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Notations and Few Basic Definitions

• R+ = {x ∈ R|x ≥ 0}

• ∆k = {x ∈ RK :
∑K

i=1 xi = 1}

• ui is the row vector of length K, with ith element equal to 1 and rest all equal to 0.

• I ≡ IK is the K ×K-identity matrix.

• J ≡ JK := 1T1 is the K ×K matrix with all entries equal to 1.

• ‖ · ‖p denotes the Lp norm on Rd for p ≥ 1 that is for x = (x1, x2, · · · , xd) ∈ Rd

‖x‖p =
(∑d

i=1 |xi|p
)1/p

. ‖ · ‖ without any subscript will denote the L2 norm.

• A function f : M → Rd is called Lipschitz if for every x, y ∈M ⊆ Rd

‖f(x)− f(y)‖ ≤ L‖x− y‖

for some 0 < L <∞. For a Lipschitz function f , its Lipschitz constant M is defined as

M := sup
x 6=y

‖f(x)− f(y)‖
‖x− y‖

(0.0.1)

and such functions will be referred as Lip(M). The function f is called a contraction if

M < 1.

• For a complex number λ, <(λ) denotes the real part of λ.

• A matrix A is called normal if

AAT = ATA.
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• The exponential of a matrix A is defined as

eA :=

∞∑
l=0

Al

l!
.

• For x > 0 and a matrix A,

xA := exp ((log x)A) .

• S = {1, · · · ,K} denotes the set of K colors.

• Urn configuration at time n is denoted by Un = (Un,1, · · · , Un,K) , ∀n ≥ 0.

• Yn denotes the vector of color proportions at time n, defined as

Yn :=
Un∑K

j=1 Un,j
, ∀n ≥ 0.

• Zn denotes the random color selected at time n+ 1, ∀n ≥ 0.

• For every n ≥ 0, χn+1 is the random vector of length K, with jth entry equal to 1 if color

j is selected at time n+ 1, and 0 otherwise, that is

χn+1 =
(
1{Zn=j}

)
j∈S .

• Nn = (Nn,1, · · · , Nn,K), is the vector of color counts, that is for every j ∈ S

Nn,j :=

n∑
m=1

1{Zm=j}.



Chapter 1

Introduction

Various kinds of random reinforcement models have been of much interest in recent years

[36, 58, 49, 10, 40, 59, 66, 24, 31, 35, 33, 55, 30, 28]. Urn schemes, which were first studied by

Pólya [67], are perhaps the simplest reinforcement models, which have many applications and

generalisations [67, 42, 41, 7, 9, 65, 44, 48, 49, 10, 40, 24, 25, 35, 35, 33, 57, 30, 55, 28, 18, 16,

17, 63]. In general, reinforcement models typically adhere to the structure of “rich get richer”,

which can also be termed as positive reinforcement. However, there have been some studies on

negative reinforcements models in the context of percolation, such as the forest fire-type models

from the point-of-view of self-destruction [73, 77, 74, 75, 76, 37, 38, 26, 27, 68, 32, 2, 1] and

frozen percolation-type models from the point-of-view of stagnation [4, 11, 79, 78, 80]. For urn

schemes, a type of “negative reinforcement” have been studied when balls can be thrown away

from the urn, as well as, added [39, 81, 51, 52, 33, 63]. In such models, it is usually assumed

that the model is tenable, that is, regardless of the stochastic path taken by the process, it is never

required to remove a ball of a colour not currently present in the urn. Perhaps the most famous

of such scheme is the Ehrenfest urn [39, 63], which models the diffusion of an ideal gas between

two chambers of a box. There are some models without tenability, such as the OK Corral Model

[81, 51, 52] or Simple Harmonic Urn in two colours [33]. Typically these are used for modelling

destructive competition.

In recent days, there has been some work on negative reinforcements, random graphs

[70, 71, 15] from a different point-of-view, where attachment probabilities of a new vertex are

5



6 Chapter 1: Introduction

decreasing functions of the degree of the existing vertices. Such models have also been referred

as “de-preferential attachment” [15] as opposed to usual “preferential” attachment models

[19, 3]. In particular, they consider two types of random graphs namely linear de-preferential

and inverse de-preferential, such that, a new vertex joins to an existing vertex with probability

proportional to a linear or an inverse non-increasing weight function. They have obtained the

degree distribution of such graphs and showed that the degree of a fixed vertex grows at an order

of log n for the linear de-preferential random graph and
√

log n for the inverse de-preferential

random graph. Motivated by this later set of works, in this thesis, we investigate some models

of negatively reinforced urn schemes, where the selection probabilities are proportional to a

decreasing function of the proportion of colours.

Negatively reinforced urn schemes are also natural models for modelling problems with

resource constrains. In particular, multi-server queuing systems with capacity constrains [61, 62].

For such cases, it is desirable that at the steady state limit, all agents are having equal loads. This

gives us another motivation to study negatively reinforced urn models in order to study the load

balancing problems in resource constraint systems. In an urn model with finitely many colours

if we consider urn configuration or the colour counts as a vector of load among the K different

resources, then the negative reinforcement scheme with a non-increasing weight function and a

fixed replacement matrix can be considered as a possible solution to the load balancing problem

with finitely many resources. The objective in such problems is to attain balance between the

resources in the long run. In this thesis, we show that with a negatively reinforced urn scheme

such a limit is obtained under fairly general conditions on the replacement mechanism.

1.1 Model Description

In this thesis, we will only consider balanced urn schemes with K-colours, which we will index

by the set S := {1, 2, . . . ,K}. More precisely, if R := ((Ri,j))1≤i,j≤K denotes the replacement

matrix, that is, Ri,j ≥ 0 is the number of balls of colour j to be placed in the the urn when the

colour of the selected ball is i, then for a balanced urn, all row sums of R are constant. In this

case, dividing all entries by the common row total, we may assume R is a stochastic matrix. For
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simplicity, will also assume that the starting configuration U0 := (U0,j)1≤j≤K is a probability

distribution on the set of colours S. As we will see from the proofs of our main results, this

apparent loss of generality can easily be removed.

Denote by Un := (Un,j)1≤j≤K ∈ [0,∞)K the random configuration of the urn at time n.

Also let Fn := σ (U0, U1, · · · , Un) be the natural filtration. We define a random variable Zn by

P
(
Zn = j

∣∣∣Fn) ∝ w( Un,j∑K
i=1 Un,i

)
, 1 ≤ j ≤ K. (1.1.1)

where w : [0, 1]→ R+ is a non-increasing function. Some examples of non-increasing weight

functions are:

1. Linear: w(x) = α− βx, for α > 0, β > 0, (1.1.2)

2. Inverse: w(x) =
1

α+ βx
, for α > 0, β > 0, (1.1.3)

3. Exponential: w(x) = exp(α− βx), for α ≥ 0, β > 0. (1.1.4)

Note that, if Zn represents the randomly chosen colour at the (n+ 1)-th draw, then starting

with U0, we can define (Un)n≥0 recursively as follows

Un+1 = Un +R (Zn, ·) , (1.1.5)

where R (Zn, ·) is the Zn-th row of the replacement matrix R. Taking

χn+1 := (1 (Zn = j))1≤j≤K , (1.1.6)

the equation (1.1.5) can be written in the vector notation as

Un+1 = Un + χn+1R. (1.1.7)

We note here that in this thesis, all vectors will always be written as row vectors unless men-

tioned otherwise. We call the process (Un)n≥0, a negatively reinforced urn scheme with initial
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configuration U0 and replacement matrix R. In this thesis, we will discuss asymptotic properties

of the following two types of statistics.

1.1.1 Random Configuration of the Urn

As defined earlier Un := (Un,j)1≤j≤K ∈ [0,∞)K denotes the random configuration of the urn

at time n. Let

Yn :=
Un∑K
i=1 Un,i

(1.1.8)

to be the vector of colour proportions at time n. Note that, Yn is a probability mass function

since, and for all n ≥ 0,
K∑
i=1

Un,i = n+ 1. (1.1.9)

This holds because we assume that R is a stochastic matrix and U0 is a probability vector. Thus

the proportion of the colours at time n, is given by

Yn :=
Un
n+ 1

. (1.1.10)

Further,

P
(
Zn = j

∣∣∣Fn) =
w(Yn,j)

Sw(Yn)
for 1 ≤ j ≤ K. (1.1.11)

We define

w(Yn) := (w(Yn,1), · · · , w(Yn,K)) (1.1.12)

and

Sw(Yn) :=
K∑
j=1

w(Yn,j). (1.1.13)

Thus,
w(Yn)

Sw(Yn)
is the conditional distribution of the (n+ 1)-th selected colour, namely Zn, given

Fn = σ (U0, U1, · · · , Un)
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1.1.2 Colour Count Statistics

Let Nn := (Nn,1, . . . , Nn,K) be the vector of length K, whose j-th element is the number of

times colour j was selected in the first n trials, that is

Nn,j =
n−1∑
m=0

1 (Zm = j) , 1 ≤ j ≤ K. (1.1.14)

Note that,
K∑
j=1

Nn,j = n, ∀ n ≥ 1 (1.1.15)

and therefore we define the proportion of colour counts as

Ỹn :=
Nn

n
. (1.1.16)

Observe that by equation (1.1.7)

Un+1 = U0 +Nn+1R. (1.1.17)

1.2 A Motivating Example: Negatively Reinforced Urn Model with
Two Colours

In this section, we consider an urn model with only two colours, that is when K = 2. This is our

starting example. Recall that,

P (Zn = j|Fn) ∝ w(Yn,j), for j ∈ {1, 2}.

where Zn is the colour selected at time (n+ 1).

1.2.1 Linear Weight Function

We first consider the linear weight function, w(x) = θ − x, for θ ≥ 1. In this case,

P (Zn = j|Fn) =
θ − Yn,j
2θ − 1

, for j ∈ {1, 2}. (1.2.1)
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This model will be studied extensively in Chapter 2. For two colours the following theorem is a

consequence of Theorem 2.3.1 and Theorem 2.3.2.

Theorem 1.2.1. Consider a linear but negatively reinforced urn model (Un)n≥0 with weight

function w(x) = θ − x, for θ ≥ 1, such that
1

2θ − 1
(θJ − I)R is irreducible, then

(
Un,1
n+ 1

,
Un,2
n+ 1

)
→ (µ, 1− µ) a.s. (1.2.2)

where (µ, 1− µ) is the unique stationary distribution of the stochastic matrix
1

2θ − 1
(θJ − I)R,

and there exists a 2× 2 variance-co-variance matrix Σ, such that,

Un − nµ
σn

=⇒ N2(0,Σ), (1.2.3)

where

σn =


√
n log n if the eigenvalues of R are 1 and λ = 1−2θ

2 with θ ∈
[
1, 3

2

]
;

√
n if the eigenvalues of R are 1 and λ > 1−2θ

2 with θ ∈
[
1, 3

2

]
; or θ > 3

2 .

(1.2.4)

Remark 1.2.1. For K = 2, the matrix
1

2θ − 1
(θJ − I)R is reducible only when θ = 1 and

R =

[
0 1

1 0

]
. This case is discussed in Section 1.3.

1.2.2 General Weight Function

We begin by observing that for K = 2 a linear negatively reinforced model with w(x) = θ − x

and the negatively reinforced model with an inverse weight function w̃(x) =
1

θ − 1 + x
, will

generate the same urn processes, provided the starting configurations are same. This is because

w̃(y)

Sw̃(y)
=

1
θ−1+y

1
θ−1+y + 1

θ−1+(1−y)

=
θ − y
2θ − 1

=
w(y)

Sw(y)
∀ y ∈ [0, 1]. (1.2.5)

Therefore, from equation (1.1.11) the two urn processes are same in distribution, provided their

initial configurations are same. Such similarities are rare to be observed in the urn models with
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more than two colours. In fact, as we will see in the sequel, the negatively reinforced model with

an inverse weight function is technically hard for K = 3 or more. In fact, in Chapter 4, we will

only provide a conjecture on the asymptotics of the urn configuration.

In the next theorem, we obtain a necessary and sufficient condition under which a large class

of negatively reinforced urn processes with a general weight function are same as the the linear

negatively reinforced urn process for K = 2. In particular, as shown above the inverse weight

function satisfies the required condition.

Theorem 1.2.2. Let K = 2 and suppose (Un)n≥0 is a linear negative reinforcement process

with weight function w(y) = θ − y, for θ ≥ 1, and
(
Ũn

)
n≥0

is an urn process with weight

function w̃. Then (
Ũn

)
n≥0

d
= (Un)n≥0 (1.2.6)

if and only if, Ũ0 = U0 and the weight function w̃ is of the form:

w̃(y) =
ξ(y)

θ − (1− y)
, (1.2.7)

where ξ : [0, 1]→ R+ is a symmetric function around
1

2
, that is, ξ(y) = ξ(1− y), ∀ y ∈ [0, 1].

Proof : From equation (1.1.11), the two urn processes are same in distribution, if and only if, for
every y ∈ [0, 1]

w̃(y)

w̃(y) + w̃(1− y)
=

θ − y
2θ − 1

⇐⇒
(θ − (1− y))w̃(y) = (θ − y)w̃(1− y)

Now let, ξ(y) = w̃(y)(θ − (1− y)), to get that

ξ(y) = ξ(1− y). (1.2.8)

1.3 Negative and Positive Reinforcements

In this section, we will observe that even with a non-increasing weight function the urn model

can behave like a classical urn model, where typically the idea is “rich get richer”, leading to

what one may call positive reinforcement. If the replacement scheme is not in the favour of
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negative reinforcement, then a negative reinforcement may become a positive reinforcement,

essentially because two negatives makes a positive. The following example with K = 2 colours,

illustrates this phenomenon.

Example 1.3.1. Consider a two colour linear negatively reinforced urn process (Un)n≥0 with
θ = 1 and a Freedman’s replacement scheme that is

R =

[
0 1

1 0

]
(1.3.1)

then we have

E [Un+1|Fn] = Un +
Un
n+ 1

[
1 0

0 1

]
(1.3.2)

that is, the resulting urn scheme is of the Pólya urn type, and therefore the proportion of a colour
converges almost surely to a random variable which follows a Beta distribution, with parameters
given by the initial composition.

It is worth to note here that the above example along with the Theorem 1.2.1, covers all cases

for two colours.

One sufficient condition to ensure the negative reinforcement with a non-increasing weight

function is when the replacement matrix is doubly stochastic (that is its column sums are also

equal to 1) and all the diagonal elements are more than
1

2
. In this thesis, we will study doubly

stochastic cases extensively.

1.4 Applications of Negative Reinforcement

In this section, we briefly describe two possible applications of the negatively reinforced urn

model.

1.4.1 Power of Two Choices

Suppose that n balls are placed into n bins sequentially, and each ball is placed in a bin chosen

uniformly at random. Then the maximum load in any bin is approximately
log n

log logn
[43]. If

instead, each ball is placed in the least loaded of d ≥ 2 bins chosen independently and uniformly

at random, then the maximum load is of order
log log n

log d
[8]. The important implication of
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this result is that having only two choices yields a large reduction in the maximum load. This

phenomenon is often referred as two-choice paradigm.

Now, if we consider bins as different colours, then such a model with finitely many bins can

be studied for an urn model as well. In Chapter 5, we study a softer version of this model by

making weighted reinforcement, which in spirit is similar to the above mentioned two choice

model. However, we still observe similar phenomenon in the weighted reinforcement version.

This observation, in particular, gives a possible direction for the further applications of the

negatively reinforced urn models.

1.4.2 Extension of OK Corral to Border Aggregation Model

The OK Corral process as introduced in [81], is a Z2 valued process (Xn, Yn)n≥0, with transition

probabilities

P ((Xn+1, Yn+1) = (Xn − 1, Yn)|(Xn, Yn)) =
Yn

Xn + Yn

P ((Xn+1, Yn+1) = (Xn, Yn − 1)|(Xn, Yn)) =
Xn

Xn + Yn
.

The process starts with X0 = Y0 = N and stops when Xn or Yn is zero. Let

τ := inf{n : Xn = 0 or Yn = 0} and S = Xτ + Yτ .

Kingman and Volkov [52] showed that the OK Corral model is associated with Friedman’s urn,

and obtained asymptotic results including exact expression of the probability of the process

ending at S.

Similar to this, we believe that the negatively reinforced model with inverse weight function

for K ≥ 3, can be used to study an extension of OK Corral model to border aggregation model

[72]. However, we have only been able to give analytical proofs for negatively reinforced urn

models with inverse weight function for 2 colours, simulation results presented in Chapter 4

suggest that the similar results would hold for the urn models with 3 or more colours.
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1.5 Outline and Brief Sketch of the Results

A chapter wise outline of this thesis is given as follows:

1.5.1 Urn Models with Negative but Linear Reinforcement

In Chapter 2, which is based on our work in [14], we consider the linear non-increasing weight

function as mentioned in example (see equation (1.1.2)). In case of linear weight function, we

observe that the asymptotic properties of (Un)n≥0 depend on whether a new replacement matrix

R̂ := RA is irreducible or not (where A is the matrix of linear transformation). In the case when

R̂ is irreducible, we establish a coupling between the classical urn model and the linear negatively

reinforced model, and obtain the almost sure convergence and the central limit theorems for the

random urn configuration vector Un and colour count statistics Nn. We also give a necessary

and sufficient condition for matrix R̂ to be irreducible. For the case when R̂ is reducible, we

mainly use martingale arguments to get almost sure convergence and the rate of convergence for

a given balanced replacement matrix R.

1.5.2 Negatively Reinforced Urn Model with Lipschitz Weight Function

In Chapter 3, which is based on our work in [13], we consider general weight functions. For such

models it is not possible to give a coupling with the classical urn model and also it is difficult

to find a martingale for a general non-linear weight function, even for a simplest replacement

rule say R = I . For such models, we use the method of stochastic approximation (SA) to obtain

the almost sure convergence and the central limit theorem type results. The idea behind using

stochastic approximation methods, is to approximate the recurrence process with the solution

of an ordinary differential equation, under certain assumptions. Using SA method, we obtain

almost sure convergence results and different scaling limits in the case when the replacement

matrix is doubly stochastic for a general weight functions, under certain assumptions.

