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Two Counting Problems

Definition 1 (Independent Set) Suppose G := (V, E)
be a finite graph. We will say a subset I C V s an
independent set of G, if for any two vertices u,v € I
there is no edge between u and v.

We will denote by I, the set of all independent sets of
G.

Problem 1 : Given a finite graph G find out the cardi-
nality of the set Z4. In other words, count the number
of independent sets of (.

Definition 2 (Proper ¢g-Coloring) Fix ¢ > 2 an inte-
ger, and suppose G := (V, E) be a finite graph. A map
C : V. — |[q] is called a proper g-coloring of G if for
each k € [q] the subset of vertices with color k, namely
C~1 ({k}), is an an independent set of G (in other words,
no two vertices of same color share an edge).

We will denote by Cq (q), the set of all proper q-colorings
of GG.

Problem 2 : Given a graph G, and ¢ > 2 an integer,
find out the cardinality of the set Cs (q). In other words,
count the number of proper q-colorings of G.



Exact/Approximate Counting

: Can we do exact counting 7

: » Perhaps not !

» T he sets are typically exponentially large.
» No polynomial time algorithm, [Valiant 1979].

: So what do we do ?

: We can try “approximate” counting.

: » How do we approximate 7

» What kind of approximation 7

: » Typical approach : Markov chain Monte Carlo

techniques.
» One need to prove rapid mixing for the chain.



Some Known Results

Some notable breakthroughs and success stories for the
Markov chain based approximation schemes :

e Computing the permanent :

» Jerrum and Sinclair (1989, 1997).
» Jerrum, Sinclair and Vigoda (2004).

e Computing the volume of a convex body :
» Dyer, Frieze and Kannan (1991).
» Kannan, Lovasz and Simonovits (1997).

» Lovasz and Vempala (2003).

e Counting independent set :
» Luby and Vigoda (1997).

Remark : Such MCMC techniques typically provide a
randomized e-approximation to the counting problem,
which runs in time which is a polynomial in the size of
the problem (e.g. the size of V), and also in the error

E.



What Do We Propose to Do ?

o We will give deterministic approximation schemes,
which will use no sampling.

e But we will provide e-approximation to log|Zg| and

log |Ce (q¢) |- (Unfortunately, this is obviously less
efficient !)

e Moreover, we will need restrictions on our graphs !
For example, we will need low degree graphs, and
a ‘“large girth" assumption (will be more specific
later).

Get lost !l : Then we obviously are not doing a good
job ! In fact, we are doing worse than what is already
known !

Then why am I here ?

e Well well ... Alden Biesen is a nice place, and AofA
is a great conference :-)

e But there are few other reasons as well ... :-)



Motivation and Achievements

e Our motivation comes from statistical physics.

e Computation of log |Zg| or 10g|Cs (q) | are interest-
ing, because they correspond to the free energy for
certain models in statistical physics (details will be
given).

e We can achieve (nice) explicit results for regular
graphs ! To give some example :

» We can show that for every 4-regular graph of
n vertices and large girth, the number of inde-
pendent sets is approximately (1.494...)".

» We can also show that if ¢ > r41 then for every
r-regular graph with large girth, the number of
proper g-coloring is approximately

(=97

e \We can drop the “large girth’” assumption and work
with random regular graphs to get concentration
results.



Two Statistical Physics Models

Hard-Core Model : Given a finite graph G and a real
number A > 0, consider a (discrete) probability distribu-
tion on Z4 given by

P(I) «< N TeZs.

Thus
P(I ’ I €T
— o T U S ’
(1) ZO.0) G
where
Z(\G) =) Al
(=
Remarks :

e PP is called the Gibbs distribution on Zg.
e Z (A G) is called the partition function.
e )\ is called the activity parameter.

e Observe Z(A\,G) = |Zg| when A = 1, then we are
back to the original counting problem.



