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Two Counting Problems

Definition 1 (Independent Set) Suppose G := (V, E) be a finite graph. We
will say a subset I ⊆ V is an independent set of G, if for any two vertices
u, v ∈ I there is no edge between u and v.

We will denote by IG, the set of all independent sets of G.

Problem 1: Given a finite graph G, count the number of independent sets
of G.

Definition 2 (Proper q-Coloring) Fix q ≥ 2 an integer, and suppose G :=
(V, E) be a finite graph. A map C : V → {1,2, . . . , q} is called a proper
q-coloring of G, if no two vertices of same color share an edge.

We will denote by CG (q), the set of all proper q-colorings of G.

Problem 2: Given a finite graph G, and q ≥ 2 an integer, count the number
of proper q-colorings of G.
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Exact/Approximate Counting

Q: Can we do exact counting ?

A: ◮ Perhaps not !
◮ The sets are typically exponentially large.
◮ No polynomial time algorithm [Valiant 1979].

Q: So what do we do ?

A: We can try “approximate” counting.

Q: ◮ How do we approximate ?
◮ What kind of approximation ?

A: ◮ Typical approach is to use a Markov chain Monte Carlo (MCMC)
sampling scheme.
◮ One need to prove rapid mixing for the chain.
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Some Success Stories for Problems Similar to Ours
(using MCMC techniques)

• Computing the permanent:

◮ Jerrum and Sinclair (1989, 1997).

◮ Jerrum, Sinclair and Vigoda (2004).

• Computing the volume of a convex body:

◮ Dyer, Frieze and Kannan (1991).

◮ Kannan, Lovasz and Simonovits (1997).

◮ Lovasz and Vempala (2003).

• Counting independent set:

◮ Luby and Vigoda (1997).

Remark: Such MCMC techniques typically provide a randomized ε-approximation
to the counting problem, such that the running time is a polynomial in the
size of the problem (e.g. the size of V ), and also in the error ε.
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What Do We Propose to Do ?

• We will give deterministic approximation schemes, which will not use
sampling.

• But we will provide ε-approximation to log |IG| and log |CG (q) |. (Unfor-
tunately, this is obviously less efficient !)

• Moreover, we will need restrictions on our graphs ! For example, we will
need low degree graphs, and a “large girth” assumption (will be more
specific later).
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Get Lost !!!!

We are obviously doing less than what is known !
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Then why am I giving this talk ?

• Well well ... I like this work !
bb

• But there are more reasons than just that !
bb

6



Motivation and Achievements

• Our motivation comes from statistical physics.

• Computation of log |IG| or log |CG (q) | are interesting, because they cor-
respond to the free energy for certain models in statistical physics (the
models will be given later).

• We can achieve (new) explicit results for regular graphs, which are not
possible to derive using the MCMC methods. To give some example:

◮ We can show that for every 4-regular graph of n vertices and large
girth, the number of independent sets is approximately (1.494 . . .)n.

◮ We can also show that if q ≥ r+1 then for every r-regular graph with
large girth, the number of proper q-coloring is approximately

[

q
(

1− 1
q

)

r
2

]n

.

• We can drop the “large girth” assumption and work with random regular
graphs to get concentration results.

7



Two Statistical Physics Models

(1) Hard-Core Model: Given a finite graph G and a real number λ > 0,
consider a (discrete) probability distribution on IG given by

P (I) ∝ λ|I| ⇔ P (I) =
λ|I|

Z (λ, G)
, I ∈ IG ,

where

Z (λ, G) :=
∑

I∈IG

λ|I| .

Remarks:

• P is called the Gibbs distribution on IG.

• Z (λ, G) is called the partition function.

• λ is called the activity parameter.

• Observe Z (λ, G) = |IG| when λ = 1, then we are back to the original
counting problem.
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(2) Model on Proper q-Colorings: Given q ≥ 2 an integer, and a finite graph
G, let λk > 0, for 1 ≤ k ≤ q. Consider a (discrete) probability distribution on
CG (q) given by

P (C) =

∏

1≤k≤q

λ
|C−1({k})|
k

Z (λ, q, G)
, C ∈ CG (q) where Z (λ, q, G) :=

∑

C∈CG(q)

∏

1≤k≤q

λ
|C−1({k})|
k .

Remarks:

• P is called the Gibbs distribution on CG (q).

• Z (λ, q, G) is the partition function and λk’s are called the activity param-
eters.

