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a b s t r a c t

In this work we consider the infinite color urn model associated with a bounded increment
randomwalk onZd. Thismodelwas first introduced in Bandyopadhyay and Thacker (2013).
We prove that the rate of convergence of the expected configuration of the urn at time n
with appropriate centering and scaling is of the order O


(log n)−1/2. Moreover we derive

bounds similar to the classical Berry–Esseen bound. Further we show that for the expected
configuration a large deviation principle (LDP) holds with a good rate function and speed
log n.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Pólya urn scheme is one of the most well studied stochastic process which has plenty of applications in different fields.
Since the time of its introduction by Pólya (1930) there has been a vast number of different variants and generalizations
studied in the literature (see Pemantle (2007) for an extensive survey). In general one considers the model with finitely
many colors and starts with an urn containing finitely many balls of different colors. At any time n ≥ 1, a ball is selected
uniformly at random from the urn, and its color is noted. The selected ball is then returned to the urn along with a set of
balls of various colors which may depend on the color of the selected ball.

Recently Bandyopadhyay and Thacker (2013) has introduced a new generalization of the classical model with infinite but
countablymany colors with replacementmechanism corresponding to randomwalks in d-dimension. This generalization is
essentially different than that of the classical Pólya urn scheme, aswell as, themodel introduced by Blackwell andMacQueen
(1973), where the replacementmechanism is diagonal. The generalization by Bandyopadhyay and Thacker (2013) considers
replacement mechanism with non-zero off diagonal entries and provides a novel connection between the two classical
models, namely, Pólya urn scheme and random walks on d-dimensional Euclidean space. In the current work we exploit
this connection to derive the rate of convergence and the large deviation principle for the (n + 1)th selected color. In the
following subsection we describe the specific model which we study.
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1.1. Infinite color urn model associated with random walks

Let

Xj

j≥1 be i.i.d. random vectors taking values in Zd with probability mass function p (u) := P (X1 = u) ,u ∈ Zd. We

assume that the distribution of X1 is bounded, that is there exists a non-empty finite subset B ⊆ Zd such that p (u) = 0 for
all u ∉ B. Throughout this paper we take the convention of writing all vectors as row vectors. Thus for a vector x ∈ Rd we
will write xT to denote it as a column vector. The notations ⟨·, ·⟩ will denote the usual Euclidean inner product on Rd and
∥ · ∥ the Euclidean norm. We will always write µ := E [X1] , Σ := E


XT
1 X1


and e (λ) := E


e⟨λ,X1⟩


, λ ∈ Zd. When the

dimension d = 1 we will denote the mean and variance simply by µ and σ 2 respectively.
Let Sn := X0 + X1 + · · · + Xn, n ≥ 0, be the random walk on Zd starting at X0 and with increments


Xj

j≥1 which are

independent. Needless to say that (Sn)n≥0 is Markov chain with state-space Zd, initial distribution given by the distribution
of X0 and the transition matrix R := ((p (u − v)))u,v∈Zd .

In Bandyopadhyay and Thacker (2013) the following infinite color generalization of Pólya urn scheme was introduced
where the colors were indexed by Zd. Let Un :=


Un,v


v∈Zd ∈ [0, ∞)Zd

denote the configuration of the urn at time n, that is,

P ((n + 1)th selected ball has color v|Un,Un−1, . . . ,U0) ∝ Un,v, v ∈ Zd.

