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Two Counting Problems

Definition 1 (Independent Set) Suppose G := (V, E) be a finite graph. We
will say a subset I C V is an independent set of GG, if for any two vertices
u,v € I there is no edge between u and v.

We will denote by 1, the set of all independent sets of G.

Problem 1: Given a finite graph G, count the number of independent sets
of G.

Definition 2 (Proper ¢g-Coloring) Fix g > 2 an integer, and suppose G :=
(V,E) be a finite graph. A map C : V — {1,2,...,q} is called a proper
qg-coloring of G, if no two vertices of same color share an edge.

We will denote by Cq (q), the set of all proper q-colorings of G.

Problem 2: Given a finite graph G, and ¢ > 2 an integer, count the number
of proper g-colorings of G.



>

Exact/Approximate Counting

: Can we do exact counting 7

: » Perhaps not !

» T he sets are typically exponentially large.
» No polynomial time algorithm [Valiant 1979].

: So what do we do 7

: We can try “approximate” counting.

: » How do we approximate 7

» What kind of approximation 7

: » Typical approach is to use a Markov chain Monte Carlo (MCMCQC)

sampling scheme.
» One need to prove rapid mixing for the chain.



What Do We Propose to Do ?

e We will give deterministic approximation schemes, which will not use
sampling.

e But we will provide e-approximation to log|Zg| and log |Cq (q) |- (Unfor-
tunately, this is obviously less efficient !)

e Moreover, we will need restrictions on our graphs ! For example, we will
need low degree graphs, and a ‘“large girth” assumption (will be more
specific later).



Get Lost !

We are obviously doing less than what is known !



Then why am I giving this talk 7

e Well well ... I like this work ! @

e But there are more reasons than just that ! @



Motivation and Achievements

e Our motivation comes from statistical physics.

e Computation of log|Zg| or 10g|Cs (q) | are interesting, because they cor-
respond to the free energy for certain models in statistical physics (the
models will be given later).

e We can achieve (new) explicit results for regular graphs, which are not
possible to derive using the MCMC methods. To give some example:

» \We can show that for every 4-regular graph of n vertices and large
girth, the number of independent sets is approximately (1.494...)".

» We can also show that if ¢ > r+ 1 then for every r-regular graph with
large girth, the number of proper g-coloring is approximately

L2

e \We can drop the “large girth” assumption and work with random regular
graphs to get concentration results.



A Statistical Physics Models

Hard-Core Model: Given a finite graph G and a real number A > 0, consider
a (discrete) probability distribution on Zs given by
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Remarks:

e [P is called the Gibbs distribution on Zg.
e Z (A G) is called the partition function.
e )\ is called the activity parameter.

e Observe Z(\,G) = |Zg| when A = 1, then we are back to the original
counting problem.



Some Families of Graphs

e Large girth: An infinite family of graphs G is defined to have large girth,
if there exists an increasing function f : N — N with lims_ f(s) = oo,
such that for every G € G with n vertices, we have

girth (G) > f(n).

e [Low degree]: Let G (n,r, g) be the family of graphs on n vertices, such
that the maximum degree of any vertex is bounded by r and each graph
has girth at least g.

e Regular: Let G, (n,7,g9) be the family of r-regular graphs on n vertices,
such that each graph has girth at least g.



T he Main Results

Algorithm Result:

Theorem 1 For every family of graphs G with maximum degree at most 4
and large girth, there is an algorithm A, such that for any € > 0 and G € @G,
A produces a quantity 3 in time polynomial in n := |V|, such that

log |Z¢| log |IG|

(1-e)———<3<(Q+e)——



Results for the Regular Graphs with Large Girth:

Theorem 2 Suppose A < . (r) where \.(r) ;= (r —1)""1/(r — 2)", then

log Z (A . 2
lim  sup °9Z(\, G) — log (a:_E (2 — :c)7>‘ =0,
970 GEG.ee(n,r,g) n

where x is the unique positive solution of
r=1/(1+Xx"1).

