thus, the chain is
irreducible.

Remark 7. Note that from the proof it follows that, for a replacement matrix R with k > 2
such that R̂ is irreducible, R̂ is also aperiodic.

4. Proofs of the main results

We begin by observing the following fact. From (1), (3), and (4), we obtain

E[Un+1 | Fn] = Un + E[χn+1 | Fn]R = Un + Un

n + 1
AR. (15)

Thus,

E[Un+1A | Fn] = UnA + UnA

n + 1
R̂. (16)

Let Ûn := UnA, n ≥ 0. Then
Ûn+1 = Ûn + χn+1R̂.

From (16) we obtain

E[Ûn+1 | Fn] = Ûn + Ûn

n + 1
R̂.

Therefore, (Ûn)n≥0 is a classical urn scheme (uniform selection) with replacement matrix R̂.
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1184 A. BANDYOPADHYAY AND G. KAUR

The construction (Ûn)n≥0 is essentially a coupling of a de-preferential urn (Un)n≥0 with
replacement matrix R to a classical (positively reinforced) urn (Ûn)n≥0 with replacement
matrix R̂. Note that we get a one-to-one correspondence, as A is always invertible.

Proof of Theorem 1. Recall that Ûn = UnA is the configuration of a classical urn model with
replacement matrix R̂. Since, by our assumption, R̂ is irreducible, it follows from Theorem 2.2
of [8] that the limit of Ûn/(n + 1) is the normalized left eigenvector of R̂ associated with the
maximal eigenvalue 1. That is,

Ûn

n + 1
→ ν a.s.,

where ν satisfies νR̂ = ν. Since Un = ÛnA
−1, we have

Un

n + 1
→ μ a.s.,

where μ = νA−1, and it satisfies the following matrix equation:

(θ1 − μ)R = (kθ − 1)μ.

This completes the proof. �
Proof of Theorem 2. Let 1, λ1, . . . , λs be the distinct eigenvalues of R such that 1 ≥

Re(λ1) ≥ · · · ≥ Re(λs) ≥ −1, where Re(λ) denotes the real part of the eigenvalue λ. Recall
from (7) that R̂ = (θJk − R)/(kθ − 1). So the eigenvalues of R̂ are 1, bλ1, . . . , bλs , where
b = −1/(kθ − 1). Let τ = max{0, b Re(λs)}. Since Ûn = UnA is a classical urn scheme
with replacement matrix R̂, using Theorem 3.2 of [8], if b Re(λs) ≤ 1

2 then there exists a
variance–covariance matrix �′ such that

Ûn − nν

σn

⇒ N (0, �′),

where

σn =
{√

n log n if b Re(λs) = 1
2 ,√

n if b Re(λs) < 1
2 .

Note that
b Re(λs) ≤ 1

2 ⇐⇒ Re(λs) ≥ − 1
2 (kθ − 1). (17)

Now since θ ≥ 1 and Re(λs) ≥ −1, (17) holds whenever k ≥ 3. Furthermore, for k ≥ 3,
equality in (17) holds if and only if θ = 1 and k = 3. Moreover, for k = 2, the condition is
equivalent to Re(λs) ≥ (1 − 2θ)/2. Thus, σn is as given in (9) and (10). Therefore,

Un − nμ

σn

⇒ N (0, �),

where � = A	�′A. �
Proof of Theorem 3. Without loss of generality, we assume that γ > 0 (equivalently, α0 <

1), since, as noted in Remark 3, the result is trivial otherwise. Since the matrix R̂ given in (12)
is reducible without isolated blocks, using Proposition 4.3 of [33], we obtain

Ûn,0

n + 1
→ 0 and

Ûn,j

n + 1
→ 1

k − 1
for all j �= 0,
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Linear de-preferential urn models 1185

which implies that

Un,0

n + 1
→ 1 and

Un,j

n + 1
→ 0 for all j �= 0.

Now recall that (15) provides the recursion

E[Un+1 | Fn] = Un + E[χn+1 | Fn]R = Un + Un

n + 1
AR.