Starting with U0 which is a probability distribution we define (Un)n≥0 recursively as follows:

Un+1 = Un + χn+1R (1)

where χn+1 =

χn+1,v


v∈Zd is such that χn+1,V = 1 and χn+1,u = 0 if u ≠ V where V is a random color chosen from the

configuration Un. Following Bandyopadhyay and Thacker (2013) we define the process (Un)n≥0 as the infinite color urn model
with initial configuration U0 and the replacement matrix R. We will also refer to it as the infinite color urn model associated
with the random walk (Sn)n≥0 on Zd. Throughout this paper we will assume that U0 =


U0,v


v∈Zd is such that U0,v = 0 for all

but finitely many v ∈ Zd. It is worth noting that


u∈Zd Un,u = n + 1 for all n ≥ 0. So if Zn denotes the (n + 1)th selected
color, then

P (Zn = v|Un,Un−1, . . . ,U0) =
Un,v

n + 1
⇒ P (Zn = v) =

E

Un,v


n + 1

. (2)

In other words the expected configuration of the urn at time n is given by the distribution of Zn.

1.2. Outline of the main contribution of the paper

In Bandyopadhyay and Thacker (2013) the authors studied the asymptotic distribution of Zn, in particular, it has been
proved (see Theorem 2.1 of Bandyopadhyay and Thacker (2013)) that as n → ∞,

Zn − µ log n
√
log n

d
−→ Nd (0, Σ) . (3)

In Section 2 we find the rate of convergence for the above asymptotic and show that the classical Berry–Esseen type bound
holds at any dimension d ≥ 1, which is of the order O


1

√
log n


.

It is easy to see that (3) implies

Zn
log n

d
−→ µ as n → ∞ ⇒

Zn
log n

p
−→ µ as n → ∞. (4)

In Section 3 we show that the above sequence of measures satisfy an LDP with a good rate function and speed log n. A
characterization of the rate function is also provided.

1.3. Fundamental representation

We end the introduction with the following very important observation made by Bandyopadhyay and Thacker (2013)
(see Theorem 3.1 by Bandyopadhyay and Thacker (2013)):

Proposition 1. Suppose Zn be as defined before, then

Zn
d
= Z0 +

n
j=1

IjXj (5)

where

Xj

j≥1 are as above and


Ij

j≥1 are independent Bernoulli variables such that Ij ∼ Bernoulli


1

j+1


and are independent of

Xj

j≥1. Z0 ∼ U0 and is independent of


Xj

j≥1 ,


Ij

j≥1


.
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We will use this representation to derive the Berry–Esseen type bounds and also the LDP. The proof of Proposition 1 is
given in detail in Bandyopadhyay and Thacker (2013), but for the sake of completeness we are presenting it here as well.
Proof of Proposition 1. From (2) we know that

P (Zn = v) =
E

Un,v


n + 1

.

So for λ ∈ Rd, the moment generating function of Zn is given by

mn (λ) =
1

n + 1


v∈Zd

e⟨λ,v⟩E

Un,v


.

Note that e (λ) is an eigenvalue of R corresponding to the right eigenvector x (λ) =

e⟨λ,v⟩

T
v∈Zd . Thus mn (λ) =

1
n+1E [Un] x (λ).

Let Fn = σ

Uj: 0 ≤ j ≤ n


, n ≥ 0 be the natural filtration. From (1) we obtain,

E [Un+1x (λ)| Fn] = Unx (λ) + e (λ) E [Xn+1x (λ)| Fn] =


1 +

e (λ)

n + 1


Unx (λ) .

Therefore,

mn (λ) =
E [U0x (λ)]

n + 1

n
j=1


1 +

e (λ)

j



= E [U0x (λ)]
n

j=1


j

j + 1
+

e(λ)

j + 1



= E [U0x (λ)]
n

j=1


1 −

1
j + 1

+
e(λ)

j + 1


. (6)

This completes the proof. �

2. Berry–Esseen bounds for the expected configuration

2.1. Berry–Esseen bound for d = 1

We first consider the case when the associated random walk is a one dimensional walk and the set of colors is indexed
by the set of integers Z.

