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Two Counting Problems

Definition 1 (Independent Set) Suppose G := (V, E)
be a finite graph. We will say a subset I ⊆ V is an
independent set of G, if for any two vertices u, v ∈ I
there is no edge between u and v.

We will denote by IG, the set of all independent sets of
G.

Problem 1 : Given a finite graph G, count the number
of independent sets of G.

Definition 2 (Proper q-Coloring) Fix q ≥ 2 an inte-
ger, and suppose G := (V, E) be a finite graph. A map
C : V → {1,2, . . . , q} is called a proper q-coloring of G, if
no two vertices of same color share an edge.

We will denote by CG (q), the set of all proper q-colorings
of G.

Problem 2 : Given a finite graph G, and q ≥ 2 an
integer, count the number of proper q-colorings of G.
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Exact/Approximate Counting

Q: Can we do exact counting ?

A: ◮ Perhaps not !
◮ The sets are typically exponentially large.
◮ No polynomial time algorithm [Valiant 1979].

Q: So what do we do ?

A: We can try “approximate” counting.

Q: ◮ How do we approximate ?
◮ What kind of approximation ?

A: ◮ Typical approach is to use a Markov chain Monte
Carlo (MCMC) sampling scheme.
◮ One need to prove rapid mixing for the chain.
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Some Success Stories for Problems

Similar to Ours

Some notable breakthroughs and success stories for the
Markov chain based approximation schemes :

• Computing the permanent :

◮ Jerrum and Sinclair (1989, 1997).

◮ Jerrum, Sinclair and Vigoda (2004).

• Computing the volume of a convex body :

◮ Dyer, Frieze and Kannan (1991).

◮ Kannan, Lovasz and Simonovits (1997).

◮ Lovasz and Vempala (2003).

• Counting independent set :

◮ Luby and Vigoda (1997).

Remark : Such MCMC techniques typically provide a
randomized ε-approximation to the counting problem,
such that the running time is a polynomial in the size of
the problem (e.g. the size of V ), and also in the error
ε.
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What Do We Propose to Do ?

• We will give deterministic approximation schemes,
which will not use sampling.

• But we will provide ε-approximation to log |IG| and
log |CG (q) |. (Unfortunately, this is obviously less
efficient !)

• Moreover, we will need restrictions on our graphs !
For example, we will need low degree graphs, and
a “large girth” assumption (will be more specific
later).
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Get Lost !!!!

We are obviously doing less than what is known !

Then why am I giving this talk ?

• Well well ... I like this work ! bb

• But there are more reasons than just that ! bb
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Motivation and Achievements

• Our motivation comes from statistical physics.

• Computation of log |IG| or log |CG (q) | are interest-
ing, because they correspond to the free energy for
certain models in statistical physics (the models will
be given later).

• We can achieve (new) explicit results for regular
graphs, which are not possible to derive using the
MCMC methods. To give some example :

◮ We can show that for every 4-regular graph of
n vertices and large girth, the number of inde-
pendent sets is approximately (1.494 . . .)n.

◮ We can also show that if q ≥ r+1 then for every
r-regular graph with large girth, the number of
proper q-coloring is approximately

[

q
(

1− 1
q

)

r
2

]n

.

• We can drop the “large girth” assumption and work
with random regular graphs to get concentration
results.
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Two Statistical Physics Models

(1) Hard-Core Model : Given a finite graph G and
a real number λ > 0, consider a (discrete) probability
distribution on IG given by

P (I) ∝ λ|I|, I ∈ IG .

Thus

P (I) =
λ|I|

Z (λ, G)
, I ∈ IG ,

where

Z (λ, G) :=
∑

I∈IG

λ|I| .

Remarks :

• P is called the Gibbs distribution on IG.

• Z (λ, G) is called the partition function.

• λ is called the activity parameter.

• Observe Z (λ, G) = |IG| when λ = 1, then we are
back to the original counting problem.
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(2) Model on Proper q-Colorings : Given q ≥ 2 an
integer, and a finite graph G, let λk > 0, for 1 ≤ k ≤ q.
Consider a (discrete) probability distribution on CG (q)
given by

P (C) ∝
∏

1≤k≤q

λ
|C−1({k})|
k , C ∈ CG (q) .

Thus

P (C) =

∏

1≤k≤q

λ
|C−1({k})|
k

Z (λ, q, G)
, C ∈ CG (q) ,

where

Z (λ, q, G) :=
∑

C∈CG(q)

∏

1≤k≤q

λ
|C−1({k})|
k .

Remarks :

• P is called the Gibbs distribution on CG (q).

• Z (λ, q, G) is called the partition function.

• λk’s are called the activity parameters.

• Observe Z (λ, q, G) = |CG (q) | when λk = 1, for all
1 ≤ k ≤ q, then we are back to the original counting
problem.

• Let Z (q, G) := |CG (q) |.
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Some Families of Graphs

• Large girth : An infinite family of graphs G is de-
fined to have large girth, if there exists an increasing
function f : N→ N with lims→∞ f(s) =∞, such that
for every G ∈ G with n vertices, we have

girth (G) ≥ f(n) .