As an example in this chapter we show that the linear weight function case can also be

analysed using stochastic approximation, but using SA method we only get asymptotics mostly

for doubly stochastic replacement matrices, whereas in Chapter 2 using coupling argument and
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martingale technique we could obtain the asymptotics for a general replacement matrix.

1.5.3 Inverse Weight Function

In this chapter, we consider the inverse weight function for the negative reinforcement. The

stochastic approximation techniques used for a general weight function in Chapter 3, do not hold

for the inverse weight function, as it does not satisfy the required criterion of being Lipschitz.

As we saw in the previous section, inverse weight function is equivalent to a linear weight

function in case of two colours, therefore we expect the similar results to hold for K ≥ 3 as

well. In this chapter, we present simulation results which strongly suggest the convergence of

urn configuration to uniform vector and asymptotic normality holds for R = I . Based on the

simulation results, we conjecture that the almost sure convergence and central limit theorem

should also hold for inverse weight function.

1.5.4 Choice of Two in Weighted Negative Reinforcement

In Chapter 5, which is based on our work in [12], we introduce a new urn model namely choice

of two model. This can be considered as an easy implementation of a negative reinforcement

rule in order to achieve a balanced system. In this model, at every time n ≥ 1, two or more

colours are chosen uniformly at random without replacement from the set of colours, and then

reinforcement is done according to a non-increasing weight function w. The two fold interest in

this models is to understand:

(a) the asymptotic properties of this urn model,

(b) optimal number of choices.

We obtain the limiting configuration of this urn model as a uniform vector. Further we compare

the model of two choices with other models with either no choice or more than two choices, and

show that two choices are enough for significant improvement in the efficiency of the model. In

literature such models are also referred as the power of two choices algorithms which are well

studied for an infinite system of balls and bins as mentioned in the survey article on the power of

two choices [64].
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1.5.5 Review of Stochastic Approximation

In Appendix A, we present the results obtained in the stochastic approximation theory, which we

have used in Chapter 3 and Chapter 5. Here we mainly give results obtained in [20, 23, 82].



Chapter 2

Urn Models with Negative but Linear
Reinforcement1

2.1 Model

The main focus in this chapter is on the linear type negatively reinforced urn models for K ≥ 2

colors. In this chapter, we derive the almost sure convergence and central limit theorems for

the urn configuration for a general class of replacement matrices. Recall that (Un)n≥0 denotes

the urn configuration at time n, where Un = (Un,1, · · · , Un,K) and U0 is the vector of initial

configuration. Also as mentioned in Chapter 1, Zn denotes the randomly chosen color at the

(n+ 1)-th draw. Recall that the dynamics of (Un)n≥0 is given by the recursion (1.1.7), and for

the linear negatively reinforced urn model, the distribution of Zn is defined as

P
(
Zn = j

∣∣∣Fn) ∝ w( Un,j
n+ 1

)
, 1 ≤ j ≤ K. (2.1.1)

where we take

w(x) = α− βx, (2.1.2)

for α > 0 and β > 0 which are considered as the parameters of the model. Note that, for every

j ∈ {1, 2, · · · ,K}

P
(
Zn = j

∣∣∣Fn) =
α

Kα− β
− β

Kα− β
Un,j
n+ 1

(2.1.3)

1This chapter is based on the paper entitled “Linear de-preferential urn models ” accepted for publication in
Advances in Applied Probability 50.4 (December 2018) [14].

17
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which can also be written as:

P
(
Zn = j

∣∣∣Fn) =
θ

Kθ − 1
− 1

Kθ − 1

Un,j
n+ 1

, 1 ≤ j ≤ K. (2.1.4)

for θ =
α

β
≥ 1 and the respective weight function is given by

wθ(x) = θ − x. (2.1.5)

Thus, the weight function given in equation (2.1.2) with two parameters α, β, is equivalent to

the weight function in equation (2.1.5), for θ =
α

β
. Thus, in this chapter we will only consider

the weight function wθ.

Note that, the conditional distribution of the (n+ 1)-th selected color, namely Zn, given Fn,

is given by
UnA

n+ 1
, where A is a K ×K matrix given by

A =
θ

Kθ − 1
J − 1

Kθ − 1
I. (2.1.6)

We begin by observing the following fact which follows from equations (1.1.7), (2.1.4) and

(2.1.6)

E
[
Un+1

∣∣∣Fn] = Un + E
[
χn+1

∣∣∣Fn]R = Un +
Un
n+ 1

AR. (2.1.7)

Thus,

E
[
Un+1A

∣∣∣Fn] = UnA+
Un
n+ 1

ARA. (2.1.8)

Let Ûn := UnA,n ≥ 0, then

Ûn+1 = Ûn + χn+1RA, (2.1.9)

and

E
[
Ûn+1

∣∣∣Fn] = Ûn +
Ûn
n+ 1

RA.

Therefore
(
Ûn

)
n≥0

is a classical urn scheme (uniform selection of balls, as in the classical Pólya

type urns), with replacement matrix RA. The construction
(
Ûn

)
n≥0

is essentially a coupling

of a negative but linearly reinforced urn (Un)n≥0 with replacement matrix R, to a classical urn

(Ûn)n≥0 with replacement matrix R̂. Note that, we get a one to one correspondence, as A is
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always invertible. We define the new K ×K stochastic matrix as:

R̂ := RA, (2.1.10)

where A is as defined in (2.1.6). As we state in the sequel, the asymptotic properties of the urn

configuration (Un)n≥0 and the color count statistics (Nn)n≥0 depends on whether the stochastic

matrix R̂, is irreducible or reducible. We first state a necessary and sufficient condition for that.

2.2 A Necessary and Sufficient Condition for R̂ to be Irreducible

Definition 2.2.1. A directed graph G = (V, ~E) is called the graph associated with a K × K
stochastic R = ((Ri,j))1≤i,j≤K , if

V = {1, 2, . . . ,K} and ~E = {(−→i, j)|Ri,j > 0; i, j ∈ V}.

Definition 2.2.2. A stochastic matrix R is called a star, if there exists a j ∈ {1, 2, · · · ,K}, such
that,

Ri,j = 1 for all i 6= j,

and in that case, we say j is the central vertex.

By definition, for the graph associated with a star replacement matrix, there is a central

vertex such that each vertex other than the central vertex has only one outgoing edge and that is

towards the central vertex. We note that in the definition of a star we allow the central vertex to

have a self loop. Graph associated with a star matrix with 5 vertices is given below.

0

1

2

3

4

Figure 2.1: Graph of a star matrix, with 0 as the central vertex.

As we will see in the sequel, the asymptotic properties will depend on the irreducibility of
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the (new) stochastic matrix R̂, as defined in (2.1.10). Following Theorem provides a necessary

and sufficient condition for R̂ to be irreducible.

Theorem 2.2.1. Let R be a K ×K stochastic matrix with K ≥ 2, then R̂ is irreducible, if and
only if either θ > 1 or θ = 1 but R is not a star.

Proof : Suppose G and Ĝ are the directed graphs associated with the matrices R and R̂ respec-
tively, as defined earlier. Observe that, R̂ is the product of two stochastic matrices, R and A. The
underlying Markov chain of R̂ can be seen as a two step Markov chain where the first step is
taken according to R and the second step is taken according to A. Recall from equation (2.1.10)
that

R̂ =
1

Kθ − 1
(θJ −R) . (2.2.1)

Now, to show that the Markov chain associated with R̂ is irreducible, it is enough to show
that there exist a directed path between any two fixed vertices say u and v, in Ĝ.

Clearly for θ > 1, R̂uv > 0 for all u, v, and thus R̂ is irreducible. Therefore, we only have
to verify irreducibility for θ = 1 case. From equation (2.2.1) we get

R̂uv =
1−Ru,v
K − 1

∀u, v{1, 2, · · · ,K}. (2.2.2)

To complete the proof, we will show that there is a path from any two fied vertices u and v
of length at most 2. We consider the following two cases:

Case 1 Ru,v < 1: In this case, from equation (2.2.2) we get, R̂uv > 0. Therefore (u, v) is
an edge in Ĝ and trivially there is a path of length 1 from u to v in Ĝ.

Case 2 Ru,v = 1: In this case, u has no R-neighbor other than v, that is (u, v) is the only
incoming edge to v in G and from equation (2.2.2), we have

R̂uv = 0.

Note that, for θ = 1 and K = 2, R̂ is reducible only when R is the Friedman urn scheme,
which is a star with two vertices. Thus in the rest of the proof we take K > 2, and show that
R̂2
uv > 0, that is there is a path of length 2.

Now, if R is not a star then there must exists a vertex l such that it leads to a vertex other
than the central vertex, say m that is Rl,m > 0 (m 6= v).

u v l m

Now, according to R̂ chain, there is a positive probability of going from u to l in one step (first
take a R-step from u to v which happens with probability 1 is this case, as Ru,v = 1, and then
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take a A-step to l with probability 1/(K − 1)) and a positive probability of going from l to v
in one step (first take a R-step from l to m with probability Rl,m, and then take a A-step to v
with probability 1/(K − 1)). Therefore, there is path of length two in Ĝ from u to v and thus
the chain is irreducible.

2.3 Asymptotics of the Random Configuration of the Urn

2.3.1 R̂ is Irreducible.

Theorem 2.3.1. Let R̂ be irreducible. Then, for every starting configuration U0,

Un,j
n+ 1

−→ µj , a.s. ∀ 1 ≤ j ≤ K, (2.3.1)

where µ is the unique solution of the following matrix equation

(θ1− µ)R = (Kθ − 1)µ. (2.3.2)

Remark 2.3.1. Notice that, ν = µA is the unique solution of the matrix equation νR̂ = ν. Also
note that from equation (2.3.2) we get, µ = νR.

Remark 2.3.2. Since Un,j

n+1 is a bounded random variable, we get

E [Un,j ]

n+ 1
−→ µj , a.s., ∀ 1 ≤ j ≤ K, (2.3.3)

where µ = (µ1, µ2, · · · , µK), is given in equation (2.3.2).

Remark 2.3.3. It is worth to note here that, the stochastic matrices R and R̂ both have uniform
distribution as their unique stationary distribution, if and only if, R is doubly stochastic, that is
when 1R = 1.

Proof of Theorem 2.3.1 : Recall that, Ûn = UnA is the configuration of a classical urn model
with replacement matrix R̂. Since by our assumption, R̂ is irreducible therefore by Theorem 2.2.
of [10], the limit of 1

n+1 Ûn is the normalized left eigenvector of R̂ associated with the maximal
eigenvalue 1. That is

Ûn
n+ 1

−→ ν, a.s.

where ν satisfies

νR̂ = ν.

Since Un = ÛnA
−1, we have
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Un
n+ 1

−→ µ, a.s.,

where µ = νA−1, and it satisfies the following matrix equation:

(θ1− µ)R = (Kθ − 1)µ.

This completes the proof.

Theorem 2.3.2. Suppose R̂ is irreducible then there exists aK×K variance-co-variance matrix
Σ, such that,

Un − nµ
σn

=⇒ NK(0,Σ), (2.3.4)

where for K ≥ 3,

σn =


√
n log n if K = 3, θ = 1 and one of the eigenvalue of R is− 1,

√
n otherwise.

(2.3.5)

and for K = 2

σn =


√
n log n if the eigenvalues of R are 1 and λ = 1−2θ

2 with θ ∈
[
1, 3

2

]
;

√
n if the eigenvalues of R are 1 and λ > 1−2θ

2 with θ ∈
[
1, 3

2

]
; or θ > 3

2 .

(2.3.6)

Remark 2.3.4. Note that Σ is a positive semi-definite matrix because of (1.1.9).

Proof of Theorem 2.3.2 : Let 1, λ1, . . . λs be the distinct eigenvalues of R, such that, 1 ≥
<(λ1) ≥ · · · ≥ <(λs) ≥ −1, where <(λ) denotes the real part of the eigenvalue λ. Recall from

equation (2.1.10) that R̂ =
1

Kθ − 1
(θJ −R). So the eigenvalues of R̂ are 1, bλ1, · · · , bλs,

where b =
−1

Kθ − 1
. Let τ = max{0, b<(λs)}. Since Ûn = UnA, is a classical urn scheme with

replacement matrix R̂, using Theorem 3.2 of [10], if

b<(λs) ≤
1

2
(2.3.7)

then there exists a variance-co-variance matrix Σ̂, such that

Ûn − nν
σn

=⇒ N
(

0, Σ̂
)
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where

σn =


√
n log n if b< (λs) = 1

2 ,

√
n if b< (λs) <

1
2 .

(2.3.8)

Since b 6= 0,

b<(λs) ≤
1

2
⇐⇒ <(λs) ≥

−1

2
(Kθ − 1). (2.3.9)

Now since θ ≥ 1 and <(λs) ≥ −1 the above equation (2.3.9) holds whenever K ≥ 3. Further,
for K ≥ 3, equality in (2.3.9) holds if and only if, θ = 1, and K = 3. Moreover, for K = 2, the

condition is equivalent to < (λs) ≥
1− 2θ

2
. Thus, σn is given in (2.3.5) and (2.3.6) Therefore,

Un − nµ
σn

=⇒ N (0,Σ)

where Σ = ATΣ′A.

Remark 2.3.5. In the above theorem for 2 colours, we give central limit theorem only for case
when θ > 3

2 and when θ ∈
[
1, 3

2

]
and λ ≥ 1−2θ

2 The case when θ ∈
[
1, 3

2

]
and λ < 1−2θ

2 is
covered in Chapter 3, but only for a doubly stochastic relacement matrix R.

2.3.2 R̂ is Reducible.

By Theorem 2.2.1, we know that R̂ can be reducible, if and only if, R is star and θ = 1. Suppose

R is a star with K ≥ 2 colors, then without any loss of generality we can write

R =



α1 α2 . . . αK

1 0 . . . 0

...
...

. . .
...

1 0 . . . 0


with

K∑
j=1

αj = 1, and αj ≥ 0, ∀j, (2.3.10)

by taking 1 as the central vertex. Taking θ = 1, the matrix R̂ is

R̂ =
1

K − 1



1− α1 1− α2 . . . 1− αK

0 1 . . . 1

...
...

. . .
...

0 1 . . . 1


, (2.3.11)
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which is clearly reducible. A directed graph associated with R̂ for K = 3 is given below

1

2 3

Figure 2.2: Graph of R̂ when R is a star and 1 is the central vertex.

Clearly R̂ is reducible as the center vertex 1 can not be reached from any other vertex of the

graph. In the next theorem, we describe the limit of the urn configuration.

Theorem 2.3.3. Let θ = 1 and replacement matrix R be a star matrix as given in equation

(2.3.10) and R 6=

[
0 1

1 0

]
then,

Un,1
n+ 1

−→ 1, a.s. (2.3.12)

Further, there exists a random variable W ≥ 0, with E [W ] > 0, such that,

Un,j
nγ
−→ αj

K − 1
W, a.s. ∀j = 2, 3 . . . ,K, (2.3.13)

where γ =
1− α1

K − 1
< 1.

Remark 2.3.6. The case when R =

[
0 1

1 0

]
and θ = 1 has been studied in Section 1.3 of Chapter

1.

Proof of Theorem 2.3.3 : Since the matrix R̂, as given in (2.3.11) is reducible without isolated
blocks. Using Proposition 4.3 of [44] we get,

Ûn,1
n+ 1

→ 0 and
Ûn,j
n+ 1

→ 1

K − 1
, ∀j 6= 1.

which implies
Un,1
n+ 1

→ 1 and
Un,j
n+ 1

→ 0, ∀j 6= 1.



2.3 Asymptotics of the Random Configuration of the Urn 25

Now recall that equation (2.1.7) provides the recursion:

E
[
Un+1

∣∣∣Fn] = Un + E
[
χn+1

∣∣∣Fn]R = Un +
Un
n+ 1

AR.

Notice that, in this case, the matrix AR is given by

AR =



1 0 0 · · · 0

1− γ α2
K−1

α3
K−1 · · · αK

K−1

1− γ α2
K−1

α3
K−1 · · · αK

K−1
...

...
...

...
...

1− γ α2
K−1

α3
K−1 · · · αK

K−1


, (2.3.14)

where γ = (1 − α1)/(K − 1). Thus, the eigenvalues of AR are 1, γ and 0, 0, . . . , 0 (K − 2

times) and a eigenvector corresponding to the non-principal eigenvalue γ is

ξ =
(

0, 1, 1, . . . , 1
)′
.

Therefore using again equation (2.1.7) we get

E
[
Un+1ξ

∣∣∣Fn] = Un

[
I +

AR

n+ 1

]
ξ = Unξ

[
1 +

γ

(n+ 1)

]
.