Note that in this case the matrix AR is given by

AR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

1 − γ
α1

k − 1

α2

k − 1
· · · αk−1

k − 1
1 − γ

α1

k − 1

α2

k − 1
· · · αk−1

k − 1
...

...
...

...
...

1 − γ
α1

k − 1

α2

k − 1
· · · αk−1

k − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where γ = (1 − α0)/(k − 1). Thus, the eigenvalues of AR are 1, γ , and 0, 0, . . . , 0 (k − 2
times), and the eigenvector corresponding to the nonprincipal eigenvalue γ is

ξ = (
0, 1, 1, . . . , 1

)	
.

Therefore, again using (15) we obtain

E[Un+1ξ | Fn] = Un

[
I + AR

n + 1

]
ξ = Unξ

[
1 + γ

(n + 1)

]
.

Let �n(γ ) = ∏n
i=1(1 + γ /i). Then Wn := Unξ/�n(γ ) is a nonnegative martingale and,

using Euler’s product, for large n,

�n(γ ) ∼ nγ

(γ + 1)
.

We now show that this martingale is L2-bounded, which will then imply that

Unξ

nγ
→ W, (18)

where W is a nondegenerate random variable. More precisely, W is nonzero with positive
probability. We can write

E[W 2
n+1 | Fn] = W 2

n + E[(Wn+1 − Wn)
2 | Fn]

and

Wn+1 − Wn = 1

�n+1(γ )

(
Un+1ξ − Unξ

(
1 + γ

n + 1

))

= 1

�n+1(γ )

(
χn+1Rξ − γ

n + 1
Unξ

)

= 1

�n+1(γ )

(
(1 − α0)χn+1,0 − γ

(n + 1) − Un,0

n + 1

)

= (1 − α0)

�n+1(γ )
(χn+1,0 − E[χn+1,0 | Fn]).
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Therefore,

E[W 2
n+1 | Fn] = W 2

n + (1 − α0)
2

�2
n+1(γ )

(E[χn+1,0 | Fn] − E[χn+1,0 | Fn]2)

≤ W 2
n + (1 − α0)

2

�2
n+1(γ )

E[χn+1,0 | Fn]

= W 2
n + (1 − α0)

2

�2
n+1(γ )

1

k − 1

n + 1 − Un,0

n + 1

= W 2
n + γ (1 − α0)

(n + 1)�n+1(γ )

Unξ

�n+1(γ )

≤ W 2
n + γ (1 − α0)

(n + 1)�n+1(γ )
Wn

≤ W 2
n + γ (1 − α0)(γ + 1)

2(n + 1)γ+1 (1 + W 2
n ).

The last inequality holds because 2Wn ≤ 1 + W 2
n . Let c := 1

2γ (1 − α0)(γ + 1). Then

E[W 2
n+1 + 1 | Fn] ≤

(
1 + c

(n + 1)γ+1

)
(1 + W 2

n )

≤ (1 + W 2
0 )

n∏
j=1

(
1 + c

(j + 1)γ+1

)

≤ (1 + W 2
0 ) exp

( n∑
j=1

c

(j + 1)γ+1

)

< ∞ (since γ > 0).

Thus, Wn is L2-bounded and, hence, converges to a nondegenerate random variable, say W .
For a star matrix R (as given in (11)), recursion (1) reduces to

Un+1,0 = Un,0 + α0χn+1,0 + (1 − χn+1,0)

and
Un+1,h = Un,h + αhχn+1,0 for all h �= 0.

When αh = 0, there is nothing to prove. When αh > 0, dividing both sides by αh yields

Un+1,h

αh

= U0,h

αh

+
n+1∑
j=1

χj,0.

Since the above relation holds for every choice of h > 0, we obtain

Un+1,h

αh

− Un+1,l

αl

= U0,h

αh

− U0,l

αl

for any h, l ∈ {1, 2, . . . , k − 1}. Multiplying the above equation by αl/(1 − α0) and taking the
sum over l �= 0,

Un,h

αh

− 1

1 − α0

∑
l �=0

Un,l = U0,h

αh

− 1

1 − α0

∑
l �=0

U0,l ,
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which can be written as

Un,h

αh

− 1

k − 1
Unξ = U0,h

αh

− 1

k − 1
U0ξ.