Theorem 1. Suppose U0 = δ0 then

sup
x∈R

PZn − µhn
√
nρ2

≤ x


− Φ (x)
 ≤ 2.75 ×

√
nρ3

ρ
3/2
2

= O


1

√
log n


, (7)

where hn :=
n

j=1
1

j+1 , Φ is the standard normal distribution function and

ρ2 :=
1
n


σ 2hn − µ2

n
j=1

1

(j + 1)2


(8)

and

ρ3 :=
1
n


n

j=1

1
j + 1

E

X1 −
µ

j + 1

3


+ |µ|
3

n
j=1

j

(j + 1)4


. (9)

Proof. We first note that when U0 = δ0 then (5) can be written as

Zn
d
=

n
j=1

IjXj (10)

where

Xj

j≥1 are i.i.d. increments of the random walk (Sn)n≥0,


Ij

j≥1 are independent Bernoulli variables such that Ij ∼

Bernoulli


1
j+1


and are independent of


Xj

j≥1.
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Now observe that

nρ2 =

n
j=1

E


IjXj − E

IjXj
2 and nρ3 =

n
j=1

E
IjXj − E


IjXj
3 .

Thus from the Berry–Esseen Theorem for the independent but non-identical increments (see Theorem 12.4 of Bhattacharya
and Ranga (1976)) we get

sup
x∈R

P


n
j=1

IjXj − µhn

√
nρ2

≤ x

− Φ (x)

 ≤ 2.75 ×

√
nρ3

ρ
3/2
2

. (11)

Eqs. (10) and (11) imply the inequality in (7).
Finally to prove the last part of Eq. (7) we note that from the definition of nρ2 ∼ C1 log n and nρ3 ∼ C2 log n where

0 < C1, C2 < ∞ are some constants. Thus
√
nρ3

ρ
3/2
2

= O


1

√
log n


.

This completes the proof of the theorem. �

The following result follows easily from the above theorem by observing the facts hn ∼ log n and nρ2 ∼ C1 log n where
C1 > 0 is a constant.

Theorem 2. Suppose U0,k = 0 for all but finitely many k ∈ Z then there exists a constant C > 0 such that

sup
x∈R

PZn − µ log n
σ
√
log n

≤ x


− Φ (x)
 ≤ C ×

√
nρ3

ρ
3/2
2

= O


1

√
log n


, (12)

Φ is the standard normal distribution function and ρ2 and ρ3 are as defined in (8) and (9) respectively.

It is worth noting that unlike in Theorem 1 the constant C which appears in (12), is not a universal constant, it may
depend on the increment distribution, as well as on U0.

Proof. Observe that

sup
x∈R

PZn − µ log n
σ
√
log n

≤ x


− Φ (x)
 ≤ sup

x∈R
Jn(x) + sup

x∈R
Kn(x)

where

Jn(x) =

PZn − µhn
√
nρ2

≤ xn


− Φ(xn)


and xn = µ (log n−hn)√

nρ2
+ x σ

√
log n

√
nρ2

and

Kn(x) =

Φ 
µ

(log n − hn)
√
nρ2

+ x
σ
√
log n

√
nρ2


− Φ (x)

 .
From Theorem 1 we observe that

sup
x∈R

Jn(x) ≤ 2.75 ×

√
nρ3

ρ
3/2
2

= O


1

√
log n


. (13)

For a suitable choice of C1 > 0, we have

Kn(x) =

 1
√
2π

 µ
(log n−hn)

√nρ2
+x σ

√
log n

√nρ2

x
e

−t2
2 dt


≤ C1e−

x2
2

µ(log n − hn)
√
nρ2

+ x
σ
√
log n

√
nρ2

− x


≤ C1

µ(log n − hn)
√
nρ2

+ C1e−
x2
2 |x|

σ √
log n

√
nρ2

− 1
 .
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Observe that hn = log n + γ + ϵn where ϵn −→ 0 as n → ∞ and γ is the Euler constant. Also
√
nρ2 ∼

√
log n. Therefore,

there exists a constant C2 > 0 such that for all n ∈ N

C1

µ(log n − hn)
√
nρ2

 ≤ C2

√
nρ3

ρ
3/2
2

= O


1

√
log n


. (14)

Note that the function e−
x2
2 |x| attains its maximum at x = 1. Therefore,

C1e−
x2
2 |x|

σ √
log n

√
nρ2

− 1
 ≤ C1e−

1
2

σ √
log n

√
nρ2

− 1
 .