Let Πn (γ) =
∏n
i=1

[
1 + γ

i

]
then, Wn := Unξ/Πn (γ) is a non-negative martingale and using

Euler’s product, for large n

Πn (γ) ∼ nγ

Γ(γ + 1)
. (2.3.15)

Equ:Approx We now show that this martingale is L2 bounded, which will then imply that

Unξ

nγ
−→W (2.3.16)

where W is a non-degenerate random variable. More precisely, W is nonzero with positive
probability. We can write,

E
[
W 2
n+1

∣∣∣Fn] = W 2
n + E

[
(Wn+1 −Wn)2

∣∣∣Fn]
and

Wn+1 −Wn =
1

Πn+1(γ)

[
Un+1ξ − Unξ

(
1 +

γ

n+ 1

)]
=

1

Πn+1(γ)

[
χnRξ −

γ

n+ 1
Unξ

]
=

1

Πn+1(γ)

[
(K − 1)χn,1 −

(n+ 1)− Un,1
n+ 1

]
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=
K − 1

Πn+1(γ)

[
χn,1 −E

[
χn,1

∣∣∣Fn]]

Therefore,

E
[
W 2
n+1

∣∣∣Fn] = W 2
n +

(K − 1)2

Π2
n+1(γ)

(
E
[
χn,1

∣∣∣Fn]−E
[
χn,1

∣∣∣Fn ]2
)

≤W 2
n +

(K − 1)2

Π2
n+1(γ)

E
[
χn,1

∣∣∣Fn ]
= W 2

n +
1− α1

(n+ 1)Πn+1(γ)

Unξ

Πn+1(γ)

≤W 2
n +

1− α1

(n+ 1)Πn+1(γ)
Wn

≤W 2
n +

1− α1

2(n+ 1)Πn+1(γ)
(1 +W 2

n)
(
since 2Wn ≤ 1 +W 2

n

)
≤W 2

n +
(1− α1)Γ(γ + 1)

2c1(n+ 1)γ+1
(1 +W 2

n) (2.3.17)

The last inequality follows, as (for finite n) from equation (2.3.15) we get,

c1
nγ

Γ(γ + 1)
≤ Πn (γ) ≤ c2

nγ

Γ(γ + 1)
, for some c1, c2 <∞. (2.3.18)

Let c :=
1

2c1
(1− α1) Γ (γ + 1), then

E
[
W 2
n+1 + 1

∣∣∣Fn] ≤ (1 +
c

(n+ 1)γ+1

)(
1 +W 2

n

)
≤ (1 +W 2

0 )
n∏
j=1

(
1 +

c

(j + 1)γ+1

)

≤ (1 +W 2
0 ) exp

 n∑
j=1

c

(j + 1)γ+1

 <∞ (since γ > 0).

Thus Wn is L2-bounded and hence converges to a non-degenerate random variable say W . Now
for a star matrix R (as given in equation (2.3.10)), the fundamental recursion (1.1.7) reduces to

Un+1,1 = Un,1 + α1χn+1,1 + (1− χn+1,1) (2.3.19)

and
Un+1,h = Un,h + αhχn+1,1 ∀ h 6= 1. (2.3.20)
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For h 6= 1 if αh = 0 then the h− th column of the replacement matrix is a null column, that is
color h is never reinforced and then

Un,h = U0,h

which is a constant initial configuration of color h. Now, suppose h 6= 1, is such that αh > 0.
Then dividing both sides by αh, we get

Un+1,h

αh
=
U0,h

αh
+

n+1∑
j=1

χj .

Since the above relation holds for every choice of h > 0, such that αh > 0, we get

Un+1,h

αh
−
Un+1,l

αl
=
U0,h

αh
−
U0,l

αl
(2.3.21)

for any h, l ∈ {2, 3, · · · ,K} with αh, αl > 0. Multiplying the above equation by
αl

1− α1
and

taking sum over l 6= 1, we get

Un,h
αh
− 1

1− α1

∑
l 6=1

Un,l =
U0,h

αh
− 1

1− α1

∑
l 6=1

U0,l,

which can be written as,

Un,h
αh
− 1

K − 1
Unξ =

U0,h

αh
− 1

K − 1
U0ξ.

Now dividing both sides by nγ ,

1

nγ
Un,h
αh
− 1

K − 1

Unξ

nγ
=

1

nγ

[
U0,h

αh
− 1

K − 1
U0ξ

]
.

Note that the right hand side of the above expression goes to 0 as n tends to infinity. Therefore

lim
n→∞

1

nγ
Un,h
αh
− 1

K − 1

Unξ

nγ
= 0

Using the limit from (2.3.16) we get,

Un,h
nγ
−→ αh

K − 1
W.

Remark 2.3.7. WhenR =

[
0 1

1 0

]
, we get R̂ =

[
1 0

0 1

]
. Notice that then R̂ is the reinforcement
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rule for the classical Pólya urn scheme. Now using (1.1.7) we have

E
[
Un+1

∣∣∣Fn] = Un +
Un
n+ 1

= (n+ 2)
Un
n+ 1

,

which implies that each coordinate of the vector
Un
n+ 1

, is a positive martingale and hence
converges. Moreover, by exchangeability and arguments similar to the classical Pólya urn, we
can easily show that,

Un,1
n+ 1

−→ Z a.s.,

where Z ∼ Beta(U0,1, U0,2).

2.4 Asymptotics of the Colour Count Statistics

2.4.1 R̂ is Irreducible.

Theorem 2.4.1. Suppose R̂ is irreducible then,

Nn,j

n
−→ 1

Kθ − 1
[θ − µj ] , a.s. ∀ 1 ≤ j ≤ K,

where µ = (µ1, µ1, . . . , µk) satisfies equation (2.3.2).

Proof of Theorem 2.4.1 : Recall from equation (1.1.14) and (1.1.17),

Nn,j =

n−1∑
m=0

1 (Zm = j) , 1 ≤ j ≤ K.

and
Un+1 = U0 +Nn+1R.

Therefore, we can write

Nn =

n∑
i=1

(
χi −E

[
χi

∣∣∣Fi−1

])
+

n∑
i=1

E
[
χi

∣∣∣Fi−1

]
=

n∑
i=1

(
χi −E

[
χi

∣∣∣Fi−1

])
+

1

Kθ − 1

n∑
i=1

[
θ1− Ui−1

i

]
, (2.4.1)

Since
(
χi −E

[
χi

∣∣∣Fi−1

])
i≥1

is a bounded martingale difference sequence, using Azuma’s

inequality (see [22]) we get

1

n

n∑
i=1

(
χi −E

[
χi

∣∣∣Fi−1

])
−→ 0, a.s.. (2.4.2)
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Now using Theorem 2.3.1 and Cesaro Lemma (see [5]), we get

Nn,j

n
−→ 1

Kθ − 1
[θ − µj ] , a.s. ∀ 1 ≤ j ≤ K.

Theorem 2.4.2. Suppose R̂ is irreducible, then there exists a variance-co-variance matrix Σ̃,
such that

Nn − n
Kθ−1(θ1− µ)

σn
=⇒ N

(
0, Σ̃

)
,

where σn is given in equation (2.3.5) and equation (2.3.6). Moreover,

Σ = RT Σ̃R, (2.4.3)

where Σ is as in Theorem 2.3.2.

Remark 2.4.1. It is worth to note here that from definition (1.1.14), it follows that
∑K

j=1Nn,j =

n+ 1, thus Σ̃ is a positive semi-definite matrix. Further, from equation (2.4.3) it follows that
rank (Σ) ≤ rank

(
Σ̃
)

and equality holds, if and only if, the replacement matrixR is non-singular.

Proof of Theorem 2.4.2 : Notice that under our coupling Nn remains same for the two processes,
namely, (Un)n≥0 and

(
Ûn

)
n≥0

. Thus applying Theorem 4.1 of [10] on the urn process
(
Ûn

)
n≥0

we conclude that there exists a matrix Σ̃ such that,

Nn − nµA
σn

=⇒ N
(

0, Σ̃
)

Finally the equation (2.4.3) follows from (1.1.17). This completes the proof.

2.4.2 R̂ is Reducible.

Recall that R̂ has the form given in (2.3.10) when it is reducible.

Theorem 2.4.3. Let R be a star matrix with 1 as a central vertex and θ = 1, such that

R 6=

[
0 1

1 0

]
, then

Nn,1

n
−→ 0, a.s.

and,
Nn,j

n
−→ 1

K − 1
, a.s. ∀ 2 ≤ j ≤ K.
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Remark 2.4.2. For R =

[
0 1

1 0

]
and θ = 1 using equation (1.1.17) and Remark (2.3.7) we get

Nn,1

n
−→ 1− Z a.s.,

where as before, Z ∼ Beta(U0,1, U0,2).

Proof of Theorem 2.4.3 : The proof follows from equation (2.4.1) and (2.4.2).

Theorem 2.4.4. Let R be a star matrix with 1 as a central vertex and θ = 1, such that

R 6=

[
0 1

1 0

]
, then

1. if γ =
1− α1

K − 1
< 1/2 , then

1√
n

(
n

K − 1
1−Nn,−

)
=⇒ N

(
0,

1

K − 1
I − 1

(K − 1)2
J

)
,

where Nn,− = (Nn,2, · · · , Nn,K), and

Nn,1√
n

P−→ 0.

2. if γ = 1−α1
K−1 > 1/2 , then

1

nγ

(
n

K − 1
−Nn,j

)
P−→ αj

(K − 1)(1− α1)
W, ∀ j 6= 1

and
Nn,1

nγ
P−→ 1

K − 1
W

where W is as given in Theorem 2.3.3.

3. if γ = 1−α1
K−1 = 1/2 , then

Nn,− −
n

K − 1
1 +

W

(K − 1)(1− α1)
α−

√
n

=⇒ N

(
0,

1

K − 1
I − 1

(K − 1)2
J

)
,

where α− = (α2, α3, · · · , αK) and

Nn,1

nγ
P−→ 1

K − 1
W.
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Remark 2.4.3. Note that γ < 1/2, if and only if, K ≥ 4 or K = 3 and α1 > 0 or K = 2 and
α1 > 1/2.

Proof of Theorem 2.4.4 : LetMn,j :=
∑n

i=1

(
χi,j −E

[
χi,j

∣∣∣Fi−1

])
andMn = (Mn,1,Mn,2, · · · ,Mn,K).

Then {Mn,Fn} is a martingale. Define Xi = (Xi,1, Xi,2, · · · , Xi,K) where

Xi,j :=
1√
n

(
χi,j −E

[
χi,j

∣∣∣Fi−1

])
are the martingale differences and (Mn)n≥1 is a k-dimensional bounded increment martingale.

Let Mn,− := (Mn,2, · · · ,Mn,K) and Xn,− := (Xn,2, · · · , Xn,K). In this proof, we first
provide a central limit theorem for Mn,−, and then for Nn. Observe that the (l,m)-th entry of
the matrix E

[
XT
i,−Xi,−

∣∣∣Fi−1

]
is

E
[(
Xn
i,−
)T
Xn
i,−

∣∣∣Fi−1

]
(l,m)

=
1

n
E
[
χi,lχi,m

∣∣∣Fi−1

]
−E

[
χi,l

∣∣∣Fi−1

]
E
[
χi,m

∣∣∣Fi−1

]
=


1
nE
[
χi,l

∣∣∣Fi−1

] (
1−E

[
χi,l

∣∣∣Fi−1

])
if l = m,

−1
n E

[
χi,l

∣∣∣Fi−1

]
E
[
χi,m

∣∣∣Fi−1

]
if l 6= m

=


1

n(K−1)

(
1− Ui−1,l

i

)(
1− 1

K−1

(
1− Ui−1,j

i

))
if l = m,

−1
n(K−1)2

(
1− Ui−1,l

i

)(
1− Ui−1,m

i

)
if l 6= m,

So, as n→∞, (using Theorem 2.3.3) we have

n∑
i=1

E
[(
Xn
i,−
)T
Xn
i,−

∣∣∣Fi−1

]
(l,m)

→


(K−2)
(K−1)2

if l = m,

−1
(K−1)2

if l 6= m,

Therefore,
n∑
i=1

E
[(
Xn
i,−
)T
Xn
i,−

∣∣∣Fi−1

]
→ 1

K − 1
I − 1

(K − 1)2
J,

and by the martingale central limit theorem [45], we get

1√
n
Mn,− =⇒ N

(
0,

1

K − 1
I − 1

(K − 1)2
J

)
(2.4.4)

Now for color 1, we have

1√
n
Mn,1 =

−1√
n

K−1∑
j=1

Mn,−
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which implies
1√
n
Mn,1

P−→ 0.

We now prove the central limit theorem for Nn. By equation (2.4.1), we have

Nn = Mn +

n∑
i=1

E
[
χi

∣∣∣Fi−1

]
Therefore,

n

K − 1
1−Nn,− = −Mn,− +

1

K − 1

n∑
i=1

Ui−1,−
i

(2.4.5)

Form Theorem 2.3.3, we know that for each j 6= 1

Ui−1,j

iγ
→ αj

K − 1
W, a.s..

n∑
i=1

Ui−1,j

i
� αj
K − 1

W
n∑
i=1

iγ−1

∼ αj
γ(K − 1)

Wnγ =
αj

(1− α1)
Wnγ .

Therefore,
1

nγ

n∑
i=1

Ui−1,j

i
→ αj

(1− α1)
W a.s.. (2.4.6)

Therefore for γ < 1/2, using equation (2.4.4), (2.4.5) and (2.4.6) we get

1√
n

(
n

K − 1
1−Nn,−

)
=⇒ N

(
0,

1

K − 1
I − 1

(K − 1)2
J

)
,

and for γ > 1/2,

1

nγ

(
n

K − 1
−Nn,j

)
P−→ αj

(K − 1)(1− α1)
W for j = 2, 3, · · · ,K

since then Mn,j/n
γ P−→ 0. For j = 1, we have

Nn,1 = n−
K∑
j=2

Nn,j

=
K∑
j=2

(
n

K − 1
−Nn,j

)
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Therefore for γ < 1/2 we have

Nn,1√
n

P−→ 0.

and for γ > 1/2, we have

1

nγ
Nn,1 =

K∑
j=2

1

nγ

(
n

K − 1
−Nn,j

)
P−→ 1

(K − 1)(1− α1)
W

K∑
j=2

αj =
1

K − 1
W.

From equation (2.4.5) we have

Nn,− −
n

K − 1
1 +

1

K − 1

n∑
i=1

Ui−1,−
i

= Mn,−

Nn,− − n
K−11 + 1

K−1

∑n
i=1

Ui−1,−
i√

n
=
Mn,−√
n

therefore for γ = 1/2, we get

Nn,− −
n

K − 1
1 +

W

(K − 1)(1− α1)
α−

√
n

=⇒ N

(
0,

1

K − 1
I − 1

(K − 1)2
J

)
where α− = (α2, α3, · · · , αK) and

Nn,1 =
K∑
j=2

(
n

K − 1
−Nn,j

)

=
1

K − 1
W +

K∑
j=2

(
n

K − 1
−Nn,j −

αj
(K − 1)(1− α1)

W

)

=⇒
Nn,1√
n

P−→ 1

K − 1
W.
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Chapter 3

Negatively Reinforced Urn Model with
Lipschitz Weight Function 1

3.1 Introduction

In this chapter, we consider a generalization of linear negatively reinforced urn models to

negatively reinforced urn models with non-increasing Lipschitz weight function. In case of

the classical urn models, one such generalization to general increasing weight functions with a

random replacement rule have been studied by Laurelle and Pages [55]. For such urn models

they obtained the almost sure convergence and central limit theorem results of the random

configuration of the urn. The main tool used to study such models is stochastic approximation

method, which is a powerful tool to study recursive algorithms.

In this chapter, we investigate a generalization of negatively reinforced urn models for

Lipschitz non-increasing weight functions. We first show that for a Lipschitz weight function

and sufficiently large number of colours, the colour proportions and proportion of colour counts

converge almost surely to a constant vector for any choice of replacement matrix.

As mentioned in Chapter 1, negatively reinforced models have applications in the load

balancing problems in a resource constraint system and in such load balance problems, uniform

is the desirable limiting distribution. Later in this chapter we will notice that this can be

achieved only if we choose a doubly stochastic replacement matrix. Therefore, in this chapter
1This chapter is based on the paper entitled “Negatively Reinforced Balanced Urn Schemes” [13].

35
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we will mainly focus on the doubly stochastic replacement matrices, and show the almost sure

convergence of the random urn proportions to the uniform distribution holds under some very

mild assumptions on the weight function. We will also obtain central limit theorems for the case

when the replacement matrix is a doubly stochastic matrix.

Recall from Section 1.1 of Chapter 1, that the negatively reinforced urn model is defined

as a stochastic process (Un)n≥0 which satisfies the fundamental recursion as given in equation

(1.1.7), that is

Un+1 = Un + χn+1R (3.1.1)

where χn+1 := (1 (Zn = j))1≤j≤K , with a balanced replacement matrix R, such that for a

given weight function w : [0, 1]→ R+,

E
[
χn+1

∣∣∣,Fn] =
w(Yn)

Sw(Yn)
(3.1.2)

where Yn =
Un
n+ 1

, w(Yn) = (w(Yn,1), · · · , w(Yn,K)) and Sw(Yn) :=
∑K

j=1w(Yn,j).

Since it is not possible to use simple martingale technique in case of non-linear weight

functions, we will be using the stochastic approximation method, as introduced in the work of

Kushner and Clark [54], Benaı̈m [20] and Borkar [23], to obtain the asymptotics for the urn

configuration and the colour count statistics for negatively reinforced urn models. In Appendix

A we present a detailed review of the stochastic aproximation theory. In the next section, we

first define the stochastic approximation algorithm and then we show that the urn configuration

vector (Yn)n≥0 and proportion of colour counts
(
Ỹn

)
n≥0

can also be written as a stochastic

approximation algorithm.