• If all the λk’s are equal then Z (λ, q, G) = |CG (q) | and we are back to
the original counting problem. For this case we will denote the partition
function by Z (q, G).
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Some Families of Graphs

• Large girth: An infinite family of graphs G is defined to have large girth,
if there exists an increasing function f : N → N with lims→∞ f(s) = ∞,
such that for every G ∈ G with n vertices, we have

girth (G) ≥ f(n) .

Recall: girth (G) := size of the smallest cycle in G.

• [Low degree]: Let G (n, r, g) be the family of graphs on n vertices, such
that the maximum degree of any vertex is bounded by r and each graph
has girth at least g.

• Regular: Let Greg (n, r, g) be the family of r-regular graphs on n vertices,
such that each graph has girth at least g.
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The Main Results

Algorithm Result:

Theorem 1 (Independent Sets) For every family of graphs G with maxi-
mum degree at most 4 and large girth, there is an algorithm A, such that for
any ε > 0 and G ∈ G, A produces a quantity Z in time polynomial in n := |V |,
such that

(1− ε)
log |IG|

n
≤ Z ≤ (1 + ε)

log |IG|

n
.

Theorem 2 (Colorings) Fix q ≥ r + 1 be two integers then

lim
g→∞

sup
G∈G(n,r,g)

∣

∣

∣

∣

∣

∣

log |CG (q) |

n
− 1

n

∑

1≤k≤n

log

[

q

(

1−
1

q

)rGk−1
(vk)

]

∣

∣

∣

∣

∣

∣

= 0.

where V := {v1, v2, . . . , vn} and Gk := G\{v1, v2, . . . , vk}, and by rG(v) we mean
the degree of vertex v in graph G.

In particular, we can get an algorithm result for counting the number of proper
q-colorings, which is similar to the previous theorem.
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Results for the Regular Graphs with Large Girth:

Theorem 3 (Independent Sets) Suppose λ < λc (r) where λc (r) := (r −
1)r−1/(r − 2)r, then

lim
g→∞

sup
G∈Greg(n,r,g)

∣

∣

∣

∣

logZ(λ, G)

n
− log

(

x−
r

2 (2− x)−
r−2

2

)

∣

∣

∣

∣

= 0 ,

where x is the unique positive solution of

x = 1/(1 + λxr−1) .

In particular, if r = 2,3,4,5 and λ = 1, then the corresponding limits for
log |IG|

n
are respectively, log1.618 . . ., log1.545 . . ., log 1.494 . . . and log 1.453 . . ..

Theorem 4 (Colorings) For every q ≥ r + 1, the number of q-colorings of
graphs G ∈ Greg(n, r, g) satisfies

lim
g→∞

sup
G∈Greg(n,r,g)

∣

∣

∣

∣

∣

logZ(q, G)

n
− log

[

q

(

1−
1

q

) r

2

]∣

∣

∣

∣

∣

= 0 .
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Results for the Random Regular Graphs:

Theorem 5 (Independent Sets) For every r ≥ 2 and every λ < λc (r), the
(random) partition function Z(λ, Gr(n)), of a random r-regular graph Gr(n)
satisfies

logZ(λ, Gr(n))

n
→ log

[

x−
r

2 (2− x)−
r−2

2

]

,

with high probability (w.h.p.), as n → ∞, where x is the unique positive
solution of x = 1/(1 + λxr−1).

Theorem 6 (Colorings) For every r ≥ 2 and q ≥ r + 1, the (random) par-
tition function Z(q, Gr(n)) of a random r-regular graph Gr(n) corresponding
to the uniform distribution on proper q-colorings satisfies

logZ(q, Gr(n))

n
→ log

[

q

(

1−
1

q

) r

2

]

.

w.h.p. as n→∞.

Remark: Theorem 6 was proved earlier by Achlioptas and Moore (2004)
using second moment method.
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Two Main Steps of the Algorithm

(Illustrated only for the Independent Sets)

STEP 1 (The Cavity Equation :

• In this step we relate the computation of the partition function to the
computation of the marginal probabilities.

• This is done by creating a cavity in the original graph.

• Let G1 be the original graph G with one vertex, say v1, removed.

• By definition

Z (λ, G1) =
∑

I∈IG1

λ|I| =
∑

I∈IG

v1 /∈I

λ|I| .

• Cavity Equation:

Z (λ, G1)

Z (λ, G)
= PG (v1 /∈ I) .

14



Cavity Equation Continued ...

