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Three Examples

Examples 1 (Height of a GW-Branching Tree) :
Consider a (sub)-critical Galton-Watson branching pro-
cess with the progeny distribution N, so E[N] < 1; we
assume P(N =1) < 1.

Height of the Tree : Let H := 14 height of the G-W
tree, then H < o0 a.s. and

H < 14 max(Hi, Ho,...,Hy) on N,
where (Hj),., are i.i.d. with same law as of H and are
independent of V.

We will call such equation a Recursive Distributional
Equations (RDE).



Example 2 (Quicksort Algorithm/Distribution) :

e Select the first number from a pile of n numbers
and divide the other (n—1) numbers into two piles,
according to less than or bigger than the first num-
ber.

e Recursively sort the two piles (which are now smaller
in size).

e X (n) := # comparisons needed to sort n numbers
starting from a uniform random permutation of [n].
Then

d

X(n) X1(U) +Xo(n—-1-U,) 4+ (n—-1),

where Xi(-) and Xs(-) are i.i.d. with same law as
of X(-) and are independent of U, which is uniform
on {0,1,2,...,n— 1}.

e ROdsler (1990) showed E [X (n)] ~ 2nlogn and more-
over

X(n)—2nlogn g4
n

where distribution of Y satisfies the RDE

Y £ Ui+ (1-U)Y>+CU) on R,

> Y,

where Y7 and Y> are i.i.d. with same law as of
Y and are independent of U ~ Uniform[0, 1], and
C(u) :=142ulogu+2(1 —u) log(1l —u).



Examples 3 (Worst-Case Time of FIND) :

T £ 14+ max(UTy, (1 —U)T») on Ry

where (71,T>) are i.i.d. copies of T and are independent
of U ~ Uniform|[0, 1].

e Studied by Griibel and R&sler (1996) and Devroye
(2001).

e [t gives the asymptotic distribution of the number
of comparisons needed for the worst case of the
FIND algorithm of Hoare (1961) after scaling.

e It has unique solution, which has all moments finite,
and supported on [2,00).



Typical features of RDEs

Ex. 1: X = 14max(XiXo,...,Xy) on N
Ex. 2: X = UXi1+(Q1-0U)Xo+CU) on R
Ex. 3: X = 1+max(UXi,(1-U)X2) on Ry

e Unknown Quantity : Distribution of X.

e Known Quantities :

— N < oo which may or may not be random (e.g.
N=2in Ex. 2 & 3).

— Possibly some more randomness whose distribu-
tion is known (e.g. U in the Ex. 2 & 3).

— How we combine the known and unknown ran-
domness (e.g. “1 4+ max’ operation in Ex. 1).

e What is the RDE doing ? To find a distribution
p such that when we take i.i.d. samples (Xj),,
from it and only use N many of them (where N is
independent of the samples) and do the manipula-
tion then we end up with another sample X ~ pu.

Remark : In the case N = 1 a.s. it reduces to the
question of finding a stationary distribution of a discrete
time Markov chain.
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Two main uses of RDEs

e Direct use : The RDE is used directly to define a
distribution. Examples include,

» The height of a (sub)-critical Galton-Watson
tree (Ex. 1).

» The Quicksort distribution (Ex. 2).

» Discounted tree sums / inhomogeneous perco-
lation on trees (Ex. 3 is a special case).

» ... and many others.

e Indirect use: The RDE is used to define some aux-
iliary variables which help in defining/characterizing
some other quantity of interest. Among others the
following two type of applications are of special in-
terest (but we will not discuss these in this talk),

» 540° argument !

» Determining critical points and scaling laws.



General Setup

Let (S,6) be a measurable space, and P be the
collection of all probabilities on (S5, &).

Let (¢, N) be a pair of random variables such that
N takes values in {0,1,2,...;00}.

Let (X;),5; be i.i.d. S-valued random variables,
which are independent of (£, N).

g (+) is a S-valued measurable function with appro-
priate domain.



Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P
is called a Recursive Distributional Equation (RDE)

X £ g(6X;,1<j<*N) on

where (X;),,, are independent copies of X and are in-
dependent of (¢,N).

Remark : A more conventional (analysis) way of writing
the equation would be

p =T (u)
where T is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair (¢, N), and u is the (unknown) law
of X.
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Recursive Tree Framework (RTF)

e Skeleton : Ty = (V,€) is the canonical infinite
tree with vertex set V := {i|i € N%, d > 1 }u{0}, and
edge set £ :={e = (i,ij) |i € V,7 € N}, and root 0.

e Innovations : Collection of i.i.d. pairs {(&, V;) |i € V}.

e Function : The function g (-).



Recursive Tree Process (RTP)

Consider a RTF and let u be a solution of the associated
RDE . A collection of S-valued random variables (X;);.y

is called an invariant Recursive Tree Process (RTP) with
marginal p if

o Xi~pu Viey.

° Xi=g(£i;Xij,1 SjS*Ni) a.s. VieV.

e X; is independent of {(&, Ny) ||i| < |i| }, for all
i e V\{0}, where |i| =d if i € N¢.