3.2 Stochastic Approximation and Urn

A stochastic approximation algorithm (Yn)n≥0 is a stochastic process in Rd, as defined in

equation (A.1.1) in Appendix A, is given by

Yn+1 = Yn + γnh (Yn) + γnMn+1 for n ≥ 0, (3.2.1)
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for h : Rd → Rd, such that

(i) γn is a sequence of positive real numbers such that

∑
n≥1

γn =∞ and
∑
n≥1

γ2
n <∞

(ii) (Mn)n≥1 is a square integrable martingale difference sequence with respect to the filtration

Fn = σ{Ym,Mm, m ≤ n},

sup
n≥0

E
[
‖Mn+1‖2

]
<∞. (3.2.2)

As discussed in Appendix A, under certain assumptions, asymptotics of Yn can be obtained using

the stochastic approximation theory, which essentially relates the recursion in (3.2.6) with the

ODE

ẏ = h(y). (3.2.3)

3.2.1 Random Urn Configuration

Observe that, for the urn model defined in equation (3.1.1), we have

E [Un+1 − Un|Fn] =
w(Yn)

Sw(Yn)
R (3.2.4)

Therefore the recurrence relation (3.1.1) can be written as

Un+1 = Un + E[χn+1|Fn]R+
[
χn+1 − E[χn+1|Fn]

]
R

= Un +
w(Yn)

Sw(Yn)
R+Mn+1R (3.2.5)

where Mn+1 = χn+1 − E [χn+1|Fn] is an Fn martingale difference. Now observe,

Un+1

n+ 2
=

Un
n+ 2

+
1

n+ 2

w(Yn)

Sw(Yn)
R+

1

n+ 2
Mn+1R

=⇒ Yn+1 = Yn
n+ 1

n+ 2
+

1

n+ 2

w(Yn)

Sw(Yn)
R+

1

n+ 2
Mn+1R

=⇒ Yn+1 = Yn +
1

n+ 2

(
w(Yn)

Sw(Yn)
R− Yn

)
+

1

n+ 2
Mn+1R
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which is exactly of the form given in the equation (3.2.1), that is the urn configuration Yn can be

written as a K-dimensional stochastic approximation algorithm

Yn+1 = Yn + γnh(Yn) + γnMn+1R (3.2.6)

where γn =
1

n+ 2
, and h : RK → RK is given by

h(y) =
w(y)

Sw(y)
R− y. (3.2.7)

where we extend the w continuously to whole of R, by making it a constant function outside

the interval [0, 1], that is, w(y) = w(0) for y ≤ 0 and w(y) = w(1) for y ≥ 1. Also note that

γn ∼ O
(
n−1

)
satisfies the required conditions given in (ii) and (Mn+1R)n≥1 is a martingale

difference sequence that is

E [Mn+1R|Fn] = 0 (3.2.8)

and by using cauchy Schwartz ineuality we get

‖Mn+1R‖2 =
K∑
i=1

 K∑
j=1

Mn+1,jRj,i

2

(3.2.9)

≤
K∑
i=1

 K∑
j=1

R2
j,i

 K∑
j=1

M2
n+1,j

 (3.2.10)

Now since R is a stochastic matrix, Rj,i ≤ 1 and therefore we get

‖Mn+1R‖2 ≤ K
K∑
j=1

|χn+1,j − E[χn+1,j |Fn]|2 (3.2.11)

≤ K
K∑
j=1

|χn+1,j |2 + E[χn+1,j |Fn]2 (3.2.12)

Now since χ2
n+1,j = χn+1,j (as it only takes value 0 or 1) and

∑K
j=1 χn+1,j = 1, therefore we

get

‖Mn+1R‖2 ≤ K

1 +
K∑
j=1

E[χn+1,j |Fn]2

 (3.2.13)
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≤ K (1 +K) . (3.2.14)

Thus (Mn+1R)n≥0 also satisfies the conditions given in equation (3.2.2). Therefore, the ODE

associated to (3.2.6) is

ẏ = h(y) (3.2.15)

where h is given in equation (3.2.7).

3.2.2 Colour Count Statistics

Recall that the colour count statistics is given by, Nn =
∑n

j=1 χj and the colour count propor-

tions are Ỹn :=
Nn

n
, we can write

Nn+1 = Nn + χn+1

= Nn + E [χn+1|Fn] + (χn+1 − E [χn+1|Fn])

= Nn +
w(Yn)

Sw(Yn)
+Mn+1

Nn+1

n+ 1
=
Nn

n
+

1

n+ 1

[
w(Yn)

Sw(Yn)
− Nn

n

]
+

1

n+ 1
Mn+1

=⇒ Ỹn+1 = Ỹn +
1

n+ 1

[
w (Yn)

Sw (Yn)
− Ỹn

]
+

1

n+ 1
Mn+1 (3.2.16)

Recall from equation (1.1.17) that the relation between Un and Nn is given by

Un = U0 +NnR

=⇒ Yn =
1

n+ 1
Y0 +

n

n+ 1
ỸnR =: ỸnR+ δn (3.2.17)

for

δn =
1

n+ 1
Y0 −

1

n+ 1
ỸnR (3.2.18)

Therefore we can rewrite equation (3.2.16) as

Ỹn+1 = Ỹn +
1

n+ 1

 w
(
ỸnR+ δn

)
Sw

(
ỸnR+ δn

) − Ỹn
+

1

n+ 1
Mn+1 (3.2.19)
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= Ỹn +
1

n+ 1

 w
(
ỸnR

)
Sw

(
ỸnR

) − Ỹn
+

1

n+ 1
εn +

1

n+ 1
Mn+1 (3.2.20)

where

εn =
w
(
ỸnR+ δn

)
Sw

(
ỸnR+ δn

) − w
(
ỸnR

)
Sw

(
ỸnR

) .
Therefore Ỹn can also be written as a stochastic approximation recursion as given in equation

(3.1.1). Since δn → 0, εn → 0, as n→∞, the ODE associated to (3.2.20) is

˙̃y = h̃ (ỹ) (3.2.21)

where h̃ : RK → RK is such that

h̃ (ỹ) =
w (ỹR)

Sw (w(ỹR))
− ỹ. (3.2.22)

3.3 Almost Sure Convergence

To start with, we need the ODE in equation (3.2.3) and (3.2.21) to have a unique solution. A

sufficient condition for the ODE to have a unique solution, is when h and h̃ are Lipschitz functions.

We will assume throughout this chapter that the function w is continuously differentiable, which

implies that the function h and h̃ are both Lipschitz and this ensures that the associated ODEs

have unique solution for any initial vector Y0. To present our main results we will need the

following definitions.

Definition 3.3.1. For the stochastic algorithm defined in (3.2.1), a point y∗ is called an equilib-
rium point if h(y∗) = 0.

Note that, for the h function given in equation (3.2.7), y∗ is an equilibrium point if

h(y∗) = 0 ⇐⇒ w(y∗)R = Sw(y∗)y∗. (3.3.1)

The equilibrium points of h are important as they are possible limit points for the solution of

the ODE (3.2.3). In case of a linear weight function w, where h is of the form

h(y) = y [AR− I]
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there exists a unique equilibrium point assuming that the stochastic matrix AR is irreducible,

that is AR has a unique stationary distribution. whereas, for a nonlinear weight function w or h

the unique equilibrium point is guaranteed assuming that the function F : RK → RK defined as

F (y) :=
w(y)

Sw(y)
R, (3.3.2)

is a contraction map. We now present the results depending on whether F is a contraction.

3.3.1 F is a Contraction

Theorem 3.3.1. Suppose w is a non-increasing weight function and F is a contraction map then

Yn −→ y∗ a.s., and Ỹn −→ ỹ∗ a.s. (3.3.3)

where y∗ is the unique fixed point of F and

ỹ∗ =
w(y∗)

Sw(y∗)
. (3.3.4)

In particular, convergence in (3.3.3) holds, whenever non-increasing function w is a Lip(M)

function and
√
K >

2M

w(1)
.

Corollary 3.3.1. From equation (3.2.17) we get

y∗ = ỹ∗R,

or
ỹ∗ =

w(y∗)

Sw(y∗)

where y∗ and ỹ∗ are given in Theorem 3.3.1.

In the next Proposition, we obtain sufficient conditions under which F is a contraction map.

Proposition 3.3.1. Suppose w is a non-increasing Lip(M) function then F is a contraction
whenever

(i) w(1) > 0 and
√
K >

2M

w(1)

or

(ii) w is a convex function and
√
Kw(1/K) > 2M .
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Remark 3.3.1. If w is a non-increasing convex weight function and w(0) < ∞, then F is a

contraction whenever
√
K >

4M

w(0)
, for K sufficiently large such that w(1/K) > w(0)/2.

Proof :

‖F (x)− F (y)‖ =

∥∥∥∥ w(x)

Sw(x)
− w(y)

Sw(y)

∥∥∥∥
=

∥∥∥∥w(x)Sw(y)−w(y)Sw(x)

Sw(x)Sw(y)

∥∥∥∥
=

∥∥∥∥(Sw(y)− Sw(x)) w(x)− Sw(x) (w(y)−w(x))

Sw(x)Sw(y)

∥∥∥∥
≤ |Sw(y)− Sw(x)| ‖w(x)‖ + Sw(x) ‖w(y)−w(x)‖

Sw(x)Sw(y)

Note that

‖w(x)‖2 =
K∑
i=1

|w(xi)|2 ≤

(
K∑
i=1

w(xi)

)2

= Sw(x)2

=⇒ ‖w(x)‖ ≤ Sw(x). (3.3.5)

Therefore,

‖F (x)− F (y)‖ ≤ |Sw(y)− Sw(x)|+ ‖ (w(x)−w(y)) ‖
Sw(y)

(3.3.6)

Now since w is a Lip(M) function we get

‖w(x)−w(y)‖2 =

K∑
i=1

|w(xi)− w(yi)|2

≤M2
K∑
i=1

|xi − yi|2 = M2‖x− y‖2 (3.3.7)

and

|Sw(y)− Sw(x)| =

∣∣∣∣∣∣
K∑
j=1

w(yj)− w(xj)

∣∣∣∣∣∣
≤

K∑
j=1

|w(yj)− w(xj)|

≤M
K∑
j=1

|yj − xj | = M‖y − x‖1
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≤M
√
K‖x− y‖ (3.3.8)

The last inequality follows by Cauchy-Schwartz inequality. Finally from equations (3.3.7),
(3.3.8) and (3.3.6), we get

‖F (x)− F (y)‖ ≤
M
(

1 +
√
K
)

Sw(y)
‖x− y‖ (3.3.9)

Case (i): If w(1) > 0, then we can write Sw(y) ≥ Kw(1) and therefore from equation (3.3.9)
we get

‖F (x)− F (y)‖ ≤
M
(

1 +
√
K
)

Kw(1)
‖x− y‖ ≤ 2M√

Kw(1)
‖x− y‖ (3.3.10)

Thus F is a contraction if
√
K >

2M

w(1)
.

Case (ii): Assuming that w is a convex function then

Sw(y) ≥ Kw(1/K), ∀y ∈ ∆K .

Therefore from equation (3.3.9) we get

‖F (x)− F (y)‖ ≤
M
(

1 +
√
K
)

Kw(1/K)
‖x− y‖ ≤ 2M√

Kw(1/K)
‖x− y‖ (3.3.11)

Thus F is a contraction if
√
Kw(1/K) > 2M .

Proof of Theorem 3.3.1 : Suppose F is a contraction, then there exists a unique y∗ such that
F (y∗) = y∗, that is a unique fixed point of F . Then

h(y∗) = 0.

that is y∗ is also a unique equilibrium. Now using Theorem 2. and Corollary 3. from [23] (page
126) we get

Yn → y∗, as n→∞.

Now if ỹ∗ is an equilibrium point of the ODE in equation (3.2.21) that is ỹ∗ satisfies

ỹ∗ =
w(ỹ∗R)

Sw(ỹ∗R)

then
Ỹn → ỹ∗, as n→∞.
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3.3.2 F is not a Contraction

In the case when F is not a contraction, we will only consider doubly stochastic replacement

matrices. We start with the following observation.

Proposition 3.3.2. The uniform vector
1

K
1 is an equilibrium point of the ODE in equation

(3.2.3), if and only if, R is a doubly stochastic matrix.

Proof : Note that,

h

(
1

K
1

)
= 0 ⇐⇒

w
(

1
K

)
Sw
(

1
K1
)R =

1

K
1 (3.3.12)

⇐⇒ 1

K
1R =

1

K
1 (3.3.13)

Thus, uniform is an equilibrium point, if and only if, R is a doubly stochastic matrix.

Assuming that R is doubly stochastic,
1

K
1 is an equilibrium point for both the ODEs given

in equation (3.2.3) and (3.2.21), that is

h

(
1

K
1

)
= 0 and h̃

(
1

K
1

)
= 0 (3.3.14)

where h and h̃ are defined in equation (3.2.7) and (3.2.22).

Definition 3.3.2. An equilibrium point y∗ is called stable (or attractor), if all the eigenvalues of

the Jacobian matrix of h at y∗, that is
∂h(y)

∂y

∣∣∣
y=y∗

have negative real parts, otherwise it is called

unstable.

In the next Proposition, we give a sufficient condition under which the unique equilibrium

point
1

K
1 is stable for both the ODEs.

Proposition 3.3.3. Suppose w is a non-increasing function on [0, 1], and R is doubly stochastic

matrix then,
1

K
1 is a stable equilibrium, if for every eigenvalue λ of R

<(λ) >
Kw

(
1
K

)
w′
(

1
K

) . (3.3.15)
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Proof : The Jacobian matrix of h is given by

∂h(y)

∂y
=
∂w(y)/Sw(y))

∂y
R− I (3.3.16)

where,

∂

∂y

w(y)

Sw(y)
=



w′(y1)

Sw(y)
− w(y1)w′(y1)

Sw(y)2
−w(y1)w′(y2)

Sw(y)2
· · · −w(y1)w′(yK)

Sw(y)2

−w(y2)w′(y1)

Sw(y)2

w′(y2)

Sw(y)
− w(y2)w′(y2)

Sw(y)2
· · · −w(y2)w′(yK)

Sw(y)2

...
...

. . .
...

−w(yK)w′(y1)

Sw(y)2
−w(yK)w′(y2)

Sw(y)2
· · · w′(yK)

Sw(y)
− w(yK)w′(yK)

Sw(y)2


(3.3.17)

That is,

∂w(y)/Sw(y)

∂y
= diag

(
w′(y)

Sw(y)

)
+

((
−w(yi)w

′(yj)

Sw(y)2

))
i,j=1,2,··· ,K

. (3.3.18)

Therefore

∂h(y)

∂y

∣∣∣
y= 1

K
1

=

(
bI − b

K
J

)
R− I

= bR− b

K
J − I (3.3.19)

where

b :=
w′
(

1
K

)
Kw

(
1
K

) , (3.3.20)

Note that b ≤ 0 as w is a non-increasing function. By Perron Frobenius Theorem, the stochastic
matrix R has maximal eigenvalue 1. That is the absolute real part of all eigenvalue of a stochastic
matrix R is less than 1, so without loss we assume 1 > <(λ1) ≥ <(λ2) ≥ · · · ≥ <(λs) ≥ −1.

Note that the right eigenvector corresponding to the maximal eigenvalue 1 of R is 1T and

Dh

(
1

K
1

)
1T =

(
bI − b

K
J

)
R1T − 1T = −1T (3.3.21)
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Thus −1 is an eigenvalue of Dh
(

1

K
1

)
. Now, for an eigenvalue λi(6= 1) of R, and the

corresponding right eigenvector vTi which is orthogonal to 1T , we have

Dh

(
1

K
1

)
vTi =

(
bI − b

K
J

)
RvTi − vTi = (bλi − 1)vTi (3.3.22)

Therefore the Jacobian matrix Dh
(

1

K
1

)
has eigenvalues bλi − 1 for every i = 1, · · · , s. Thus

the equilibrium point
1

K
1 is stable, if and only if,

<(bλi − 1) < 0, ∀ i = 1, 2, · · · , s. (3.3.23)

⇐⇒ <(λs) >
1

b
=
Kw

(
1
K

)
w′
(

1
K

) . (3.3.24)

This completes the proof.

Now note that
∂h̃(ỹ)

∂ỹ
=

∂

∂y

w (y)

Sw (y)
R− I =

∂h(y)

∂y
(3.3.25)

and therefore, the condition for stability in equation (3.3.15) is same for both the ODEs.

Remark 3.3.2. Since <(λj) ≥ −1 for every j = 1, · · · , s, another sufficient condition for the
stability is

Kw

(
1

K

)
> −w′

(
1

K

)
. (3.3.26)

Now assuming that w(0), w′(0+) < ∞, equation (3.3.15) or (3.3.26) hold for K sufficiently
large.

Clearly from equation (3.3.26), 1
K1 is a stable point whenever all the eigenvalues of a doubly

stochastic matrix R have positive real part. In particular 1
K1 is stable for any choice of weight

function when the replacement matrix is of Pólya type, that is when R = I . Moreover, for a

doubly stochastic matrix R,
1

k
1 is an equilibrium point for both the ODEs given in equation

(3.2.3) and (3.2.21), that is

h

(
1

k
1

)
= 0 and h̃

(
1

k
1

)
= 0 (3.3.27)

where h and h̃ are defined in equation (3.2.7) and (3.2.22). In the next Theorem we show that

the vector of urn proportions and colour count proportions converge to uniform vector 1
K1, when
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the replacement matrix R is of the form R = 1
2 [I + R̃], for a non-negative doubly stochastic

matrix R̃.

Theorem 3.3.2. Suppose w is a non-increasing weight function and R is a doubly stochastic

matrix of the form R =
1

2

[
I + R̃

]
for a doubly stochastic matrix R̃, then

Yn −→
1

k
1 a.s. and Ỹn −→

1

k
1 a.s. (3.3.28)

Remark 3.3.3. Note that, for this special form of doubly stochastic replacement matrix all its
diagonal entries are at least 1/2, therefore the color chosen according to non-increasing weight
function indeed gets reinforced more than every other colour. In particular, this ensures negative
reinforcement both in the selection step and reinforcement step.

We will also observe later in section 3.5 that the above almost sure convergence does not hold
for any doubly stochastic replacement matrix. In particular, we show that for certain non-linear

weight function and a particular doubly stochastic matrix, which is not of the form
1

2

[
I + R̃

]
,

the vector of urn proportions does not converge to 1
k1.