Proposition 7 Let V := {v1, v2, . . . , vn}, and for 1 ≤ k ≤ (n − 1) we define
Gk := G\{v1, v2, . . . , vk} as the graph obtained from G after creating k cavities.
Put G0 = G. Then the following relation holds

Z (λ, G1)

Z (λ, G0)
= PG0

(v1 /∈ I) ,

where I is a random independent set distributed according the Gibbs measure
P. As a result we get

Z (λ, G) =

n
∏

k=1

(PGk−1
(vk /∈ I))

−1 .

Remark: This proposition is well known in Physics literature and also in the
Markov chain based approximation algorithms for counting.
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STEP 2 (Computation on Trees):

• Note our large girth assumption makes our graphs “locally” tree like !

• So in this step we only make computation for the marginal probabilities
when the graph is a finite tree.

• This can be done easily by a recursive method, essentially the same cavity
trick works.
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Computation on Trees Continued ...

• T be a finite tree with root v0, and let {v1, v2, . . . , vk} be the children of
v0.

• By the cavity equation we get:

PT (v0 /∈ I) =
Z (λ, T \ {v0})

Z (λ, T)

=
1

1 +

∑

I∈IT ,v0∈I

λ|I |

Z(λ,T\{v0})

=
1

1 + λ

∑

I∈IT\{v0}, vj /∈I ∀ 1≤j≤k

λ|I |

Z(λ,T\{v0})

=
1

1 + λ
∏

1≤j≤k

PT (vj) (vj /∈ I)

where T(vj) is the tree rooted at the child vj.
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Computation on Trees Continued ...

Proposition 8 Suppose T be a finite rooted tree with root v0, and let
{v1, v2, . . . , vk} be k ≥ 0 children of v0. For each 1 ≤ j ≤ k, let T(vj) de-
note the tree rooted at vj consisting only the descendants of vj (if any).
Then the following recursion holds

PT (v0 /∈ I) =
1

1 + λ
∏

1≤j≤k

PT (vj) (vj /∈ I)
.
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The Algorithm

INPUT: A graph G with vertex set {v1, v2, . . . , vn}, and a number ε > 0.

BEGIN

1. Compute the girth g = g (G).

2. If (0.9)
g
2
−2 ≥ ε then find |IG| by enumeration and STOP.

If not then

3. Set Z ← 1, t← ⌊g/2⌋ and k← 1.

4. Find the t-depth neighborhood T (vk) of vk.

5. Compute the marginal probability p = PT(vk) (vk /∈ I) for the finite tree T (vk).

6. Set Z ← Z/p, G← G \ {vk}, k← k + 1.

7. If k ≤ n then goto Step 4, otherwise STOP.

END

OUTPUT: Z
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Why Does It Works ?

⋆ Strong Correlation Decay:

• We prove that under certain assumptions, for example,

◮ λ < λc (r) = (r − 1)r−1/(r − 2)r (for the r-regular case),

◮ or r ≤ 4 (for deriving the algorithm),

the influence on the root of the boundary at a distance d decreases
exponentially fast as d increases.

• A statistical physics consequence of this is the Gibbs measure on the
“limiting infinite graph” (if any !) is unique, that is there is no phase
transition.

• For the infinite r-regular trees it was shown by Kelly (1985), that there
is no phase transition for the hard-core model if and only if λ ≤ λc (r).

• For counting independent sets we extend this result to the class of finite
trees with maximum degree at most 4, which is the most crucial result
for our algorithm to succeed.
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Strong Correlation Decay Continued ...

• Suppose T be a finite tree with large depth.

• If the maximum degree of T is at most 4, then for any two boundary
conditions b1 and b2 we show that

P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b1

)

≈ P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b2

)

.

• Moreover the error in approximation is exponentially small in the depth
of the tree.
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Strong Correlation Decay Continued ...

• Further, if T is a tree such that every vertex has degree r except the
root, which has degree (r − 1) and the vertices at the last generation,
which have degree 1, then for λ < λc (r) it is know (Kelly, 1985) that

PT

(

v0 /∈ I

∣

∣

∣
b
)

≈ x ,

for any boundary condition b, where x is the unique solution of the de-
terministic fixed point equation

x = 1/(1 + λxr−1) .