• [Low degree] : Let G (n, r, g) be the family of
graphs on n vertices, such that the maximum de-
gree of any vertex is bounded by r and each graph
has girth at least g.

• Regular : Let Greg (n, r, g) be the family of r-regular
graphs on n vertices, such that each graph has girth
at least g.
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The Main Results

Algorithm Results :

Theorem 1 (Independent Sets) For every family of
graphs G with maximum degree at most 4 and large
girth, there is an algorithm A, such that for any ε > 0
and G ∈ G, A produces a quantity Z in time polynomial
in n := |V |, such that

(1− ε)
log |IG|

n
≤ Z ≤ (1 + ε)

log |IG|

n
.

Theorem 2 (Colorings) Fix q ≥ r + 1 be two integers
then

lim
g→∞

sup
G∈G(n,r,g)

∣

∣

∣

∣

∣

∣

log |CG (q) |

n
− 1

n

∑

1≤k≤n

log

[

q

(

1−
1

q

)rGk−1
(vk)

]

∣

∣

∣

∣

∣

∣

= 0.

where V := {v1, v2, . . . , vn} and Gk := G \ {v1, v2, . . . , vk},
and by rG(v) we mean the degree of vertex v in graph
G.

In particular, we can get an algorithm result for counting
the number of proper q-colorings, which is similar to the
previous theorem.
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Results for the Regular Graphs with Large Girth :

Theorem 3 (Independent Sets) Suppose λ < λc (r)
where λc (r) := (r − 1)r−1/(r − 2)r, then

lim
g→∞

sup
G∈Greg(n,r,g)

∣

∣

∣

∣

logZ(λ, G)

n
− log

(

x−
r

2 (2− x)−
r−2

2

)

∣

∣

∣

∣

= 0 ,

where x is the unique positive solution of

x = 1/(1 + λxr−1) .

In particular, if r = 2,3,4,5 and λ = 1, then the corre-

sponding limits for
log |IG|

n
are respectively, log 1.618 . . .,

log 1.545 . . ., log 1.494 . . . and log 1.453 . . ..

Theorem 4 (Colorings) For every q ≥ r+1, the num-
ber of q-colorings of graphs G ∈ Greg(n, r, g) satisfies

lim
g→∞

sup
G∈Greg(n,r,g)

∣

∣

∣

∣

∣

logZ(q, G)

n
− log

[

q

(

1−
1

q

)
r

2

]
∣

∣

∣

∣

∣

= 0 .
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Results for Random Regular Graphs :

Theorem 5 (Independent Sets) For every r ≥ 2 and
every λ < λc (r), the (random) partition function Z(λ, Gr(n)),
of a random r-regular graph Gr(n) satisfies

logZ(λ, Gr(n))

n
→ log

[

x−
r

2 (2− x)−
r−2

2

]

,

with high probability (w.h.p.), as n→∞, where x is the
unique positive solution of x = 1/(1 + λxr−1).

Theorem 6 (Colorings) For every r ≥ 2 and q ≥ r+1,
the (random) partition function Z(q, Gr(n)) of a random
r-regular graph Gr(n) corresponding to the uniform dis-
tribution on proper q-colorings satisfies

logZ(q, Gr(n))

n
→ log

[

q

(

1−
1

q

)
r

2

]

.

w.h.p. as n→∞.

Remark : Theorem 6 was proved earlier by Achlioptas
and Moore (2004) using second moment method.
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Two Main Steps of the Algorithm

(Illustrated only for the Independent Sets)

STEP 1 (The Cavity Equation) :

• In this step we relate the computation of the par-
tition function to the computation of the marginal
probabilities.

• This is done by creating a cavity in the original
graph.

• Let G1 be the original graph G with one vertex, say
v1, removed.

• By definition

Z (λ, G1) =
∑

I∈IG1

λ|I| =
∑

I∈IG

v1 /∈I

λ|I| .

• Thus
Z (λ, G1)

Z (λ, G)
= PG (v1 /∈ I) .
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Cavity Equation Continued ...

Proposition 7 Let V := {v1, v2, . . . , vn}, and for 1 ≤ k ≤
(n − 1) we define Gk := G \ {v1, v2, . . . , vk} as the graph
obtained from G after creating k cavities. Put G0 = G.
Then the following relation holds

Z (λ, G1)

Z (λ, G0)
= PG0 (v1 /∈ I) ,

where I is a random independent set distributed accord-
ing the Gibbs measure P. As a result we get

Z (λ, G) =

n
∏

k=1

(PGk−1
(vk /∈ I))

−1 .

Remark : This proposition is well known in Physics
literature and also in the Markov chain based approxi-
mation algorithms for counting.
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STEP 2 (Computation on Trees) :

• Note our large girth assumption makes our graphs
“locally” tree like !

• So in this step we only make computation for the
marginal probabilities when the graph is a finite
tree.

• This can be done easily by a recursive method.