Proof of Theorem 3.3.2 : We first note that if R is a doubly stochastic matrix of the form
1
2

[
I + R̃

]
then the condition for stability in Proposition 3.3.3 is satisfied, thus 1

k1 is a sta-
ble equilibrium point. Now we show that for any initial vector y0, the unique solution of the
ODE ẏ = h(y) converges to 1

k1.
Let y0 be the initial configuration vector, such that y0 6= 1

k1, and φ be the unique solution of the
ODE ẏ = h(y), then φ(t) =

(
φ1(t), φ2(t), · · · , φk(t)

)
satisfies

dφi(t)

dt
= h(φ(t))i =

w
(
φi(t)

)
Sw (φ(t))

− φi(t), for every i = 1, 2, · · · , k, (3.3.29)

where Sw(φ(t)) =
∑k

j=1w
(
φj(t)

)
. Now to show that φ(t)→ 1/k1 as t→∞, it is enough to

show that minj φ
j(t)→ 1

k
. Now defineM : R+ → {1, 2, · · · , k} andm : R+ → {1, 2, · · · , k}

such that
M(t) = argmax

j
φj(t). (3.3.30)

and
m(t) = argmin

j
φj(t). (3.3.31)

Then φM(t)(t) = max1≤j≤k φ
j(t) ∈

[
1

k
, 1

]
, and φm(t)(t) = min1≤j≤k φ

j(t) ∈
[
0,

1

k

]
, there-

fore φm(t)(t)− φM(t)(t) ≤ 0 and we now show that it is increasing in t.

d

dt

(
φm(t)(t)− φM(t)(t)

)
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=

∑k
j=1w

(
φj(t)

)
Rj,m(t)

Sw(φ)
−
∑k

j=1w
(
φj(t)

)
Rj,M(t)

Sw(φ)
−
(
φm(t)(t)− φM(t)(t)

)
(3.3.32)

The first term in the above expression is:∑k
j=1w

(
φj(t)

)
Rj,m(t)

Sw(φ)
−
∑k

j=1w
(
φj(t)

)
Rj,M(t)

Sw(φ)

=
w
(
φm(t)(t)

)
− w

(
φM(t)(t)

)
2Sw(φ)

+

∑k
j=1w

(
φj(t)

)
R̃j,m(t) − w

(
φj(t)

)
R̃j,M(t)

2Sw(φ)

≥
w
(
φm(t)(t)

)
− w

(
φM(t)(t)

)
2Sw(φ)

+
w
(
φM(t)(t)

)
− w

(
φm(t)(t)

)
2Sw(φ)

= 0. (3.3.33)

(The above inequality holds, since R̃ is a doubly stochastic and w is non-increasing). Therefore
we get φm(t)(t)− φM(t)(t) is increasing in t. Now combining (3.3.32) and (3.3.33) we get

d

dt

(
φm(t)(t)− φM(t)(t)

)
≥ φM(t)(t)− φm(t)(t) ≥ 0. (3.3.34)

Now, integrating equation (3.3.34) in the interval [0, s] , we get(
φm(s)(s)− φM(s)(s)

)
−
(
φm(0)(0)− φM(0)(0)

)
≥
∫ s

0

(
φM(t)(t)− φm(t)(t)

)
dt (3.3.35)

Notice that the first term on the L.H.S. that is,
(
φm(s)(s)− φM(s)(s)

)
≤ 0 for every s and

therefore we get ∫ s

0

(
φM(t)(t)− φm(t)(t)

)
dt ≤ −

(
φm(0)(0)− φM(0)(0)

)
(3.3.36)

The R.H.S. in the above expression is finite and independent of s, therefore we get∫ ∞
0

(
φM(t)(t)− φm(t)(t)

)
dt <∞

Now since the integrand in the above equation is positive and decreasing, we get

φM(t)(t)− φm(t)(t)→ 0, as t→∞

Further it implies that, for every j = 1, 2, · · · , k

φj(t)→ 1

k
, as t→∞.

This completes the proof.
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3.4 Scaling Limits

In this section, we will obtain the central limit theorems for Yn and Ỹn. Throughout this section

we will consider the following two assumptions

(A1) w is a differentiable function with bounded derivatives in [0, 1].

(A2) Yn converges almost surely to the uniform vector
1

K
1.

We will again use the stochastic approximation method to obtain central limit theorems. The

rate of convergence of the discrete stochastic approximation process depends on the eigenvalues

of the Jacobian matrix when evaluated at the limiting vector. For the ODE associated with Yn,

the Jacobian matrix of h at the equilibrium point 1
K1 as evaluated in equation (3.3.19) is given

by

Dh

(
1

K
1

)
:=

∂h(y)

∂y

∣∣∣
y= 1

K
1

= bR− b

K
J − I (3.4.1)

where,

b =
w′
(

1
K

)
Kw

(
1
K

) (3.4.2)

and ifR has s+1 distinct eigenvalues 1, λ1, · · · , λs, such that 1 > <(λ1) ≥ <(λ2) ≥ · · · ≥

<(λs), then the Jacobian matrix Dh
(

1
K1
)

has eigenvalues 1, bλi − 1 for i = 1, · · · , s. Now

define

ρ := max{0, 1− b<(λs)} (3.4.3)

First, we note that the Dh
(

1

K
1

)
is a diagonal matrix, if and only if,

bRi,j − b/K = 0 ∀i 6= j ⇐⇒ R =
1

K
J.

In fact, for this choice of R, we have

Un,i = U0,i +
n

K
, ∀ i = 1, 2, · · · ,K

which is a deterministic recursion, leading to the solution

Yn,i =
U0,i

n+ 1
+

n

(n+ 1)K
(3.4.4)



50 Chapter 3: Negatively Reinforced Urn Model with Lipschitz Weight Function

Thus for any weight function w, if Dh
(

1

K
1

)
is a diagonal matrix then we have

Yn+1,i →
1

K
as n→∞, ∀ i = 1, 2, · · · ,K. (3.4.5)

We now present the the CLT results obtained for general Jacobian matrix Dh
(

1
K1
)

in the next

three subsections, depending upon the value of ρ.

3.4.1 The case ρ > 1/2

Theorem 3.4.1. Suppose w is a non-increasing function and R is a doubly stochastic matrix
such that ρ > 1/2, then under assumptions (A1) and (A2),

√
n

(
Yn −

1

K
1

)
=⇒ N(0,Σ1) (3.4.6)

and
√
n

(
Ỹn −

1

K
1

)
=⇒ N

(
0, Σ̃1

)
(3.4.7)

with
Σ̃1 =

1

K

[
Λ1 −

1

K(1− 2b)
J

]
and Σ1 = RT Σ̃1R (3.4.8)

where Λ1 is the unique solution of the Sylvester’s equation (see [21])

AΛ1 − Λ1A
T = I (3.4.9)

for A =
1

2
I − bRT . In particular, if R is a normal matrix then

Σ1 =
1

K

[
RT
(
I − b(RT +R)

)−1
R− 1

K(1− 2b)
J

]
(3.4.10)

where b is defined in equation (3.4.2).

Remark 3.4.1. Note that for a Pólya type urn, that is when R = I , assumption (A2) holds and
ρ = 1− b > 1

2 , therefore under assumption (A1) Theorem 3.4.1 holds with

Σ1 =
1

K(1− 2b)

[
I − 1

K
J

]
=

1

1− 2b
Γ, (3.4.11)

where Γ =
1

K
I − 1

K2
J .
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Proof of Theorem 3.4.1 : Since ρ > 1/2, by Theorem A.3.1 in Appendix A we get

√
n

(
Yn −

1

K
1

)
=⇒ N(0,Σ1)

where
Σ1 =

∫ ∞
0

(
euH

)T
Γ1

(
euH

)
du,

and
H =

∂h

∂y

∣∣∣
y= 1

K
1

+
1

2
I = bR− b

K
J − 1

2
I

and

Γ1 = lim
n→∞

RTE
[
MT
n+1Mn+1

∣∣∣Fn]R
= lim

n→∞
RTE

[(
χn+1 −

w(Yn)

Sw(Yn)

)T (
χn+1 −

w(Yn)

Sw(Yn)

) ∣∣∣Fn]R
= lim

n→∞
RT
[
E
[
χTn+1χn+1

∣∣∣Fn]− w(Yn)Tw(Yn)

Sw(Yn)2

]
R

= RT
[

1

K
I − 1

K2
J

]
R.

Now observe that JR = RJ = J , because R is doubly stochastic. Therefore

euH = ebuR−
bu
K
JR−u

2
I = ebuR−

bu
K
J−u

2
I

Again since R commutes with J and I , we can write

euH = ebuRe−(bu/K)Je−(u/2)I

= e−u/2


∞∑
j=0

(
−bu
K

J

)j
j!

 ebuR

= e−u/2

I +

∞∑
j=1

(
−bu
K

)j Kj−1J

j!

 ebuR
= e−u/2

[
I +

e−bu − 1

K
J

]
ebuR (3.4.12)

Now

euH
T

Γ1 = e−u/2ebuR
T

[
I +

e−bu − 1

K
J

]
RT
[

1

K
I − 1

K2
J

]
R
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= e−u/2ebuR
T

[
RT +

e−bu − 1

K
J

] [
1

K
R− 1

K2
J

]
= e−u/2ebuR

T

[
1

K
RTR− 1

K2
J

]
(3.4.13)

euH
T

Γ1e
uH = e−uebuR

T

[
1

K
RTR− 1

K2
J

] [
I +

e−bu − 1

K
J

]
ebuR

= e−uebuR
T

[
1

K
RTR− 1

K2
J

]
ebuR

= e−u
[

1

K
ebuR

T
RTRebuR − e2bu

K2
J

]
= e−uRT

[
1

K
ebuR

T
ebuR − e2bu

K2
J

]
R (3.4.14)

The last step follows as R and ebuR commute. Now we can rewrite the last expression as

=
1

K
RT

[
e−uebuR

T
ebuR − e−u(1−2b)

K
J

]
R

=
1

K
RT

[
e−

u
2

(I−2bRT )e
u
2

(2bR−I) − e−u(1−2b)

K
J

]
R (3.4.15)

Thus, ∫ ∞
0

euH
T

Γ1e
uHdu =

1

K
RT
[
Λ1 −

1

K(1− 2b)
J

]
R (3.4.16)

where
Λ1 =

∫ ∞
0

e−u(1/2I−bRT )eu(bR−1/2I)du (3.4.17)

which satisfies the Sylvesters equation :

AΛ1 − Λ1B = I. (3.4.18)

for A = 1
2I − bR

T and B = bR− 1
2I = −AT . Now if R is a normal matrix then

Λ1 = (A−B)−1 = (I − b(R+RT ))−1

satisfies the Sylvesters equation, if and only if

I = A(A−B)−1 − (A−B)−1B

⇐⇒ A−B = (A−B)A(A−B)−1 −B

⇐⇒ A = (A−B)A(A−B)−1

⇐⇒ A(A−B) = (A−B)A
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⇐⇒ AB = BA

⇐⇒ AAT = ATA

⇐⇒ RTR = RRT .

Therefore for a normal matrix R

Σ1 =
1

K
RT
[
(I − b(R+RT ))−1 − 1

K(1− 2b)
J

]
R.

Similarly, if ρ > 1/2 then by Theorem A.3.1 in Appendix A we get

√
n

(
Ỹn −

1

K
1

)
=⇒ N(0, Σ̃1)

where
Σ̃1 =

∫ ∞
0

(
euH

)T
Γ̃1

(
euH

)
du,

for

H =
∂h̃

∂y

∣∣∣
y= 1

K
1

+
1

2
I = bR− b

K
J − 1

2
I

and

Γ̃1 = lim
n→∞

E
[
MT
n+1Mn+1

∣∣∣Fn] =

[
1

K
I − 1

K2
J

]
.

Now similar to the expression obtained in equation (3.4.14) we get

euH
T

Γ̃1e
uH = e−u

[
1

K
ebuR

T
ebuR − e2bu

K2
J

]
(3.4.19)

and therefore,

Σ̃1 =

∫ ∞
0

euH
T

Γ̃1e
uHdu =

1

K

[
Λ1 −

1

K(1− 2b)
J

]
. (3.4.20)

where Λ1 satisfies the Sylvesters equation (3.4.18).

3.4.2 The case ρ = 1/2

Note that

ρ =
1

2
⇐⇒ <(λs) =

Kw
(

1
K

)
2w′

(
1
K

)
and since <(λs) ≥ −1 thus, ρ =

1

2
case is possible only when Kw

(
1
K

)
≤ −2w′

(
1
K

)
. Let

ν := max1≤i≤s{νi : <(λi) = <(λs)}, where νi is the multiplicity of eigenvalue λi.
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Theorem 3.4.2. Let w be a non-increasing, twice differentiable weight function such that
ρ = 1/2, then under assumption (A2),

√
n

(log n)ν−1/2

(
Yn −

1

K
1

)
=⇒ N (0,Σ2) (3.4.21)

and √
n

(log n)ν−1/2

(
Ỹn −

1

K
1

)
=⇒ N

(
0, Σ̃2

)
(3.4.22)

where
Σ̃2 =

1

K
Λ2, and Σ2 = RT Σ̃2R, (3.4.23)

and

Λ2 = lim
n→∞

1

(log n)2ν−1

∫ logn

0
e−uebuR

T
ebuRdu. (3.4.24)

Proof : Suppose the Jacobian Dh( 1
K1) is not a diagonal matrix and ρ = 1/2, then we need to

verify the the following two assumptions

1.
1

n

n∑
m=1

E
[
‖MmR‖2I{‖MmR‖ ≥ ε

√
n}
∣∣∣Fm−1

]
→ 0. (3.4.25)

a.s. or in L1, for all ε > 0.

2. For some ε > 0, as y → 1
K1

h(y) = h

(
1

K
1

)
+

(
y − 1

K
1

)
Dh

(
1

K
1

)
+ o

(
‖y − 1

K
1‖1+ε

)
(3.4.26)

The Linderberg condition in equation (3.4.25) holds, since from equation (3.2.14) we have

‖MmR‖2 ≤ K(K + 1) for all m.

and for
√
n > K(K+1)

ε , I{‖MmR‖ ≥ ε
√
n} = 0 for all m. The second condition (3.4.26) is

also satisfied as h is twice differentiable. Thus for ρ = 1/2, by Theorem A.3.1 in Appendix A
we get √

n

log nν−1/2

(
Yn −

1

K
1

)
=⇒ N (0,Σ2)

where

Σ2 = lim
n→∞

1

(log n)2ν−1

∫ logn

0
exp(uHT )Γ exp(uH)du.
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Now from equation (3.4.15), we get

Σ2 =
1

K
RT

[
Λ2 − lim

n→∞

1− n−(1−2b)

(log n)2ν−1
J

]
R

=
1

K
RTΛ2R

where

Λ2 = lim
n→∞

1

(log n)2ν−1

∫ logn

0
exp

(
−u(1/2I − bRT )

)
exp (u(bR− 1/2I)) du. (3.4.27)

Similarly for Ỹn the required Linderberg condition holds that is

1

n

n∑
m=1

E
[
‖Mm‖2I{‖Mm‖ ≥ ε

√
n}
∣∣∣Fm−1

]
→ 0. (3.4.28)

and therefore by Theorem A.3.1 in Appendix A we get

Σ̃2 =
1

K

[
Λ2 − lim

n→∞

1− n−(1−2b)

(log n)2ν−1
J

]
=

1

K
Λ2

where Λ2 is as given in equation (3.4.27).

3.4.3 The case ρ < 1/2

Note that

ρ <
1

2
⇐⇒ <(λs) <

Kw
(

1
K

)
2w′

(
1
K

)
and thus, ρ <

1

2
case is not possible whenever Kw

(
1
K

)
> −2w′

(
1
K

)
, which is true for

sufficiently large K assuming that w(0) and w′(0) are both finite. Therefore for a negatively

reinforced urn scheme, ρ <
1

2
is a rare case, and in this case we have the following convergence

result.

Theorem 3.4.3. Let w be a non-increasing weight function which is twice differentiable and R
be a doubly stochastic matrix, such that 0 < ρ < 1/2, then under assumptions (A1) and (A2),
there are complex random variables ξ1, · · · , ξs such that

nρ

(log n)ν−1

(
Yn −

1

K
1

)
−Xn

a.s.−→ 0 (3.4.29)
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where
Xn =

∑
i:<(λi)=(1−ρ)/b

e−i(1−bIm(λi) lognξivi

and vi is the left eigenvector of Dh
(

1
K1
)

with respect to the eigenvalue bλi − 1.

Proof : Proof of this theorem follows from Theorem A.3.1 in Appendix A.

3.5 Examples 2

In this section, we look at three different decreasing weight functions including linear, power

law and exponential. We also describe our results for these three specific weight functions by

simulations, not just to support our convergence results but also to observe the time required for

the desired accuracy of convergence.

1. Linear weight function: Let

wθ(y) = θ − y; θ ≥ 1

y ∈ [0, 1], the stochastic approximation algorithm in equation (3.2.6) then holds with

h(y) = y (AR− I) (3.5.1)

for

A =
1

Kθ − 1
(θJ − I) .

Notice that, an equilibrium point of the associated ODE is also a stationary distribution of

AR. Thus if AR is irreducible and y∗ is its unique stationary distribution. then since all

the eigenvalues of the Jacobian matrix AR− I have negative real part, we get

Yn −→ y∗ a.s..

The above almost sure convergence result was also proved in Chapter 2. If y∗ is unique

stationary distribution of AR then ν = y∗A is the unique stationary distribution of RA.
2All the simulations in this section are done using R. See https://goo.gl/duLnQx for the R-code used.

https://goo.gl/duLnQx
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In fact in Chapter 2, a necessary and sufficient condition for R̂ = RA to be irreducible is

given and also convergence for the case when RA is reducible is obtained.

Simulations for convergence: We present simulation results for Pólya type urn model,

that is when R = I and observe the convergence to uniform vector 1
K1 as n → ∞. To

verify the convergence, we define

En(K) := sup
U0∈{α1,··· ,αm}

∥∥∥∥Yn − 1

K
1

∥∥∥∥
TV

(3.5.2)

where α1, · · · , αm are randomly chosen initial configurations from Dirichlet distribution

with parameter 1
K1, that is m initial configurations chosen uniformly at random from the

simplex {y ∈ RK :
∑K

i=1 yi = 1}, and ‖ · ‖TV denotes the total variation norm. In the

graphs below, we plot the {En(K)}1≤n≤10000 with m = 100, for different number of

colours K = 2 and 3, and observe that in both these cases the total variation distance goes

to 0, as n increases, irrespective of the starting configuration.