Counting Proper ¢g-Colorings : Given g > 2 an integer,
and a finite graph G, let Ay > 0, for 1 < k < ¢q. Consider
a (discrete) probability distribution on Cq (q) given by

PO [ N cece(a .

1<k<q
Thus
1<1—k[< )\IkCl({k})l
P(C) = =2 , CecC :
O == 606 ¢ ()
where
Z(\q,G) = Z H )\Lccl({k})l_
CECG(Q) 1<k<q
Remarks :

e [P is called the Gibbs distribution on Cg (q).

e Z ()N q,G) is called the partition function.

e )\.'S are called the activity parameters.

e Observe Z (A, q,G) = |Ca(q)| when A\, = 1, for all

1 < k < gq, then we are back to the original counting
problem.

Let Z (q,G) := |Cc (q) |-



Some Families of Graphs

e [Large girth] : An infinite family of graphs g|g IS
defined to have large girth, if there exists an in-
creasing function f: N — N with lims5e f(s) = oo,
such that for every G € g|g with n vertices, we have

girth (G) > f(n).

e [Low degree] : Let G(n,r,g) be the family of
graphs on n vertices, such that the maximum de-
gree of any vertex is bounded by r and each graph
has girth at least g.

e [Regular] : Let G (n,7,g) be the family of r-
regular graphs on n vertices, such that each graph
has girth at least g.



Main Results for the Two Counting
Problems

Theorem 1 (Independent Sets) For every family of
graphs G with maximum degree at most 4 and large
girth, there is an algorithm A, such that for any € > 0O
and G € G4, A produces a quantity Z in time polynomial

in n := |V|, such that

Theorem 2 (Colorings) Fix q > r + 1 be two integers
then

rg, (’Uk)
| 1 k—1
lim  sup o9 |CG (9) | E log [ (1 — —) ] = 0.

970 GeG(n,r,9) 1<k<n 9

where V := {v1,v2,...,v,} and Gy := G\ {v1,v2,..., v},
and by rq(v) we mean the degree of vertex v in graph
G.

In particular, we can get an algorithm result for counting
the number of proper gq-colorings, which is similar to the
previous theorem.



Main Results for Regular Graphs

Theorem 3 (Independent Sets) Suppose A < A.(r)
where \(r) = (r — 1)"1/(r — 2)". Then the partition
function Z(\,G) corresponding to independent sets sat-
isfies

log Z(\, G .
lim  sup 09 Z(\ G) — log (x‘E (2 — :13)_7>‘ =0,

g_>oo Gegreg(n7r)g) n

where x is the unique positive solution of
c=1/(14+ X" 1).

In particular, if r = 2,3,4,5 and A\ = 1, then the corre-

sponding limits for '°“9cl are respectively, log1.618. ..,
l0og1.545...,109g1.494 ... and 10g1.453....

Theorem 4 (Colorings) For every g > r—+1, the num-
ber of g-colorings of graphs G € Greg(n,r, g) satisfies

092(6, &) _ | [q (1 B 1)1
n q

lim sup
97790 GEG,u(n,1,9)

=0.
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Results for Random Regular Graphs

Theorem 5 (Independent Sets) For every r > 2 and
every A < (r —1)""Y/(r — 2)", the (random) partition
function Z(\,G-(n)) of a random r-regular graph G,.(n)
corresponding to the Gibbs distribution on independent
sets satisfies

log Z(X, Gr(n))

with high probability (w.h.p.), as n — oo, where z is the
unique positive solution of x = 1/(1 4+ Az"1).

— log [az_g (2 — a:)_%] :

Theorem 6 (Colorings) Foreveryr >2andq>r—+1,
the (random) partition function Z(q,G.(n)) of a random
r-regular graph G,(n) corresponding to the uniform dis-
tribution on proper g-colorings satisfies

00 20, Grm) [q (1- 1)1 |
q

n

w.h.p. as n — oo.