Now dividing both sides by nγ ,

1

nγ

Un,h

αh

− 1

k − 1

Unξ

nγ
= 1

nγ

(
U0,h

αh

− 1

k − 1
U0ξ

)
.

Note that the right-hand side of the above expression goes to 0 as n tends to ∞. Therefore,

lim
n→∞

1

nγ

Un,h

αh

− 1

k − 1

Unξ

nγ
= 0.

Using the limit from (18), we obtain

Un,h

nγ
→ αh

k − 1
W. �

Proof of Theorem 4. Note that from (1), (5), and (15) we can write

Nn =
n∑

i=1

(χi − E[χi | Fi−1]) +
n∑

i=1

E[χi | Fi−1]

=
n∑

i=1

(χi − E[χi | Fi−1]) + 1

kθ − 1

n∑
i=1

[
θ1 − Ui−1

i

]
. (19)

Since (χi − E[χi | Fi−1])i≥1 is a bounded martingale difference sequence, using Azuma’s
inequality (see [15]), we obtain

1

n

n∑
i=1

(χi − E[χi | Fi−1]) → 0 a.s. (20)

Using Theorem 1 and Cesaro’s lemma (see [5]), we obtain

Nn,j

n
→ 1

kθ − 1
(θ − μj ) a.s. for all 0 ≤ j ≤ k − 1. �

Proof of Theorem 5. Note that, under our coupling, Nn remains the same for the two pro-
cesses, namely, (Un)n≥0 and (Ûn)n≥0. Thus, applying Theorem 4.1 of [8] to the urn process
(Ûn)n≥0, we conclude that there exists a matrix �̃ such that

Nn − nμA

σn

⇒ N (0, �̃).

Finally, (13) follows from (6). This completes the proof. �
Proof of Theorem 6. The proof follows from (19) and (20). �
Proof of Theorem 7. Let Mn,j := ∑n

i=1(χi,j−E[χi,j | Fi−1]) and Mn = (Mn,0, Mn,1, . . . ,

Mn,k−1). Then {Mn, Fn} is a martingale. Define Xi = (Xi,0, Xi,1, . . . , Xi,k−1), where

Xi,j := 1√
n

(χi,j − E[χi,j | Fi−1])

are the martingale differences and (Mn)n≥1 is a k-dimensional bounded increment martingale.
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1188 A. BANDYOPADHYAY AND G. KAUR

Let Mn,− := (Mn,1, . . . , Mn,k−1) and Xn,− := (Xn,1, . . . , Xn,k−1). In this proof, we first
provide a central limit theorem for Mn,−, and then for Nn. Observe that the (l, m)th entry of
the matrix E[X	

i,−Xi,− | Fi−1] is

1

n
(E[χi,lχi,m | Fi−1] − E[χi,l | Fi−1]E[χi,m | Fi−1])

=

⎧⎪⎨
⎪⎩

1

n
E[χi,l | Fi−1](1 − E[χi,l | Fi−1]) if l = m,

−1

n
E[χi,l | Fi−1]E[χi,m | Fi−1] if l �= m,

=

⎧⎪⎪⎨
⎪⎪⎩

1

n(k − 1)

(
1 − Ui−1,l

i

)(
1 − 1

k − 1

(
1 − Ui−1,l

i

))
if l = m,

− 1

n(k − 1)2

(
1 − Ui−1,l

i

)(
1 − Ui−1,m

i

)
if l �= m.

So, as n → ∞ (using Theorem 3), we have

n∑
i=1

E[X	
i,−Xi,− | Fi−1](l,m) →

⎧⎪⎪⎨
⎪⎪⎩

(k − 2)

(k − 1)2 if l = m,

− 1

(k − 1)2 if l �= m.