Figure 3.1: Convergence of the urn configuration to uniform for a linear weight function
with θ = 1.

For the central limit theorem, consider a doubly stochastic matrix R. In this case, the

constant b, as defined in equation (3.4.2) is

b = − 1

Kθ − 1
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and ρ as defined in equation (3.4.3) is

ρ = 1 +
<(λs)

Kθ − 1
.

Now we separately consider K = 2 and K ≥ 3, in order to identify the possible values of

ρ.

Consider K = 2, and let R =

 p 1− p

1− p p

, where p ∈ [0, 1]. Then R has eigenvalues

1 and 2p− 1 and

ρ = 1 +
2p− 1

2θ − 1
.

ρ ≥ 1

2
⇐⇒ 2p− 1 ≥ 1− 2θ

2
(3.5.3)

Therefore, by Theorem 3.4.1 and Theorem 3.4.2, we get

σn

(
Yn,1 −

1

2

)
=⇒ N

(
0, σ2

)
(3.5.4)

where

σn =



√
n

logn if the eigenvalues of R are 1 and λ = 1−2θ
2 with θ ∈

[
1, 3

2

]
;

√
n if the eigenvalues of R are 1 and λ > 1−2θ

2 with θ ∈
[
1, 3

2

]
; or θ > 3

2 .

and using Theorem 3.4.3, we know that nρ(Yn − 1
K ) convergence to a random variable,

and this covers the case whenK = 2, θ ≤ 3
2 , and eigenvalue ofR is< 1−2θ

2 , as mentioned

in Remark 2.3.5 of Chapter 2.

Simulations for asymptotic normality: For the Pólya type urn with 2 colors, the his-

togram plot and the Q-Q plot obtained through simulations are given below:
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Figure 3.2: Asymptotic normality of the color 1 proportion when θ = 1.

Now, in the figure below, we observe that ρ is equal to 1
2 on the highlighted straight line,

and below this line ρ is less than 1
2 . Note that for a large range of minimum eigenvalue

of R and parameter θ, ρ is greater than 1
2 for which the asymptotic normality holds with

scaling factor
√
n.

Minimum eigenvalue of R

θ

−1.0 −0.5 0.0 0.5 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

ρ > 0.5

ρ < 0.5

ρ= 0.5

Gaussian − scaling n
Gaussian − scaling n / log n
Non−Gaussian

Figure 3.3: Range of ρ for given θ and minimum eigenvalue of R

Now for K ≥ 3, using the fact that <(λs) ≥ −1, we get

ρ ≥ 1− 1

Kθ − 1
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and therefore for K ≥ 3, ρ ≥ 1/2. Thus, there is no non-Gaussian limiting behavior. In

fact in this case we always have Gaussian limit with
√
n scaling, except when ρ =

1

2
,

which can only happen when K = 3 and then

ρ = 1/2 ⇐⇒ <(λs) = −3θ − 1

2
.

Which is possible only when θ = 1 and <(λs) = −1, and for a 3× 3 stochastic matrix,

there can only be at most one eigenvalue with real part equal to −1.

The above result for K ≥ 2 and ρ ≥ 1

2
has already been obtained in Chapter 2. In fact

central limit theorem for a general class of replacement matrices is given in Chapter 2.

2. Inverse power law weight function: Let

w(x) = (θ + x)−α, for θ, α > 0 (3.5.5)

and R be a doubly stochastic matrix.

Then b = − α

Kθ + 1
and therefore by Proposition 3.3.3,

1

K
1 is a stable equilibrium point

if

<(λs) > −
Kθ + 1

α
. (3.5.6)

In particular, the above condition for stability holds if R = I or if α < Kθ + 1. Now,

ρ = 1 +
α

Kθ + 1
<(λs)

and then

ρ ≥ 1/2 ⇐⇒ <(λs) ≥ −
Kθ + 1

2α
.

Therefore, the scaling for central limit theorems depend on the values of α and θ.

In particular, for α = 1 the condition for stability in equation (3.5.6) holds for K ≥ 2 and

thus by Theorem 3.3.2 we get

Yn −→
1

K
1 a.s.
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Simulations for convergence: In the graphs below, we plot the {En(K)}1≤n≤10000 with

m = 100, as defined in equation (3.5.2), for K = 2 and K = 3, and observe that the total

variation distance goes to 0, as n increases, irrespective of the starting configuration.

Figure 3.4: Convergence of the total variation distance to 0 when θ = 1, α = 1.

For the central limit theorem, as shown in the figure below ρ takes value more than 1
2 in

the shaded region and thus for given θ and R, the central limit theorems hold accordingly.

Minimum eigenvalue of R

θ

−1.0 −0.5 0.0 0.5 1.0

0
1

k
2

k
3

k
4

k

ρ > 0.5

ρ < 0.5

ρ= 0.5

Gaussian − scaling n
Gaussian − scaling n / log n
Non−Gaussian

Figure 3.5: Range of ρ for given θ (with α = 1) and minimum eigenvalue of R

Note that, above a critical value for θ, we observe asymptotic normality with the scaling factor
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of
√
n for any choice of replacement matrix R. Further, the region for ρ <

1

2
decreases as we

increase the number of colours K.

Simulations for asymptotic normality: For the Pólya type urn with K = 2 and K = 3, the

histogram plot and the Q-Q plot obtained through simulations are given below:

Figure 3.6: Asymptotic normality of the color 1 proportion when θ = 1, α = 1 and
K = 2.

Figure 3.7: Asymptotic normality of the color 1 proportion when θ = 1, α = 1 and
K = 3.

Remark 3.5.1. The inverse power law weight function with θ = α = 1 is w(x) = 1/(1 + x),
and we observe in Figure 3.4, that in this case the time required for the colour proportions to
converge to uniform is much longer, as compared to the convergence time for a linear weight
function. We observe the similar pattern for the inverse weight w(x) = 1/x, for which we
present simulation results in the next chapter.
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3. Exponential weight function Let

w(x) = exp
(
−x
θ

)
, for θ > 0

then

b = − 1

Kθ
and ρ = 1 +

<(λs)

Kθ

and thus
1

K
1 is a stable equilibrium for a doubly stochastic matrix if

<(λi) > −Kθ; for i = 1, 2, · · · , s.

and

ρ ≥ 1/2 ⇐⇒ <(λs) ≥ −
Kθ

2

As shown in the following graph, ρ >
1

2
in the shaded region and equal to

1

2
on the straight line.

Minimum eigenvalue of R

θ

−1.0 −0.5 0.0 0.5 1.0

0
1

k
2

k
3

k
4

k

ρ > 0.5

ρ < 0.5

ρ= 0.5

Gaussian − scaling n
Gaussian − scaling n / log n
Non−Gaussian

Figure 3.8: Range of ρ for given θ and minimum eigenvalue of R

Simulations for convergence: In the graphs below, we plot the {En(K)}1≤n≤10000 as defined

in equation (3.5.2), with m = 100, for a exponential weight function with θ = 1. We observe

that the total variation distance goes to 0, as n increases, irrespective of the starting configuration.
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Figure 3.9: Convergence of the total variation distance to 0 when θ = 1 and R = I .

Simulations for asymptotic normality: For the Pólya type urn with K = 2 and K = 3, the

histogram plot and the Q-Q plot obtained through simulations are given below:

Figure 3.10: Asymptotic normality of the color 1 proportion when θ = 1 and K = 2.

Figure 3.11: Asymptotic normality of the color 1 proportion when θ = 1 and K = 3.
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Remark 3.5.2. We observe in Figure 3.9 that the total variation distance decreases to 0 much
faster when compared to other two weight functions. The reason behind this observation is that
the colour with minimum proportion gets reinforced with very high probability when the weight
function is exponentially decreasing.
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Chapter 4

Inverse Weight Function

4.1 Model

In this chapter, we present simulation study for the inverse weight function, that is, w(x) = 1
x ,

for x ∈ (0, 1]. For this choice of weight function, the technique used in Chapter 3 does not

hold. This is because, for the asymptotic results obtained using the stochastic approximation

theory, we need the approximated ODE given in equation (3.2.3) to have an unique solution.

This is guaranteed under the sufficient condition that the function h is Lipschitz. However, the

inverse function is not Lipschitz on (0, 1]. Note that, the inverse function defined defined on

[ε, 1], for ε > 0 is Lipschitz with all bounded derivatives. Therefore, if the initial distribution is

such that for some ε > 0, Uo,i > ε ∀i, then we expect that the results stated in Chapter 3 should

also hold for inverse weight function. However, it seems technically difficult and we have been

unable to prove it. In the next section, we present simulation results as evidence of almost sure

convergence and asymptotic normality.

4.2 Simulation Study 1

4.2.1 Convergence to Uniform

In this section, we present simulation results for the negatively reinforced urn model with

inverse weight function and observe the convergence to uniform 1
K1 as n → ∞. To verify

the convergence, we use the function defined in equation (3.5.2) of Chapter 3 In the graphs
1All the simulations in this section are done using R. See https://bit.ly/2GFuXI4 for the R-code used.

67

https://bit.ly/2GFuXI4
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below, we plot the {En(K)}1≤n≤50000 with m = 100, for different number of colours K ∈

{3, 4, 10, 50, 200, 500}, and observe that in all these cases the total variation distance goes to 0,

as n increases, irrespective of the starting configuration.
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Figure 4.1: Convergence of the urn configuration to uniform for a negatively reinforced urn
model with inverse weight function

4.2.2 Asymptotic Normality

We now give the simulation results for the asymptotic normality with the inverse weight function

with K ∈ {3, 4, 10, 50, 200, 500}. To check the asymptotic normality, we present histograms

and normal Q-Q plots. In a normal Q-Q plot, quantiles of the data generated are plotted against

the quantiles of a normal distribution, and a straight line plot suggest that the data generated

follows a normal distribution. Here we present histograms and normal Q-Q plots for 1000

iterations of the normalised proportion of colour 1, that is
√
N
(
YN,1 − 1

K

)
, for N = 10000,

where initial distribution is chosen uniformly at random from Dirichlet
(

1
K1
)
.

Note that for the inverse weight function the constant b (as defined in equation (3.4.2)) is

equal to −1. Therefore from equation (3.4.11), we expect the limiting variance for each of

the colour proportions to be equal to
1

3

(
1

K
− 1

K2

)
. To verify this, we overlay each of the

histograms with the density curve of normal with mean 0 and variance
1

3

(
1

K
− 1

K2

)
.
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Figure 4.2: Histogram showing the asymptotic normality of colour 1 proportions in 5000
iterations.

From the above graphs, we can observe that for inverse weight function also the asymptotic

normality of colour proportions should hold.

4.3 A Conjecture

As we observed in the simulations, that for a Pólya type replacement matrix that is for R = I

with a inverse weight function, that all the urn proportions converge to the constant
1

K
also by

observing the histogram and Q-Q plot, as a conclusion, we make the following conjecture:

Conjecture 4.3.1. Suppose w(x) =
1

x
, for x ∈ (0, 1] and the initial configuration U0 is such

that U0,i > 0 ∀i, then

Yn,i −→
1

K
1 a.s.. (4.3.1)
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Further,
√
n

(
Yn −

1

K
1

)
=⇒ N (0,Σ1), (4.3.2)

where Σ1 is as given in Theorem 3.4.1 with b = −1.

Next we look at the dependence of initial configuration on the time required for the conver-

gence to uniform.

4.4 Convergence Time 2

As observed in the previous section that the urn proportions must converge to uniform for inverse

weight function, for any choice of initial urn configuration vector U0, but naturally the time

required for the convergence depends on the choice of initial vector. For example, it is easy to

observe that if the initial configuration is closer to uniform, then the configuration will remain

closer to the uniform, on the other hand if the initial configuration is such that it is near a

boundary point in the simplex
{
y ∈ RK :

∑K
i=1 yi = 1

}
, then the time required for the urn

configuration to reach in a neighbourhood of uniform will be very large.

More precisely, we define the time required for convergence to uniform by the minimum

time after which the the total variation distance between urn proportions and the uniform vector

is less than a given ε(> 0). That is, for a given ε > 0, we define

T (U0, ε) := inf

{
n :

∥∥∥∥Yn − 1

K
1

∥∥∥∥
TV

< ε

}
Consider negative reinforcement urn model with K = 3 and U0 takes different values in the

simplex (of dimension 2) and ε = .001. Then for a graphical representation of the dependence

T (U0, ε) on U0, we divide the time required in 9 different classes and assign 9 different colours

from light green to dark red, where green is for the smallest and red is for the largest value of

T (U0, ε).

2The simulations in this section are done using R. See https://bit.ly/2GGydyI for the R-code used.

https://bit.ly/2GGydyI
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Figure 4.3: Rate of convergence to uniform for a negatively reinforced urn model with inverse
weight function and 3 colours.

From the above graph we can observe that if the initial configuration is closer to the uniform

vector 1
K1, then the total variation distance between vector of urn proportions and uniform vector

becomes less than ε much faster than the points which are near the boundary. In fact this also

explains the difficulty in studying the urn model with inverse weight function if defined on the

interval (0, 1], since near the boundary points of the simplex {y ∈ RK :
∑K

i=1 yi = 1}, the time

required for convergence is very large.
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Chapter 5

Choice of Two in Weighted Negative
Reinforcement 1

5.1 Introduction

In this Chapter, we study an algorithm which can be used for implementation of a negatively

reinforced urn scheme, defined in Chapter 1. Here instead of assigning probabilities proportional

to a decreasing weight function to the colour proportion of all K colours, we choose 2 ≤ d ≤ K

colours uniformly at random from the set of K colours and then reinforce one of the chosen d

colours according to probabilities proportional to a decreasing weight function. Later in this

Chapter we will show that d = 2, that is two choices not only enforces negative reinforcement, it

is also optimal in some sense. This phenomenon is mostly referred as two-choice paradigm [8].

The two choice paradigm has been validated in the theory of balls and bins models, in the

work by [8]. In ball and bins models, n balls are sequentially placed into n bins according to a

given rule. It is shown in [8] that if the balls are thrown in a bin, which is selected uniformly

at random then the maximum load is approximately
log n

log log n
with high probability. Further in

[8] they showed that if the balls are placed sequentially in the least loaded of randomly chosen

d ≥ 2 bins, then the maximum load is
log logn

log d
+ Θ(1) with high probability. In particular, this

implies that there is considerable reduction in the maximum load if we choose d = 2 over d = 1,

and it further reduces only by a constant factor. In this Chapter, we show that such phenomenon
1This chapter is based on the paper entitled “Choice of Two in Weighted Negative Reinforcement” [12].

75
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holds for urn models as well. That is, choice of two is some what optimal. Recall that, in the

classical Pólya urn model, the probability of reinforcing a colour is proportional to the number

of balls of that colour in the urn, and the limiting configuration in this case depends on the initial

configuration. In fact, irrespective of the initial configuration the urn configuration for such

models will converge to a state of disbalance with probability one. The negatively reinforced

urn models discussed in the previous Chapters for load balancing problems, aims to achieve a

balanced configuration asymptotically. In Chapters 2 and 3, it was shown that for the Pólya type

negatively reinforced urn models, uniform vector is the limiting configuration.

Some authors have also studied the asymptotics of multiple drawing urn models [34, 29, 56,

53], where m ≥ 1 many balls are drawn from the urn at every time n ≥ 1 and reinforcement is

done according to the observed balls. Our work in this chapter is different form multiple drawing

in an urn, as studied in [34, 29, 53, 56], as we reinforce only according to one colour which is

chosen according to decreasing weight function.

In this Chapter, we introduce the weighted negatively reinforced Pólya urn models with two

or more choices and investigate their asymptotics. The dynamics of this model can be briefly

described as follows:

At every time n ≥ 1 , sample d (≥ 2) colours without replacement form the set

of colours and choose a colour to reinforce according to a non-increasing weight

function.

We show that the urn configuration for this model converges to a uniform vector almost

surely, moreover the choice of two balls makes a significant difference over reinforcing random

colour and further we observe that there are only minor improvements (only by a constant factor)

for more than two choices. Here, by an improved model we mean that the limiting variance of the

urn configuration is less than the other, in the sense that the difference is a negative semi-definite

matrix. In the next section we first describe the model in detail.
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5.2 Weighted Negative Reinforcement with d Choices

Recall that Un = (Un,1, · · · , Un,K) denotes the configuration of the urn at time n. For a fixed

d ∈ {2, 3, · · · ,K}, we update the urn at time n+ 1 as follows:

Step 1: Select d ≥ 2 colours from the set of colours {1, 2, · · · ,K},

uniformly at random without replacement

Step 2: Reinforce a colour out of the d chosen colours, according

to a non-increasing weight function in Step 1.