In particular, ifr = 2,3,4,5 and A = 1, then the corresponding limits for —'Oglbzd
are respectively, 1og1.618..., 10g1.545...,109g1.494 ... and log1.453....

Results for the Random Regular Graphs:

Theorem 3 For every r > 2 and every A < A:.(r), the (random) partition
function Z(\,G.(n)), of a random r-regular graph G,(n) satisfies
log Z(A, Gr(n))
n

with high probability (w.h.p.), as n — oo, where x is the unique positive
solution of x = 1/(1 4+ Az"1).

— log |27z (2 — zc)_Tz] :
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Two Main Steps of the Algorithm
(Illustrated only for the Independent Sets)

STEP 1 (The Cavity Equation):

e In this step we relate the computation of the partition function to the
computation of the marginal probabilities.

e [ his is done by creating a cavity in the original graph.

e Let G1 be the original graph G with one vertex, say vi, removed.

e By definition

Z(\ G =) A=A,

IGIGl Iel,
’Ulgl

e [ hus
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7000 =Pg(v1 ¢1) .
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STEP 2 (Computation on Trees):
e Note our large girth assumption makes our graphs *“locally” tree like !

e SO in this step we only make computation for the marginal probabilities
when the graph is a finite tree.

e [ his can be done easily by a recursive method.

Proposition 4 Suppose 1T' be a finite rooted tree with root vg, and let
{vi,v2,...,v} be k > 0 children of vo. For each 1 < j < k, let T'(vj) de-
note the tree rooted at v; consisting only the descendants of v; (if any).
Then the following recursion holds

1
1+ X [ Prey(ugD)

1<j<k

PT (Uo ¢ I) =
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The Algorithm

INPUT: A graph G with vertex set {vi,v2,...,vn}, and a number £ > 0.
BEGIN

1. Compute the girth g =g (G).

2. If (0.9)%_2 > ¢ then find |Zg| by enumeration and STOP.
If not then
3. Set Z«+ 1, t« |g/2] and k « 1.
4. Find the t-depth neighborhood T (vg) of wvy.
5. Compute the marginal probability p = Pr(,,) (vr € I) for the finite tree T (vy).
6. Set Z— Z/p, G—G\{v}, k—k+1.
7. If Kk <n then goto Step 4, otherwise STOP.

END
OUTPUT: Z
13



Why Does It Works 7

* Strong Correlation Decay:

e [ his is the crucial part !

e We prove that under certain assumptions [e.g. A < A (r) = (r—1)""1/(r—
2)" (for the r-regular case), or r < 4 (for deriving the algorithm), etc.],
the influence of the boundary at the root decreases exponentially fast.

e A statistical physics consequence of this is the Gibbs measure on the
“limiting infinite graph” (if any !) is unique, that is there is no phase
transition.

e For the infinite r-regular trees it was shown by Kelly (1985), that there
iSs no phase transition for the hard-core model if and only if A < . (7).

e For counting independent sets we extend this result to the class of finite
trees with maximum degree at most 4, which is the most crucial result
for our algorithm to succeed.
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* From the Tree to the Original Graph:

e In this step we show that the error we make by taking a local tree around
a vertex is small.

Note: The local tree comes from the large girth assumption.

e [ his is again done by using the strong correlation decay property and the
(spacial) Markovian nature of the Gibbs distribution.
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Some Final Remarks

e A recent work of Weitz (2006) provides a fully polynomial approximation
scheme for any finite graph with low degree for the problem of counting
the independent sets, but it does not give explicit limit results such as
ours for the regular graphs.

e Gamarnik and Katz (2006) (personal communication) have extended the
work of Weitz (2006) for other counting problems, e.g. counting color-
ings, and counting matchings on general finite graphs.

e It seems to me that each of this is a "'success story” for making a rigorous
argument for a very powerful method of statistical physics, called the
cavity method ! But the full math picture is yet to be discovered.
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