Therefore,
n∑

i=1

E[X	
i,−Xi,− | Fi−1] → 1

k − 1
I − 1

(k − 1)2 J,

and, by the martingale central limit theorem [34],

1√
n

Mn,− ⇒ N

(
0,

1

k − 1
I − 1

(k − 1)2 J

)
. (21)

Now, for colour 0, we have

1√
n

Mn,0 = − 1√
n

k−1∑
j=1

Mn,−,

which implies that
1√
n

Mn,0
P−→ 0.

We now prove the central limit theorem for Nn. By (19) we have

Nn = Mn + 1

k − 1

n∑
i=1

[
1 − Ui−1

i

]
.

Therefore,
n

k − 1
1 − Nn,− = −Mn,− + 1

k − 1

n∑
i=1

Ui−1,−
i

. (22)
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From Theorem 3 we know that, for each j �= 0,

Ui−1,j

iγ
→ αj

k − 1
W a.s.,

n∑
i=1

Ui−1,j

i
� αj

k − 1
W

n∑
i=1

iγ−1 ∼ αj

k − 1

nγ

γ
W.

Therefore,
1

nγ

n∑
i=1

Ui−1,j

i
→ αj

γ (k − 1)
W a.s. (23)

Therefore, for γ < 1
2 , using (21), (22), and (23),

1√
n

(
n

k − 1
1 − Nn,−

)
⇒ N

(
0,

1

k − 1
I − 1

(k − 1)2 J

)
,

and, for γ ≥ 1
2 ,

1

nγ

(
n

k − 1
− Nn,j

)
P−→ αj

γ (k − 1)2 W for all j �= 0,

since then Mn,j /nγ P−→ 0. For j = 0, we have

Nn,0 = n −
k−1∑
j=1

Nn,j =
k−1∑
j=1

(
n

k − 1
− Nn,j

)
.

Therefore, for γ < 1
2 , we have

Nn,0√
n

P−→ 0,

and, for γ > 1
2 , we have

1

nγ
Nn,0 =

k−1∑
j=1

1

nγ

(
n

k − 1
− Nn,j

)

P−→ W

(k − 1)(1 − α0)

k−1∑
j=1

αj

= W

k − 1
. �

From (22) we have

Nn,− − n

k − 1
1 + 1

k − 1

n∑
i=1

Ui−1,−
i

= Mn,−,

Nn,− − n1/(k − 1) + (1/(k − 1))
∑n

i=1 Ui−1,−/i√
n

= Mn,−√
n

;

therefore, for γ = 1
2 , we obtain

Nn,− − n1/(k − 1) + Wα−/(k − 1)(1 − α1)√
n

⇒ N

(
0,

1

k − 1
I − 1

(k − 1)2 J

)
,
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where α− = (α1, α2, . . . , αk−1) and

Nn,0 =
k−1∑
j=1

(
n

k − 1
− Nn,j

)

= 1

k − 1
W +

k−1∑
j=1

(
n

k − 1
− Nn,j − αj

(k − 1)(1 − α0)
W

)

⇒ Nn,0√
n

P−→ 1

k − 1
W.

Acknowledgements

The authors are grateful to the anonymous referees for their valuable remarks, which have
helped to much improve the exposition of the article.

References

[1] Ahlberg, D., Sidoravicius, V. and Tykesson, J. (2014). Bernoulli and self-destructive percolation on non-
amenable graphs. Electron. Commun. Prob. 19, 6pp.

[2] Ahlberg, D., Duminil-Copin, H., Kozma, G. and Sidoravicius, V. (2015). Seven-dimensional forest fires.
Ann. Inst. H. Poincaré Prob. Statist. 51, 862–866.

[3] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74,
47–97.

[4] Aldous, D. J. (2000). The percolation process on a tree where infinite clusters are frozen. Math. Proc. Camb.
Phil. Soc. 128, 465–477.