Since we only consider Pólya type replacement scheme, that is, only one ball is added into the

urn at every time, the dynamics of the urn configuration can be written as

Un+1 = Un + χn+1. (5.2.1)

Suppose w : [0, 1] → R+ be a non-increasing weight function and the d randomly chosen

colours in Step 1 are Zn+1,1, Zn+1,2, · · · , Zn+1,d, then at time n+ 1 the conditional distribution

of χn+1 for weighted negative reinforcement with d choices, is given by

χn+1 =



uZn+1,1 , w.p.
w
(
Yn,Zn+1,1

)∑d
j=1w

(
Yn,Zn+1,j

)

uZn+1,2 , w.p.
w
(
Yn,Zn+1,2

)∑d
j=1w

(
Yn,Zn+1,j

)
...

uZn+1,d
, w.p.

w
(
Yn,Zn+1,d

)∑d
j=1w

(
Yn,Zn+1,j

)

(5.2.2)

where Yn =
Un
n+ 1

. Therefore, the conditional distribution of χn+1 defined in (5.2.2) is given by

P
(
χn+1 = ui

∣∣∣Fn) = E
[
P
(
χn+1 = ui

∣∣∣Fn) ∣∣∣Zn+1,1, Zn+1,2, · · ·Zn+1,d

]
(5.2.3)
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Let S(d) denotes the set of all subsets of {1, 2, · · · ,K} which are of size d then, we can write

P
(
χn+1 = ui

∣∣∣Fn) =
1(
K
d

) ∑
s∈S(d):i∈s

w(Yn,i)∑
l∈sw (Yn,l)

(5.2.4)

=
d

K

1(
K−1
d−1

) ∑
s∈S(d):i∈s

w(Yn,i)

w(Yn,i) +
∑

l(6=i)∈sw (Yn,j)
(5.2.5)

=
d

K
E
[

w(Yn,i)

w(Yn,i) + w(Yn,J1) + w(Yn,J2) + · · ·+ w(Yn,Jd−1
)

]
(5.2.6)

where {J1, J2, · · · , Jd−1} is a set of d − 1 elements, sampled uniformly at random without

replacement from the set {1, 2, · · · ,K} \ {i}. Recall that we extend w continuously to whole of

R, by making it a constant function outside the interval [0, 1], that is, w(y) = w(0) for y ≤ 0

and w(y) = w(1) for y ≥ 1.

Proposition 5.2.1. The process (Yn)n≥0 can be written as a stochastic approximation algorithm
given by

Yn+1 = Yn + γnh(Yn) + γnMn+1 (5.2.7)

where γn =
1

n+ 2
∼ O(n−1), h : RK → RK is such that

h(y)i =
d

K
E
[

w(yi)

w(yi) + w(yJ1) + w(yJ2) + · · ·+ w(yJd−1
)

]
− yi, for i = 1, 2, · · · ,K

(5.2.8)
where {J1, J2, · · · , Jd−1} is a sample of size d − 1 drawn uniformly at random without re-
placement from the set {1, 2, · · · ,K} \ {i}, and Mn+1 = χn+1 − E [χn+1|Fn] is a bounded
martingale difference sequence.

Proof : We can re-write the fundamental recursion in equation (5.2.1) as

Un+1 = Un + E
[
χn+1

∣∣∣Fn]+ χn+1 −E
[
χn+1

∣∣∣Fn]
which implies

Yn+1 = Yn +
1

n+ 2

[
E
[
χn+1

∣∣∣Fn]− Yn]+
1

n+ 2
Mn+1

where Mn+1 is the martingale difference χn+1 −E
[
χn+1

∣∣∣Fn]. Now using 5.2.6, we get

Yn+1 = Yn +
1

n+ 2
h (Yn) +

1

n+ 2
Mn+1
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where

h (y1, · · · , yK)i =
d

K
E
[

w(yi)

w(yi) + w(yJ1) + w(yJ2) + · · ·+ w(yJd−1
)

]
− yi. (5.2.9)

Therefore Yn satisfies (5.2.7).

Therefore the stochastic approximation algorithm in equation (5.2.7) can be approximated

by the ODE:

ẏ = h(y) (5.2.10)

where h is as given in equation (5.2.8).

Proposition 5.2.2. The dynamics ẏ = h(y), where h is as given as in (5.2.8), is a cooperative
system of differential equations, that is

∂hi
∂yj

> 0, ∀i 6= j.

Proof : Note that for i 6= j

∂hi
∂yj

=
1(
K
d

) ∂

∂yj

∑
s∈S(d):i∈s

w(yi)∑
l∈sw (yl)

=
1(
K
d

) ∑
s∈S(d):i,j∈s

∂

∂yj

w(yi)∑
l∈sw (yl)

=
1(
K
d

) ∑
s∈S(d):i,j∈s

−w(yi)w
′(yj)(∑

l∈sw (yl)
)2

Since w is non-increasing, w′(y) < 0, we get
∂hi
∂yj

> 0, for every i 6= j. Thus ẏ = h(y) is a

cooperative system of differential equations.

Lemma 5.2.1. Suppose w is a non-increasing function, then 1
K1 is the unique equilibrium point

of ODE in equation (5.2.10).

Proof : Note that, for i ∈ {1, 2 · · · ,K},

h

(
1

K
1

)
i

=
1(
K
d

) ∑
s∈S(d):i∈s

1

d
− 1

K
(5.2.11)

=

(
K

d

)−1(K − 1

d− 1

)
1

d
− 1

K
= 0 (5.2.12)
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Therefore
1

K
1 is an equilibrium point. Now to prove the uniqueness, suppose h(y) = 0 for

some y then from equation (5.2.8), for all i we get

d

K
E

[
w(yi)

w(yi) +
∑d−1

l=1 w(yJl)

]
= yi

d

K
E

[
w(yi)

w(yi) +
∑d−1

l=1 w(yJl)

]
− 1

K
= yi −

1

K

1

K
E

[∑d−1
l=1 (w(yi)− w(yJl))

w(yi) +
∑d−1

l=1 w(yJl)

]
= yi −

1

K

Without loss we can assume that y is such that y1 ≤ y2 ≤ · · · ≤ yK then, since w is a
non-increasing function w(y1) ≥ w(y2) ≥ · · · ≥ w(yK). Therefore,

1

K
E

[∑d−1
l=1 (w(y1)− w(yJl))

w(yi) +
∑d−1

l=1 w(yJl)

]
≥ 0

and then

y1 −
1

K
≥ 0

=⇒ yi ≥
1

K
∀i

=⇒ yi =
1

K
∀i.

Thus 1
K1 is the unique equilibrium.

Proposition 5.2.3. Let w be a non-increasing function, then 1
K1 is a stable equilibrium.

Proof : For h defined in equation (5.2.8), for i 6= j we get form equation

∂hi
∂yj

∣∣∣
y= 1

K

=
1(
K
d

) ∑
s∈S(d):i,j∈s

−w′(1/K)

d2w(1/K)

=
1(
K
d

)(K − 2

d− 2

)
−w′(1/K)

d2w(1/K)

=
−(d− 1)w′(1/K)

dK(K − 1)w(1/K)

=
−b(d− 1)

d(K − 1)
(5.2.13)
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where b is as defined in Chapter 3, equation 3.4.2 that is

b =
w′
(

1
K

)
Kw

(
1
K

) (5.2.14)

and

∂hi
∂yi

=
1(
K
d

) ∑
s∈S(d):i∈s

∂

∂yi

w(yi)∑
l∈sw (yl)

− 1

=
1(
K
d

) ∑
s∈S(d):i∈s

∂

∂yi

(
1−

∑
l(6=i)∈sw(yl)∑
l∈sw (yl)

)
− 1

=
1(
K
d

) ∑
s∈S(d):i∈s

w′(yi)
∑

l(6=i)∈sw(yl)(∑
l∈sw (yl)

)2 − 1

∂hi
∂yi

∣∣∣
y= 1

K

=
1(
K
d

) ∑
s∈S(d):i∈s

(d− 1)w′(1/K)

d2w(1/K)
− 1

=

(
K

d

)−1(K − 1

d− 1

)
(d− 1)w′(1/K)

d2w(1/K)
− 1

=
(d− 1)w′(1/K)

dKw(1/K)
− 1

=
b(d− 1)

d
− 1 (5.2.15)

Therefore,

∂h

∂y

∣∣∣
y= 1

K

=
−b(d− 1)

d(K − 1)
[J − I] +

(
b(d− 1)

d
− 1

)
I (5.2.16)

=
−b(d− 1)

d(K − 1)
J +

b(d− 1)K

d(K − 1)
I − I (5.2.17)

=
b(d− 1)

d(K − 1)
[KI − J ]− I (5.2.18)

Note that the eigenvalues of
∂h

∂y

∣∣∣
y= 1

K

are −1,
bK(d− 1)

d(K − 1)
− 1 (K − 1 many). Since b < 0, all

the eigenvalues are real and negative, therefore 1
K1 is a stable equilibrium by Remark (A.2.1) in

Appendix A

Theorem 5.2.1. Suppose w is a non-increasing function, then for a weighted negatively rein-
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forced urn model with d choices
Un
n+ 1

a.s.−→ 1

K
1. (5.2.19)

Proof : We showed that the ODE associated is a cooperative system and for the cooperative
systems, the limit is always inside the set of equilibrium points (see Theorem A.4.1 and Theorem
(A.4.2) in the Appendix A ). Therefore the result holds by using Lemma 5.2.1.

To obtain the central limit theorem results, note that all the eigenvalues of Dh
(

1
K1
)

are real

and ρ = 1− bK(d− 1)

d(K − 1)
>

1

2
, since b < 0. Therefore by Theorem A.3.1 in Appendix A, we get

the following central limit theorem.

Theorem 5.2.2. Suppose w is a non-increasing differentiable function, then

√
n

(
Yn −

1

K
1

)
=⇒ N

(
0, (1− Cw,d)−1Γ

)
(5.2.20)

where Cw,d =
2b(d− 1)K

d(K − 1)
and Γ =

1

K
I − 1

K2
J.

Proof : The asymptotic normality follows by Theorem A.3.1 from Appendix A, with limiting
variance matrix

Σ =

∫ ∞
0

(
eHu

)T
ΓeHudu,

where H = Dh
(

1
K1
)

+ 1
2I and

Γ = lim
n→∞

E
[
MT
n+1Mn+1|Fn

]
. (5.2.21)

Note that

Γ = lim
n→∞

E
[
χTn+1χn+1|Fn

]
−E

[
χTn+1|Fn

]
E [χn+1|Fn] (5.2.22)

=
1

K
I − 1

K2
J. (5.2.23)

Now using (5.2.18) we get

H =
b(d− 1)

d(K − 1)
[KI − J ]− 1

2
I (5.2.24)

which is a symmetric matrix. Therefore the limiting variance covariance matrix is given by

Σ =

∫ ∞
0

(
euH

)T
ΓeuHdu

= Γ

∫ ∞
0

euHeuHdu (5.2.25)
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= Γ

∫ ∞
0

e−u(−2H)du (5.2.26)

= Γ(−2H)−1 (5.2.27)

Now let Cw,d =
2b(d− 1)K

d(K − 1)
then from equation (5.2.24) we have

2H =

(
2b(d− 1)K

d(K − 1)
− 1

)
I − 2b(d− 1)

d(K − 1)
J

= (Cw,d − 1)I −
Cw,d
K

J

(−2H)−1 = (1− Cw,d)−1

(
I −

Cw,d
K

J

)
Note that (1− Cw,d)−1 is always defined, since Cw,d < 0. Now

Σ = (1− Cw,d)−1Γ(I −
Cw,d
K

J) (5.2.28)

= (1− Cw,d)−1Γ (5.2.29)

5.3 Power of Two Choices in Weighted Negative Reinforcement

To show that the two choice paradigm holds, we first compare the model of weighted negative

reinforcement with two choice, with the weighted negative reinforcement model with just one

choice.

5.3.1 Comparison with The Weighted Negative Reinforcement with One Choice

The weighted negatively reinforced model with one choice can be defined as the random

reinforcement model with K colours, as a K dimensional Markov process (Vn)n≥0 such that, at

every time n a colour is chosen uniformly at random. Then for every i = 1, · · · ,K

Vn+1,i =


Vn,i + 1 w.p. 1

K

Vn,i w.p.1− 1
K

We can also write

Vn+1 = Vn + χ′n+1 (5.3.1)
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where

P
(
χ′n+1 = ui

)
=

1

K
, ∀i = 1, · · · ,K.

Theorem 5.3.1. Consider a random reinforcement model (Vn)n≥0, then as n→∞

Vn
n+ 1

a.s.−→ 1

K
1, (5.3.2)

and
√
n

(
Vn
n+ 1

− 1

K

)
=⇒ N (0,Γ) . (5.3.3)

Proof : Note that (χ′n)n≥1 are independent and identically distributed sequence of random
variables. In fact for every i = 1, · · · ,K, (χ′n,i)n≥1 are identically distributedBer

(
1
K

)
variables

and

Vn,i = V0,i +

n∑
m=1

χ′m,i

and therefore by SLLN
1

n

n∑
m=1

χ′m →
1

K
1 a.s.

which implies
Vn
n+ 1

→ 1

K
1 a.s. (5.3.4)

Now since V ar(χ′n,i) =
1

K
− 1

K2
and Cov(χ′n,i, χ

′
n,j) =

−1

K2
. Therefore by Lindeberg-Levy

central limit theorem we get

√
n

(
Vn
n+ 1

− 1

K
1

)
→ N(0,Γ) (5.3.5)

where Γ =
1

K
I − 1

K2
J .

The following theorem gives a comparison between the model with two choices and random

reinforcement model using the limiting variance-covariance matrices obtained in corresponding

central limit theorems, Theorem 5.2.2 and Theorem 5.3.1.

Proposition 5.3.1. Let Σ be the limiting variance matrix for the process (Un)n≥0 with two
choices, and Γ be the limiting variance matrix for the process (Vn)n≥0, then Σ < Γ in the sense
that (Σ− Γ) is a negative semi-definite matrix.
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Proof : From Theorem 5.2.2 we have

Σ = (1− Cw,2)−1Γ =

(
1− bK

K − 1

)−1

Γ

and since b < 0,
(

1− bK

K − 1

)−1

< 1, as w is a non-increasing weight function. Thus Σ− Γ

is a negative semi-definite matrix, as Γ is a non negative semi-definite matrix.

5.3.2 Comparison with The Weighted Negative Reinforcement with d ≥ 3

Choices

We again compare the two models, by comparing their limiting variance covariance matrices.

Suppose Σd is the limiting variance matrix for the urn process Un with d choices then for d ≥ 3,

Σd < Σ2, but note that the constant Cw,d in the definition of Σd changes only by a constant

factor when compared to Cw,2.

Thus we can conclude that making two choices for weighted negative reinforcement is an optimal

number of choice.
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Appendix A

Review of Stochastic Approximation

A.1 Introduction

In this chapter we review some of the principle ideas of the stochastic approximations. A stochas-

tic approximation algorithm as given in equation (3.2.1) generates a discrete time stochastic

processes (Yn)n≥0 given by

Yn+1 = Yn + γn [h (Yn) +Mn+1] , n ≥ 0. (A.1.1)

The theory of stochastic approximation started from the works of Robbins and Monro [69]

and Kiefer and Wolfowitz [50] and has been extensively used in problems of signal processing,

adaptive control [60] communication networks and artificial intelligence. Using the method of

stochastic approximation one can track the long term behavior of such system, which are not

deterministic and involve random changes at every time step. To analyze the long term behavior

of (A.1.1) the main idea in stochastic approximation theory is to consider it as an approximation

to the solution of the ordinary differential equation (ODE)

ẏ(t) = h (y(t)) , t ≥ 0. (A.1.2)

This approach can be considered if the step sizes γn are small and the noise part vanishes out.

The almost sure dynamics of stochastic approximation with decreasing step sizes was studied by

Benaı̈m [20]. To formalize the relation between the two, we will make the following assumptions:

87
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(A1) The map h : Rd → Rd is Lipschitz.

(A2) Step sizes (γn)n≥1 is a sequence of non-random positive real numbers satisfying

∞∑
n=1

γn =∞, and
∞∑
n=1

γ2
n <∞.

(A3) (Mn)n≥1 is a square integrable martingale difference sequence with respect to the natural

filtration Fn = σ (Ym,Mm, m ≤ n), so that

sup
n≥0

E
[
‖Mn+1‖2

]
<∞ a.s.

(A4) The iterates of (A.1.1) remain bounded almost surely, that is

sup
n
‖Yn‖ <∞. (A.1.3)

Assumption (A1) ensures that the ODE (A.1.2) has a unique solution for any initial vector

Y0. Let Φt(y0) be the unique solution of the ODE given in (A.1.2) when y0 = y0. The set(
Φt : Rd → Rd

)
t≥0

is called the flow of the system which satisfies the following conditions

1. Φ0 = Identity

2. Φt+s = Φt ◦ Φs for every t, s ≥ 0.

The relation of the flow to the ordinary differential equations is that the unique solution of the

ODE when Y (0) = y defines a unique flow Φt(y)t≥0, that is it satisfies

dΦt(y)

dt
= h (Φt(y)) . (A.1.4)

Definition A.1.1. Let Φt be a flow, then for a continuous function Y : R+ → Rd,

dΦ,t,T (Y ) := sup
0≤s≤T

d (Y (t+ s),Φs(Y (t)) )

for some T > 0, denotes the divergence over the time interval [t, t+ T ] between Y and the flow
Φ started at Y (t). The function Y is called an asymptotic pseudotrajectory for Φ if

lim
t→∞

dΦ,t,T (Y ) = 0 (A.1.5)
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The next theorem by Benaı̈m [20] gives the relationship between the mean limit ODE and

the discrete process Yn. For this purpose, define a continuous time version of the discrete process

Yn as its linear interpolation, given by

Y (tn) = Yn, Y (t) =
(tn+1 − t)

γn
Y (tn) +

(t− tn)

γn
Y (tn+1) for t ∈ (tn, tn+1) (A.1.6)

where tn =
∑n−1

i=0 γi. The graph below gives the linear interpolation of a simulated process for

10 time points.

The next result shows that the stochastic approximations are asymptotic pseudotrajectories.

Theorem A.1.1 (Proposition 4.1 of Benaı̈m [20] ). The interpolated process (Y (t))t≥0 is almost
surely an asymptotic pseudotrajectory of the flow Φ induced by the ODE A.1.2, that is

lim
t→∞

sup
0≤s≤T

d (Y (t+ s) ,Φs(Y (t)) ) = 0. (A.1.7)

Theorem A.1.2 (Proposition 3.2 of Benaı̈m [20] ). Let Y : R+ → Rd be a continuous function
whose image has compact closure in Rd.