• If T is a tree with all internal vertices having degree r then under the
same assumption

PT

(

v0 /∈ I

∣

∣

∣
b
)

≈
1

2− x
.
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Lemma 9 The following bounds holds for every rooted tree T with depth
t ≥ 2 and degree of any vertex at most 4

1

2
≤ P

λ=1
T

(

v0 /∈ I

∣

∣

∣
b
)

≤
8

9
,

and
∣

∣

∣
P

λ=1
T

(

v0 /∈ I

∣

∣

∣
b1

)

− P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b2

) ∣

∣

∣
≤ (.9)t−2 ,

where b, b1, b2 are boundary conditions.

Moreover, when λ < λc (r) (r−1)r−1/(r−2)r, let x be the unique non-negative
solution of the fixed point equation x = 1/(1+λxr−1). Suppose all the nodes
of T except for leaves and the root have degree r, and suppose the root has
degree r − 1. Then for all boundary conditions b

∣

∣

∣
PT

(

v0 /∈ I

∣

∣

∣
b
)

− x
∣

∣

∣
≤ αt,

for some constant α = α (λ) < 1. If on the other hand, all the nodes except
for leaves, have degree r (including the root), then

∣

∣

∣

∣

PT

(

v0 /∈ I

∣

∣

∣
b
)

−
1

2− x

∣

∣

∣

∣

≤ αt,

with the same constant α < 1.
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Strong Correlation Decay Continued ...

Remarks:

• The proof involves only elementary math ! But at some point we had to
take help of computer (MATLAB) [not me] !!

• The correlation decay for the counting of proper q-colorings was proved
by Jonasson (2002) for finite depth r-regular tree, but his result extends
to any finite tree with bounded degree, which we use for counting proper-
q coloring problem.

24



⋆ From the Tree to the Original Graph:

• In this step we show that the error we make by taking a local tree around
a vertex is small.

Note: The local tree comes from the large girth assumption.

• This is again done by using the strong correlation decay property and the
(spacial) Markovian nature of the Gibbs distribution.
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Special Tricks for the Regular Graphs

• For regular graphs creating a cavity destroy the regularity !

• Instead we do the following which we call the rewiring. Similar idea has
been used in Physics literature [Mezard and Parisi, 2005].

Note: v1 and v2 are not neighbors and their neighbors are not neighbors !
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New “Cavity” Equation for Regular Graphs

Proposition 10 Given an r-regular graph G, and λ > 0, the graph Go obtained
from G by rewiring on nodes v1, v2 ∈ G, the following relation holds

Z(λ, Go)

Z(λ, G)
= PG(v1, v2 /∈ I)PG\{v1,v2}





⋂

1≤j≤r

[v1j /∈ I or v2j /∈ I]





where vij, j = 1, . . . , r are the neighbors of vi, i = 1,2 in G.
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Strong Correlation Decay Result for Regular Graphs

Lemma 11 Given r ≥ 3, λ < (r − 1)r−1/(r − 2)r and ǫ > 0, there exists a
sufficiently large constant g = g(r, ǫ, λ) such that for every r-regular graph G
with girth g(G) ≥ g, and for every pair of nodes v1, v2 ∈ G at distance at least
2g + 1

∣

∣

∣

∣

PG(v1, v2 /∈ I)−
1

(2− x)2

∣

∣

∣

∣

< ǫ,

and
∣

∣

∣

∣

∣

∣

PG\{v1,v2}





⋂

1≤j≤r

[v1j /∈ I or v2j /∈ I]



− (2x− x2)r

∣

∣

∣

∣

∣

∣

< ǫ,

where vij, j = 1, . . . , r is the set of neighbors of vi in G, i = 1,2, and x is the
unique positive solution of x = 1/(1 + λxr−1).
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A Technical Result needed for Regular Graphs

Lemma 12 Given an n-node r-regular graph G, consider any integer 4 ≤ g ≤
g(G). The rewiring operation can be performed for at least (n/2)−(2g+1)r2g

steps on pairs of nodes which are at least 2g+1 distance apart. In every step
the resulting graph is r-regular with girth at least g.
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Some Final Remarks

• A recent work of Weitz (2006) provides a fully polynomial approximation
scheme for any finite graph with low degree (maximum degree at most
5) for the problem of counting the independent sets, but it does not give
explicit limit results such as ours for the regular graphs.

• Gamarnik and Katz (2006) (personal communication) have extended the
work of Weitz (2006) for other counting problems, e.g. counting color-
ings, and counting matchings on general finite graphs.

• It seems to me that each of this is a “success story” for making a rigorous
argument for a very powerful method of statistical physics, called the
cavity method ! But the full math picture is yet to be discovered.
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Thank You