[5] Apostol, T. M. (1974). Mathematical Analysis, 2nd edn. Addison-Wesley, Reading, MA.
[6] Athreya, K. B. and Karlin, S. (1968). Embedding of urn schemes into continuous time Markov branching

processes and related limit theorems. Ann. Math. Statist. 39, 1801–1817.
[7] Bagchi, A. and Pal, A. K. (1985). Asymptotic normality in the generalized Pólya-Eggenberger urn model,

with an application to computer data structures. SIAM J. Algebraic Discrete Methods 6, 394–405.
[8] Bai, Z.-D. and Hu, F. (2005). Asymptotics in randomized URN models. Ann. Appl. Prob. 15, 914–940.
[9] Bandyopadhyay, A. and Sen, S. (2017). De-preferential attachment random graphs. Preprint.

[10] Bandyopadhyay, A. (2006).A necessary and sufficient condition for the tail-triviality of a recursive tree process.
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[49] Ráth, B. and Tóth, B. (2009). Erdős-Rényi random graphs + forest fires = self-organized criticality. Electron.

J. Prob. 14, 1290–1327.
[50] Sevim, V. and Rikvold, P. A. (2006). Effects of preference for attachment to low-degree nodes on the degree

distributions of a growing directed network and a simple food-web model. Phys. Rev. E 73, 056115.
[51] Sevim, V. and Rikvold, P. A. (2008). Network growth with preferential attachment for high indegree and low

outdegree. Physica A 387, 2631–2636.
[52] Van den Berg, J. and Brouwer, R. (2004). Self-destructive percolation. Random Structures Algorithms 24,

480–501.
[53] Van den Berg, J. and Brouwer, R. (2006). Self-organized forest-fires near the critical time. Commun. Math.

Phys. 267, 265–277.
[54] Van den Berg, J. and de Lima, B. N. B. (2009). Linear lower bounds for δc(p) for a class of 2D self-destructive

percolation models. Random Structures Algorithms 34, 520–526.
[55] Van den Berg, J. and Járai, A. A. (2005). On the asymptotic density in a one-dimensional self-organized

critical forest-fire model. Commun. Math. Phys. 253, 633–644.
[56] Van den Berg, J. and Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. Ann.

Appl. Prob. 27, 91–108.
[57] Van den Berg, J., Brouwer, R. and Vágvölgyi, B. (2008). Box-crossings and continuity results for self-

destructive percolation in the plane. In In and Out of Equilibrium. 2 (Progress Prob. 60), Birkhäuser, Basel,
pp. 117–135.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.55
Downloaded from https://www.cambridge.org/core. Indian Statistical Institute (Delhi), on 25 Jan 2019 at 04:35:53, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.55
https://www.cambridge.org/core


1192 A. BANDYOPADHYAY AND G. KAUR

[58] Van den Berg, J., de Lima, B. N. B. and Nolin, P. (2012). A percolation process on the square lattice where
large finite clusters are frozen. Random Structures Algorithms 40, 220–226.

[59] Van den Berg, J., Kiss, D. and Nolin, P. (2012). A percolation process on the binary tree where large finite
clusters are frozen. Electron. Commun. Prob. 17, 11pp.

[60] Williams, D. and McIlroy, P. (1998). The OK Corral and the power of the law (a curious Poisson-kernel
formula for a parabolic equation). Bull. London Math. Soc. 30, 166–170.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.55
Downloaded from https://www.cambridge.org/core. Indian Statistical Institute (Delhi), on 25 Jan 2019 at 04:35:53, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.55
https://www.cambridge.org/core

	1 Introduction
	1.1 Background and motivation
	1.2 Model description
	1.3 Outline

	2 The main results
	2.1 A necessary and sufficient condition for  to be irreducible
	2.2 Asymptotics of the random configuration of the urn
	2.2.1 Case when  is irreducible.
	2.2.2 Case when  is reducible.

	2.3 Asymptotics of the colour count statistics
	2.3.1  is irreducible.
	2.3.2  is reducible.


	3 Proof of the necessary and sufficient condition for  to be irreducible
	4 Proofs of the main results
	Acknowledgements
	References