Proposition 8 Suppose T be a finite rooted tree with
root v0, and let {v1, v2, . . . , vk} be k ≥ 0 children of v0.
For each 1 ≤ j ≤ k, let T(vj) denote the tree rooted at
vj consisting only the descendants of vj (if any). Then
the following recursion holds

PT (v0 /∈ I) =
1

1 + λ
∏

1≤j≤k

PT (vj) (vj /∈ I)
.
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The Algorithm

INPUT : A graph G with vertex set {v1, v2, . . . , vn}, and a
number ε > 0.

BEGIN

1. Compute the girth g = g (G).

2. If (0.9)
g
2
−2
≥ ε then find |IG| by enumeration and

STOP.

If not then

3. Set Z ← 1, t← ⌊g/2⌋ and k← 1.

4. Find the t-depth neighborhood T (vk) of vk.

5. Compute the marginal probability p = PT (vk) (vk /∈ I)
for the finite tree T (vk).

6. Set Z ← Z/p, G← G \ {vk}, k← k + 1.

7. If k ≤ n then goto Step 4, otherwise STOP.

END

OUTPUT: Z
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Why Does It Works ?

⋆ Strong Correlation Decay :

• This is the crucial part !

• We prove that under certain assumptions [e.g. λ <
λc (r) = (r − 1)r−1/(r − 2)r (for the r-regular case),
or r ≤ 4 (for deriving the algorithm), etc.], the
influence of the boundary at the root decreases ex-
ponentially fast.

• A statistical physics consequence of this is the Gibbs
measure on the “limiting infinite graph” (if any !)
is unique, that is there is no phase transition.

• For the infinite r-regular trees it was shown by Kelly
(1985), that there is no phase transition for the
hard-core model if and only if λ ≤ λc (r).

• For counting independent sets we extend this result
to the class of finite trees with maximum degree at
most 4, which is the most crucial result for our
algorithm to succeed.
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Strong Correlation Decay Continued ...

Proposition 9 The following bounds holds for every
rooted tree T with depth t ≥ 2 and degree of any vertex
at most 4

1

2
≤ P

λ=1
T

(

v0 /∈ I

∣

∣

∣
b
)

≤
8

9
,

and
∣

∣

∣
P

λ=1
T

(

v0 /∈ I

∣

∣

∣
b1

)

− P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b2

) ∣

∣

∣
≤ (.9)t−2 ,

where b, b1, b2 are boundary conditions.

Moreover, when λ < λc (r) (r−1)r−1/(r−2)r, let x be the
unique non-negative solution of the fixed point equation
equation x = 1/(1 + λxr−1). Suppose all the nodes of
T except for leaves and the root have degree r, and
suppose the root has degree r−1. Then for all boundary
conditions b

∣

∣

∣
PT

(

v0 /∈ I

∣

∣

∣
b
)

− x
∣

∣

∣
≤ αt,

for some constant α = α (λ) < 1. If on the other hand,
all the nodes except for leaves, have degree r (including
the root), then

∣

∣

∣

∣

PT

(

v0 /∈ I

∣

∣

∣
b
)

−
1

2− x

∣

∣

∣

∣

≤ αt,

with the same constant α < 1.

18



Strong Correlation Decay Continued ...

Remarks :

• The proof involves only elementary math ! But
at some point we had to take help of computer
(MATLAB) [not me] !!

• The correlation decay for the counting of proper q-
colorings was proved by Jonasson (2002) for finite
depth r-regular tree, but his result extends to any
finite tree with bounded degree, which we use for
counting proper-q coloring problem.
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⋆ From the Tree to the Original Graph :

• In this step we show that the error we make by
taking a local tree around a vertex is small.

Note : The local tree comes from the large girth
assumption.

• This is again done by using the strong correlation
decay property and the (spacial) Markovian nature
of the Gibbs distribution.
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Special Cavity Trick for Regular Graphs

• For regular graphs creating a cavity destroy the
regularity !

• Instead we do the following which we call the rewiring.
Similar idea has been used in Physics literature [Mezard
and Parisi, 2005].

Proposition 10 Given an r-regular graph G, and λ > 0,
the graph Go obtained from G by rewiring on nodes
v1, v2 ∈ G, the following relation holds

Z(λ, Go)

Z(λ, G)
= PG(v1, v2 /∈ I)PG\{v1,v2} (∧1≤j≤r (v1j /∈ I ∨ v2j /∈ I))

where vij, j = 1, . . . , r are the neighbors of vi, i = 1,2 in
G.
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Some Final Remarks

• A recent work of Weitz (2006) provides a fully poly-
nomial approximation scheme for any finite graph
with low degree for the problem of counting the in-
dependent sets, but it does not give explicit limit
results such as ours for the regular graphs.

• Gamarnik and Katz (2006) (personal communica-
tion) have extended the work of Weitz (2006) for
other counting problems, e.g. counting colorings,
and counting matchings on general finite graphs.

• It seems to me that each of this is a “success story”
for making a rigorous argument for a very power-
ful method of statistical physics, called the cavity
method ! But the full math picture is yet to be
discovered.
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