(1) Y is asymptotic pseudotrajectory of Φ

(2) Y is uniformly continuous and every limit point of (Y (t+ s) : s ≥ 0) is a fixed point of Φ

(3) The sequence (Y (t+ s) : s ≥ 0)t≥0 is relatively compact in C(R+,Rd).

Then (1) and (2) are equivalent and imply (3).



90 Appendix A: Review of Stochastic Approximation

Proof : Let K be the compact closure of Y (t). Suppose (1) holds, then by continuity of Φ and
compactness of K, for an ε > 0 there exists a > 0 such that

d (Φ(y), y) <
ε

2
for |s| ≤ a

uniformly in x ∈ K. Therefore

d (Φs(Y (t)), Y (t)) <
ε

2
∀t ≥ 0, |s| ≤ a.

Since Y is an asymptotic pseudotrajectory of Φ, there exists t0 > 0 such that

d (Φs(Y (t)), Y (t+ s)) <
ε

2
∀t ≥ t0, |s| ≤ a

Thus
d (Y (t+ s), Y (t)) < ε ∀t ≥ t0, |s| ≤ a

This proves the uniform continuity of Y , where as Lemma 3.1 of Benaı̈m [20] implies that any
limit point of (Y (t+ s))s≥0 is a fixed point of Φ. This completes the proof.
Now suppose that (2) holds. Since (Y (t)) is relatively compact and Y is uniformly continuous,
(Y (t+ s))s≥0 is equicontinuous and for each s ≥ 0, (Y (t+ s))t≥0. is relatively compact in M .
Hence by Arzela-Ascoli Theorem (Y (t+ s))s≥0 is relatively compact. Thus (2) implies (3).
Now, if {Y (t+ s)}s≥0 is relatively compact, then by (2) we get

lim
t→∞

d(Y (t+ s),Φs(Y (t)))→ 0

which implies (1). Therefore (2) also implies (1) and this completes the proof.

Proof of Theorem A.1.1 : Let Y , and Y denote the linear and piecewise constant interpolation of
Yn, defined as

Y (tn) = Yn, Y (t) =
(tn+1 − t)

γn
Y (tn) +

(t− tn)

γn
Y (tn+1); for t ∈ (tn, tn+1)

and
Y (t) = Yn; for t ∈ [tn, tn+1)

where tn =
∑n−1

i=0 γi. Similarly define linear interpolation of Mn as

M(tn) =
n−1∑
i=0

γiMi

M(t) =
(tn+1 − t)

γn
M(tn) +

(t− tn)

γn
M(tn+1) for t ∈ (tn, tn+1).
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and piecewise interpolation as

M(t) = Mn for t ∈ [tn, tn+1)

Then Y (t) satisfies

Y (t)− Y (0) =

∫ t

0
h(Y (u)) +M(u)du (A.1.8)

Now by continuity of h and assumption (A4) there exists C > 0 such that ‖h(Y (t))‖ ≤ C for
all t ≥ 0. Therefore, for all T > 0 we get

lim sup
t→∞

sup
0≤δ≤T

‖Y (t+ δ)− Y (t)‖ ≤ CT + lim sup
t→∞

sup
0≤δ≤T

‖
∫ t+δ

t
M(u)du.‖ (A.1.9)

Under assumption (A2) and (A3), by Proposition 4.2 of Benaı̈m [20], we get

lim
t→∞

sup
0≤δ≤T

‖
∫ t+δ

t
M(u)du‖ = 0. (A.1.10)

Thus we get
lim sup
t→∞

sup
0≤δ≤T

‖Y (t+ δ)− Y (t)‖ ≤ CT. (A.1.11)

Hence Y (t) is uniformly continuous. Define the translation flow Θt for t ≥ 0 by

Θt(Y )(s) = Y (t+ s) for s ≥ 0.

Now observe,

Θt(Y )(s) = Y (t) +

∫ t+s

t
h(Y (u)) +M(u)du

= Y (t) +

∫ t+s

t
h(Y (u))du+

∫ t+s

t
h(Y (u))− h(Y (u))du+

∫ t+s

t
M(u)du

= Lh(Θt(Y )) +At +Bt

where
Lh(Y )(s) = Y (0) +

∫ s

0
h(Y (u))du

At =

∫ t+s

t
h
(
Y (u)

)
− h (Y (u)) du and Bt =

∫ t+s

t
M(u)du.

By equation (A.1.10) we get
lim
t→∞

Bt → 0 a.s.
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For any T > 0 and t ∈ [tn, tn+1) for u ∈ [t, t+ T ] then (A.1.9) implies that

‖Y (u)− Y (u)‖ = ‖
∫ u

tn

h(Y (u)) +M(u)du ‖

≤ Cγn + ‖
∫ u

tn

M(u)du‖

and now by assumptions (A3) and (A4),

sup
t≤u≤t+T

‖Y (u)− Y (u)‖ → 0

Let Y ∗ be a limit point of
(
Θt(Y )(s)

)
s≥0

then

Y ∗ = Y (0) + Lh(Y ∗)

Since Φ is the flow it satisfies

Φ(s) = Φ(0) +

∫ s

0
h(Φ(u))du

Thus by uniqueness of integral curves we get

Y ∗ = Φ(Y ∗)

Now by Theorem A.1.2 it follows that (Y (t))t≥0 is an asymptotic pseudotrajectory of Φ.

A.2 Convergence of Stochastic Approximation Process

For the limit set of the asymptotic pseudotrajectory Y (t), let M be a subset of Rd. Then M is

invariant for the flow Φt if

Φt(M) = M.

A compact invariant set M is said to be internally chain transitive, if for any x, y ∈ Rd and

ε > 0, T > 0, there exists n ≥ 1 and points Y0 = x, Y1, · · · , Yn = y in M, such that the solution

of the ODE initiated at Yi, that is Φt(Yi) meets with the ε- neighbourhood of Yi+1 after time

T . For a function Y (t) : R+ → R define a limit set L(Y (t)) be the set of limit points, that is

p ∈ L(Y (t)) if there exists a subsequence (Y (tk))k≥1 such that limk→∞ Y (tk)→ p, that is

L (Y (t)) = ∩t≥0Y [t,∞)
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Theorem A.2.1 (Theorem 5.7 of Benaı̈m [20] ). The limit set L(Y (t)) of Y (t) is almost surely
an internally chain transitive set for the flow of the mean limit ODE A.1.2.

A point y∗ is called an equilibrium point if Φt(y
∗) = y∗ for all t, and when Φ is the flow

induced by h, the equilibrium coincide with the zeros of h. If the system A.1.2 possesses an

equilibrium point y∗, that is h(y∗) = 0, then Y (t) = y∗ for all t, is a solution. These are the

simplest kind of solution.

Corollary A.2.1. If the only internally chain transitive invariant set are isolated equilibrium
points of h then Yn converges a.s. to the set of equilibrium points of h.

A set A ⊂M is called an attractor if

1. A is non-empty compact and invariant, and

2. there exists an open neighborhood O of A with the following property:

d(Φ(x, t), A)→ 0 as t→∞ uniformly in x ∈ O.

The invariant property of set A implies that every trajectory initiated in A remains in A, and

the second property here implies that every trajectory initiated in O converges to A. Such a set

uniformly attracts a neighborhood of itself. Indeed, if the dynamics starts inside of the attractor,

it will stay there. The basin of A is a positively invariant set containing all points x such that

d(Φ(x, t), A)→ 0 as t→∞.

A global attractor is an attractor whose basin is the whole space. An equilibrium point which

is an attractor is called asymptotically stable. More precise definition is given below.

Definition A.2.1. The equilibrium point y∗ is said to stable if given ε > 0 there is a δ > 0 such
that ‖Φ(t, y) − y∗‖ < ε for all t > 0 and for all y such that ‖y − y∗‖ < δ. If δ is chosen so
that y∗ is not only stable but also Φ(t, y)→ y∗ as t→∞, then y∗ is said to be asymptotically
stable. If y∗ is not stable then it is said to be unstable.

Theorem A.2.2 (Theorem 6.10 of Benaı̈m [20] ). Let A be an attractor with basin W and
B ⊂W be a compact subset. If Y (tk) ∈ B for some sequence tk →∞, then

L(Y ) = ∩t≥0Y ([t,∞) ⊂ A.
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Since Rd is locally compact (by Heine Borel Theorem), from Theorem 7.3 in [20], we have

the following theorem:

Theorem A.2.3 (Convergence with positive probability toward an attractor). Let A ⊂ Rd be an
attractor for Φ with basin of attraction B(A), such that there exists a point p ∈ B(A) such that
for every t > 0 and every open neighborhood U of p

P (∃s ≥ t : Y (s) ∈ U) > 0

then
P (L(Y ) ⊂ A) > 0

Now we consider a special form of recursion, which is useful in the context of urn models.

Suppose the recursion can be written as

Yn+1 = Yn + γn[F (Yn)− Yn] + γnMn+1 (A.2.1)

that is h(y) = F (y) − y, for a continuous function F . Let E = {p : F (p) = p} be the set of

fixed points of F or the set of equilibrium points, then for K = 2 we have

Theorem A.2.4 ([66] Corollary 2.7). If F is a continuous function then

P
(

lim
n→∞

Yn ∈ E
)

= 1 (A.2.2)

The above Theorem only says that for a 2-dimensional stochastic approximation the possible

limit points are inside the set of fixed points. In 1980 Hill, Lane and Sudderth [46] first considered

the two colour case, that is K = 2, and showed that not all fixed point of F can be the limit point

of Yn satisfying equation (A.1.1). Later in 1986 Arthur, Ermoliev and Kaniovski [6] generalized

the results to higher dimensional situations by classifying fixed points into stable and unstable

points.

Theorem A.2.5 ([6]). If p is a stable fixed point of F then

P (Yn → p) > 0 (A.2.3)

if p is an unstable fixed point of F and is not a vertex of a d-simplex then

P (Yn → p) = 0. (A.2.4)
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The next theorem states that if there is a unique equilibrium point and the function F is a

contraction then the random process Yn converges to the equilibrium point almost surely.

Theorem A.2.6 ([23] Section 10.3 Theorem 2.). Suppose F is a contraction function that is

‖F (x)− F (y)‖ < ‖x− y‖ (A.2.5)

and if y∗ is its unique fixed point then, V (y, t) = ‖y(t)−y∗‖ (with the same norm as in equation
(A.2.5)) is a strictly decreasing function for any non-constant solution y(t) of the ODE given in
equation (A.1.2). Moreover y∗ is the unique globally asymptotically stable equilibrium point.

In the next two sections we look at the linear ODE and linearization of the nonlinear ODE

respectively.

A.2.1 Linear Differential Equation

Let A be a d× d matrix and

ẏ = Ay (A.2.6)

be a linear differential equation in Rd. The solution of (A.2.6) can be written as eAtY (0),

where eAt is given by

eAt = I +A
t

1!
+A2 t

2

2!
+ · · ·

The components Φi(t) of the solution of the linear ODE (A.2.6) are linear combinations of the

following functions

1. eλt whenever λ is a real eigenvalue of A;

2. eat cos bt and eat sin bt, that is real and imaginary part of eµt, whenever µ = a+ ib is a

complex eigenvalue of A,

3. tjeλt, or tjeat cos bt and tjeat sin bt for 0 ≤ j < m, if the eigenvalue λ or µ with

multiplicity m

where the coefficients are the corresponding eigenvectors. The oscillatory part introduced by

the complex eigenvalue µ can be neglected if and only if a < 0. An equilibrium point is called

hyperbolic if no eigenvalue of A has real part 0.
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Remark A.2.1. The sufficient condition for an equilibrium of a linear ODE to be asymptotically
stable is that the real part of all the eigenvalues of matrix A are negative. Since then the
exponential part of the solution converges to 0 as t→∞.

For the non-convergence phenomenon of the stochastic approximation the results are avail-

able for linearly unstable points, which requires one of the eigenvalue of the Jacobian matrix of

h has positive real part.

Theorem A.2.7. Let Yn be a stochastic approximation process and let p be a linearly unstable
equilibrium for the flow induced by the ODE (A.1.2) then

P
(

lim
n→∞

d(Yn, p) = 0
)

= 0 (A.2.7)

A.3 Central Limit Theorems

We now state the central limit theorem results known in stochastic approximation theory, assum-

ing that the process (Yn)n≥1 converges almost surely to y∗. The eigenvalues of the Jacobian

matrix of h at the convergence point y∗ determine the scaling order for the CLT results. Let

Dh(y∗) be the Jacobian matrix of h at y = y∗ and λ1, · · · , λs be s distinct the eigenvalues of

Dh(y∗). Suppose the Jordan canonical decomposition of Dh(y∗) is given by

T−1Dh(y∗)T = diag(J1, J2, · · · , Js)

for a d× d invertible matrix T such that each Ji is of the form

Ji =



λi 1 0 . . . 0

0 λi 1 . . . 0

... 0 λi
. . .

...

0
...

...
. . . 1

0 0 0 . . . λi


.

Define ρ := −max1≤i≤s{0,<(λi)} and ν = max1≤i≤s{νi : <(λi) = −ρ}, where νi :=

dim(Ji).

Theorem A.3.1 ([20, 82]). Suppose y∗ is a stable equilibrium point of h, such that Yn → y∗ a.s.
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and
E
[
MT
n+1Mn+1

∣∣∣Fn]→ Γ a.s. or in L1

where Γ is deterministic symmetric positive semidefinite matrix, and the Lindeberg condition is
satisfied, that is for every ε > 0

1

n

n∑
m=1

E
[
‖Mm‖2I{‖Mm‖ ≥ ε

√
n}
∣∣∣Fm−1

]
→ 0 a.s..

Then

1. If ρ > 1
2 , and

h(y) = h(y∗) + (y − y∗)Dh(y∗) + o(‖y − y∗‖)

as y → y∗, then
√
n (Yn − y∗) ⇒ N (0,Σ)

where
Σ =

∫ ∞
0

(
e(Dh(y∗)+ 1

2
I)u
)T

Γe(Dh(y∗)+ 1
2
I)udu (A.3.1)

2. If ρ = 1
2 and for some δ > 0

h(y) = h(y∗) + (y − y∗)Dh(y∗) + o(‖y − y∗‖1+δ)

as y → y∗, then √
n

log nν−
1
2

(Yn − y∗) =⇒ N
(

0, Σ̃
)
.

where

Σ̃ = lim
n→∞

1

(log n)2ν−1

∫ logn

0

(
e(Dh(y∗)+ 1

2
I)u
)T

Γe(Dh(y∗)+ 1
2
I)udu

3. For 0 < ρ < 1
2 , if

h(y) = h(y∗) + (y − y∗)Dh(y∗) + o(‖y − y∗‖1+δ) as y → y∗

for some δ > 0 and

E
[
(Mm)TMm

∣∣∣Fm−1

]
= O(n) a.s. or in L1.

Then there are complex random variables ξ1, · · · , ξs such that

nρ (Yn − y∗)−Xn
a.s.−→ 0
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where Xn is random vector defined as

Xn =
∑

i:<(λi)=ρ,νi=ν

n−iIm(λi)ξivi

=
∑

i:<(λi)=ρ,νi=ν

e−iIm(λi) lognξivi

where vi is the right eigenvector of Dh(y∗) with respect to the eigenvalue λi.

A.4 Monotone Dynamical Systems

The system of ordinary differential equation (A.1.2) models a competing system if

∂hi
∂yj
≤ 0, for i 6= j (A.4.1)

and it models a cooperative sysmtem if

∂hi
∂yj
≥ 0, for i 6= j

and it is called monotone if it is either competing or cooperative system. For example, Kol-

mogorov model of d cooperating species is given by

ẏi = yiFi(y) for i = 1, 2, · · · , d. (A.4.2)

where each yi ≥ 0 and

∂Fi
∂yj
≥ 0, for i 6= j.

As shown by Hirsh and Smith [47], the long term behavior of the monotone dynamical systems

is severely limited, in particular, it is shown that if the flow of the ODEs are bounded then the

flow induced by every initial state converges to an equilibrium. In particular, in case of a unique

equilibrium the process converges to the equilibrium almost surely. To formalize these results

we need the following definitions:

Definition A.4.1 (Ordered space). A metric space X is called an ordered space if it is endowed
with a metric d and an order relation R ⊂ X ×X , such that (x, y) ∈ R if and only if x ≤ y
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where ≤ is partial order.

Definition A.4.2 (Monotone semiflow). A map f : X1 → X2 between ordered spaces is
monotone if

x ≤ y =⇒ f(x) ≤ f(y)

strictly monotone if
x < y =⇒ f(x) < f(y)

Suppose the solution of the ODE is defined, then let Φ = {Φt : R+ → Rn} denote the

resulting semiflow such that the solution with initial value y is given by y(t) = Φt(y). Further if

the dynamical system is cooperative then Φt preserves the order, that is for t ≥ 0

x ≤ y =⇒ Φt(x) ≤ Φt(y)

In other words Φt is monotone.

A.4.1 Basic Results

Theorem A.4.1 (Hirsch and Smith [47]: Convergence Criterion ). Suppose the flow Φ is mono-
tone and if the set {T > 0 : ΦT (x) ≥ x} is open and nonempty. then the trajectory initiated at a
point x converges to an equilibrium.

The condition mentioned in the above theorem is not very easy to verify since the flow is not

always available for a ODE with arbitrary function h. The next theorem states the convergence

of the empirical measure. The empirical occupation measure of the process Yn is the random

measure defined by

τn(A) =
1

n+ 1

n∑
i=0

1A(Yi)

for every Borel set A ⊂ Rd

Theorem A.4.2 (Pemantle Theorem 4.3). If h is cooperative and the Jacobian of h is irreducible
then as the step size γn → 0, the support of the empirical measure of the stochastic approximation
process converge in probability to the set of equilibria.

If in addition either h is real analytic or has only finitely many stable equilibria, then the
support of the empirical distribution converges to an asymptotically stable equilibrium.
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