Since
√x − 1

 ≤
√

|x − 1| for all x ∈ R, we obtain

C1e−
1
2

σ √
log n

√
nρ2

− 1
 ≤ C3

σ 2 log n − nρ2

nρ2

 (15)

for an appropriate constant C3 > 0. Observe that for some constant C4 > 0,

nρ2 − σ 2 log n
√
nρ2

=

σ 2


n

j=1

1
j+1 − log n


− µ2

n
j=1

1
(j+1)2

√
nρ2

≤ C4

√
nρ3

ρ
3/2
2

= O


1

√
log n


. (16)

Therefore, combining (14)–(16) we can choose an appropriate constant C > 0 such that (12) holds. �

2.2. Berry–Esseen bound for d ≥ 2

We now consider the case when the associated random walk is d ≥ 2 dimensional and the colors are indexed by Zd.
Before we present our main result we introduce few notations.

Notations. For a vector x ∈ Rd is written as

x(1), x(2), . . . , x(d)


. For example the vector µ will be written as


µ(1), µ(2),

. . . , µ(d)

. For a matrix A =


aij


1≤i,j≤d we denote by A (i, j) the (d − 1) × (d − 1) sub-matrix of A, obtained by deleting
the ith row and jth column. Let

ρ
(d)
2 :=

1
n

n
j=1

1
(j + 1)

det

Σ −

1
j+1M


det


Σ(1, 1) −

1
j+1M(1, 1)

 , (17)

where M :=


µ(i)µ(j)


1≤i,j≤d and

ρ
(d)
3 :=

1
nd

d
i=1

γ 3
n (i)


n

j=1

βj (i)


, (18)

where

γ 2
n (i) := max

1≤j≤n

det

Σ(i, i) −

1
(j+1)M(i, i)


det


Σ(1, 1) −

1
j+1M(1, 1)


and

βj(i) =
1

j + 1
E

X (i)
1 −

µ(i)

j + 1

3


+
j

(j + 1)4
µ(i)

3 .

For any two vectors x and y ∈ Rd we will write x ≤ y, if the inequality holds coordinate wise. Finally for a positive definite
matrix B, we write B1/2 for the unique positive definite square root of it.
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Theorem 3. Suppose U0 = δ0 then there exists an universal constant C (d) > 0which may depend on the dimension d such that

sup
x∈Rd

P (Zn − µhn) Σ−1/2
n ≤ x


− Φd (x)

 ≤ C (d)
√
nρ(d)

3
ρ

(d)
2

3/2 = O


1

√
log n


, (19)

where Σn :=
n

j=1
1

j+1


Σ −

1
j+1M


and Φd is the distribution function of a standard d-dimensional normal random vector.

Proof. Like in the one dimensional case, we start by observing that when U0 = δ0 then (5) can be written as

Zn
d
=

n
j=1

IjXj (20)

where

Xj

j≥1 are i.i.d. increments of the random walk (Sn)n≥0,


Ij

j≥1 are independent Bernoulli variables such that Ij ∼

Bernoulli


1
j+1


and are independent of


Xj

j≥1.

Now the proof of the inequality in (19) follows from equation (D) of Bergström (1949) which deals with d-dimensional
version of the classical Berry–Esseen inequality for independent but non-identical summands, which in our case are the
random variables


IjXj

j≥1. It is enough to notice that

βj(i) = E
IjX (i)

1 − E

IjX

(i)
j

3
and

Σn =

n
j=1

E


IjXj − E

IjXj
T IjXj − E


IjXj


.