Remark : Theorem 6 was proved earlier by Achlioptas
and Moore (2004) using second moment method.
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Our Main Approach (Four Steps)
(Illustrated only for the Independent Sets)

STEP - 1 (The Cavity Equation) :

e In this step we relate the computation of the par-
tition function to the computation of the marginal
probabilities.

e This is done by creating a cavity in the original
graph.

Proposition 7 Let V := {v1,v2,...,vp}, and for1 <k <
(n — 1) we define Gy := G \ {v1,v2,...,v} as the graph
obtained from G after creating k cavities. Put Go = G.
Then the following relation holds

Z()‘a Gl) _
Z (XN Go)

where 1 is a random independent set distributed accord-
ing the Gibbs measure P. As a result we get

Pg, (v1 € 1) ,

ZAG) = ]] @B, (s gT) ™.

k=1

Remark : This proposition is well known in Physics
literature and also in the Markov chain based approxi-
mation algorithms for counting.
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STEP - 2 (Computation on Trees) :

e Note our large girth assumption makes our graphs
“locally” tree like !

e SO in this step we only make computation for the
marginal probabilities when the graph is a finite
tree.

e T his can be done easily by a recursive method.

Proposition 8 Suppose T be a finite rooted tree with
root vg, and let {vi,va,...,vx} be k > 0 children of vg.
For each 1 < j <k, let T'(v;) denote the tree rooted at
v; consists of only the descendants of v; (if any). Then
the following recursion holds

1
L4+ X [] Prgy(uigI)

1<j<k

Pr (vo ¢ 1) =
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STEP - 3 (Strong Correlation Decay) :
e This is the crucial step !

e In this step we prove that under certain assump-
tions, e.g., A < (r—1)""1/(r — 2)" (for the r-regular
case), or r < 4 (for the counting problem algo-
rithm), etc, the influence of the boundary at the
root decreases exponentially fast.

e A statistical physics consequence of this is the Gibbs
measure on the limiting infinite graph is unique (Do-
brushin’s uniqueness criterion).

e For r-regular trees this was shown by Kelly (1985).

e \We further extends this result to the class of finite
trees with maximum degree at most 4, which is the
most crucial result for our algorithm to succeed.

Remark : The correlation decay for the counting of
proper g-colorings was proved by Jonasson (2002) for
finite depth r-regular tree, but his result extends to any
finite tree with bounded degree, which we use for the
coloring case.
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STEP - 4 (From Tree to the Original Graph) :

e In this step we show that the error we make in the
approximation by taking a local tree around a vertex
is small.

Note : The local tree comes from the large girth
assumption.

e This is again done by using the strong correlation
decay property and the (spacial) Markovian nature
of the Gibbs distribution.
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Special Cavity Trick for Regular Graphs

e For regular graphs creating a cavity destroy the
regularity !

e Instead we do the following which we call the rewiring.
Similar idea has been used in Physics literature [Mezard
and Parisi, 2005].

Lemma 9 Given an r-regular graph G, and X > 0, the
graph G° obtained from G by rewiring on nodes vi,vs €
(G, the following relation holds

Z(\ G?)

ore) = o102 & DPG\,0) (Mgir () € TV v2; £ 1)
where vij,j = 1,...,r is the set of neighbors of v;,i = 1,2
in G.
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Few Final Remarks

e Recent work of Weitz (2006) provides a fully poly-
nomial approximation scheme for any finite graph
with low degree for the problem of counting the
independent sets. The novel approach was to as-
sociate with any graph G, a tree which is obtained
from all the self avoiding walks on G. And to prove
the (strong) correlation decay for any general tree.

e Recent work of Gamarnik and Katz (2006) (per-
sonal communication) extends the work of Weitz
(2006) in case of counting colorings, and match-
ings for general graphs.

e It seems to me that each of this is a *'success story”
for making a rigorous argument for a very power-
ful method of statistical physics, called the cavity
method ! But the full math picture is yet to be
discovered.
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