Finally to prove the last part of Eq. (19) just like in the one dimensional case we note that from the definition of
nρ(d)

2 ∼ C ′

1 log n and nρ(d)
3 ∼ C ′

2 log n where 0 < C ′

1, C
′

2 < ∞ are some constants. Thus
√
nρ3

ρ
3/2
2

= O


1

√
log n


.

This completes the proof of the theorem. �

Remark 2.1. If we define that Σ (1, 1) = 1 andM (1, 1) = 0 when d = 1 then Theorem 1 follows from the above theorem
except in Theorem 1 the constant is more explicit.

Just like in the one dimensional case the following result follows easily from the above theorem by observing hn ∼ log n.

Theorem 4. Suppose U0 =

U0,v


v∈Zd is such that U0,v = 0 for all but finitely many v ∈ Zd then there exists a constant C > 0

which may depend on the increment distribution, such that

sup
x∈Rd

PZn − µ log n
√
log n


Σ−1/2

≤ x


− Φd (x)
 ≤ C ×

√
nρ(d)

3
ρ

(d)
2

3/2 = O


1

√
log n


, (21)

where Φd is the distribution function of a standard d-dimensional normal random vector.

Proof. Observe that

sup
x∈Rd

PZn − µ log n
√
log n


Σ−1/2

≤ x


− Φd (x)
 ≤ sup

x∈Rd
Jn(x) + sup

x∈Rd
Kn(x)

where

Jn(x) =
P (Zn − µhn) Σ−1/2

n ≤ xn

− Φd (xn)

 (22)

where xn = µ (log n − hn) Σ
−1/2
n + x

√
log nΣ1/2Σ

−1/2
n and

Kn(x) = |Φd (xn) − Φd (x)| . (23)
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It follows from Theorem 3 that

sup
x∈Rd

Jn(x) ≤ C (d)
√
nρ(d)

3
ρ

(d)
2

3/2 = O


1

√
log n


.

Further writing xn :=


x(1)
n , x(2)

n , . . . , x(d)
n


we get

Kn(x) ≤

d
i=1

1
√
2π


 x(i)n

x(i)
e

−t2
2 dt

 .
Note that Σn = hnΣ −

n
j=1

1
(j+1)2


M , so h−1

n Σn −→ Σ . The rest of the argument is exactly similar to that of the one
dimensional case. This completes the proof. �

3. Large deviations for the expected configuration

In this section we discuss the asymptotic behavior of the tail probabilities of Zn
log n . Following standard notations are used

in rest of the paper. For any subset A ⊆ Rd we write A◦ to denote the interior of A and Ā to denote the closer of A under the
usual Euclidean metric.

Theorem 5. The sequence of measures P


Zn
log n ∈ ·


n≥2

satisfy a LDP with rate function I (·) and speed log n, that is,

− inf
x∈A◦

I (x) ≤ lim
n→∞

log P


Zn
log n ∈ A


log n

≤ lim
n→∞

log P


Zn
log n ∈ A


log n

≤ − inf
x∈Ā

I (x) (24)

where I(·) is the Fenchel–Legendre dual of e (·) − 1, that is for x ∈ Rd,

I(x) = sup
λ∈Rd

{⟨x, λ⟩ − e(λ) + 1}. (25)

Moreover I(·) is convex and a good rate function.

Proof. Using representation (5) without loss we may assume that Z0 = 0 with probability one, that is, U0 = δ0. Now we
define

Λn (λ) :=
1

log n
logE


e⟨λ,Zn⟩


. (26)

From (5) it follows that

E

e⟨λ,Zn⟩


=

1
n + 1

Πn (e (λ))

where Πn (z) =
n

j=1


1 +

z
j


, z ∈ C. Using Gauss’s formula (see page 178 of Conway (1978)) we have

lim
n→∞

Πn(z)
nz

Γ (z + 1) = 1 (27)

and the convergence happens uniformly on compact subsets of C \ {−1, −2, . . .}. Therefore we get

Λn (λ) −→ e (λ) − 1 < ∞ ∀ λ ∈ Rd. (28)

Thus the LDP as stated in (24) follows from the Gärtner–Ellis Theorem (see Remark (a) on page 45 of Dembo and Zeitouni
(1993) or page 66 of Chakrabarty (2010)).

We next note that I(·) is a convex function because it is the Fenchel–Legendre dual of e (λ) − 1 which is finite for all
λ ∈ Rd.

Finally, wewill show that I (·) is good rate function, that is, the level sets A (α) = {x: I(x) ≤ α} are compact for all α > 0.
Since I is a rate function so by definition it is lower semicontinuous. So it is enough to prove that A(α) is bounded for all
α ∈ R. Observe that for all x ∈ Rd,

I(x) ≥ sup
∥λ∥=1

{⟨x, λ⟩ − e(λ) + 1} .
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Now the function λ → e (λ) is continuous and {λ: ∥λ∥ = 1} is a compact set. So ∃ λ0 ∈ {λ: ∥λ∥ = 1} such that
sup|λ|=1 e (λ) = e (λ0). Therefore for ∥x∥ ≠ 0 choosing λ =

x
∥x∥ , we have I(x) ≥ ∥x∥ − e (λ0) + 1. So if x ∈ A(α)

then

∥x∥ ≤ (α + e (λ0) − 1) .

This proves that the level sets are bounded, which completes the proof. �

Our next result is an easy consequence of (25) which can be used to compute the explicit formula for the rate function I .

Theorem 6. The rate function I is same as the rate function for the large deviation of the empirical means of i.i.d. random vectors
with distribution corresponding to the distribution of the following random vector:

W =

N
i=1

Xi, (29)

where N ∼ Poisson (1) and is independent of

Xj

j≥1 which are the i.i.d. increments of the associated random walk.

Proof. We first observe that log E

e⟨λ,W ⟩


= e (λ)−1. The rest then follows from (25) and Cramér’s Theorem (see Theorem

2.2.30 of Dembo and Zeitouni (1993)). �

For d = 1, one can get more information about the rate function I , in particular the following result is a consequence of
Theorem 6 and Lemma 2.2.5 of Dembo and Zeitouni (1993).

Proposition 2. Suppose d = 1 then I(x) is non-decreasing when x ≥ µ and non-increasing when x ≤ µ. Moreover,

I(x) =


sup
λ≥0

{xλ − e(λ) + 1} if x ≥ µ

sup
λ≤0

{xλ − e(λ) + 1} if x ≤ µ.
(30)

In particular, I(µ) = infx∈R I(x).

Following is an immediate corollary of the above result and Theorem 5.

Corollary 7. Let d = 1 then for any ϵ > 0

lim
n→∞

1
log n

log P


Zn
log n

≥ µ + ϵ


= −I (µ + ϵ) (31)

and

lim
n→∞

1
log n

log P


Zn
log n

≤ µ − ϵ


= −I (µ − ϵ) . (32)

We end the section with explicit computations of the rate functions for two examples of infinite color urn models
associated with random walks on a one dimensional integer lattice.

Example 3.1. Our first example is the case when the random walk is trivial, which moves deterministically one step at a
time. In other words X1 = 1 with probability one. In this case µ = 1 and σ 2

= 1. Also the moment generating function of
X1 is given by e (λ) := eλ, λ ∈ R. By Theorem 6 the rate function for the associated infinite color urn model is same as the
rate function for a Poisson random variable with mean 1, that is, I(x) = x log x − x + 1, if x > 0, I(0) = 1 and I(x) = ∞

when x < 0.

Example 3.2. Our next example is the case when the random walk is the simple symmetric random walk on the one
dimensional integer lattice. For this case we note that µ = 0, σ 2

= 1 and the moment generating function X1 is e (λ) =

cosh λ, λ ∈ R. The rate function for the associated infinite color urn model turns out to be

I(x) = x sinh−1 x −


1 + x2 + 1. (33)
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