Remark : Using Kolmogorov’s consistency, an invariant
RTP with marginal u exists if and only if u is a solution
of the associated RDE.
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Endogeny

Natural Question : Does X only depend on the inno-
vation process (the data) (& Nid)yey 7

Definition 2 Let G be the o-field generated by the in-
novation process { (&, N;) |i € V}. We will say an invari-
ant RTP is endogenous if Xy is G-measurable.

Motivations
e Presence / absence of external randomness.
e Influence of the boundary at infinity !

e Sometime can be used for characterization of cer-
tain solutions (we will see how this works for Quick-
sort distribution).
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One easy fact to built our confidence

Remark : Associated with a RTF there is a Galton-
Watson branching process tree rooted at () defined only
through {Nj|i € V }, call it T. Essentially any associated
invariant RTP lives on 7.

Proposition 1 If T is almost surely finite (equivalently
E[N] < 1) then the associated RDE has unique solution
and the RTP is endogenous.

Remarks :

e The RDEs in Ex. 1 have unique solutions and it is
endogenous.

e Perhaps the simplest example of a RDE with no
non-trivial endogenous solution is the following

v 2 X1+X2.
V2

The solution set is the Normal(0,02?) family. But
the associated RTF has no randomness involved
and hence none of the non-trivial RTP is endoge-
nous.

e The Quicksort RDE also has binary branching and
hence a priory we can not say any thing about
uniqueness/endogeny.
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Input at Infinity RTF Output

Independent
Inputs

Independent E

Inputs E
Independent E

Inputs E
Independent E

Inputs E

g(&; X, 1< i <N)
9(%; Y, 1< ] <"'N)
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Bivariate Uniqueness

Consider the following bivariate RDE,
X g(§ X;,1<j<*N)
Y g9(£Y;,1 <j<*N)

where (X;,Y;);, are i.i.d. and has the same law as of
(X,Y), and are independent of the innovation (&, N).

Definition 3 An invariant RTP with marginal u has bi-
variate uniqueness property if the above bivariate RDE
has unique solution as X =Y a.s on the space of joint
probabilities with both marginals p.
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An Equivalence Theorem

Theorem 1 Suppose the S is a Polish space. Consider
an invariant RTP with marginal distribution .

(a) If the endogenous property holds then the bivariate
uniqueness property holds.

(b) Conversely, (under some technical conditions) if the
bivariate uniqueness property holds and then the en-
dogenous property holds.

(c) If T pe the operator associated with the bivariate
RDE then endogenous property holds if and only if

T@" (o) L u,

where p @ p is the product measure, and /" is the mea-
sure concentrated on the diagonal with both marginal

.

Remark : Results of similar type can also be found in
the study of Gibbs measures and Markov random fields.

15



Successful Use and/or Application of
Endogeny

e Characterization : Sometime one can show that
only the “fundamental” solution(s) of a RDE is(are)
endogenous.

» We will show that for the Quicksort RDE the
limiting Quicksort distribution and its translates
are the only endogenous solutions.

e 540° argument : (will not discuss these)

» Application to random assignment problem.

» Application to frozen percolation process on in-
finite regular trees.
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Solution Set of the Quicksort RDE

Recall that the Quicksort RDE is given by

X 2 Uxi+(1-U)X>4+CW) on R,

where (X1, X»2) arei.i.d. copies of X and are independent
of U ~ Uniform[0,1], and C(u) := 1 4 2ulogu 4+ 2(1 —
u) log(l — u).

Known :

e If X is a solution then so is (m + X) for any m € R.

e There is a unique solution with E[X] = 0 and
E [ X?] < co [RCsler, 1992].

e Let v be the solution with mean zero and finite
variance then the set of all solutions is given by

{v x Cauchy (m,0°) |/m €R, ¢° € R} }
[Fill and Janson, 2000]

e Note that the only mean zero solution is v.
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Theorem 2 A solution of the Quicksort RDE
is endogenous if and only if 02 =

Remark : In other words, the solution v and

its translates are the only endogenous solu-
tions.
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Proof of Theorem 2

e We will use the bivariate unigueness technique.

e Let u = v * Cauchy (m,02) be a solution of the
Quicksort RDE. Consider the bivariate RDE

(X) d (UX1+<1—U)X2+C<U))
Yy ) - \on+@Q-U)Y+CU) )’

where (X;,Y;),_, , arei.i.d. copies of (X,Y) and are

independent of U ~ Uniform|[0, 1]. Further assume

X £y £,
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Proof of the “if”-part
X\ 4 (UXi+(Q-U)Xo+C)
Y - Uvi+ (1 -U)Y>2+C(U)
e We assume o2 =
o Let D =X —Y and similarly define D; and D-.

e Then D = UD; + (1 —U)D> on R.

e Since 02 =0, so X Ly 4 v, thus D has finite
second moment.

e Simple calculation then shows E[D] = 0 = E [D?].

e¢ Thus X = Y a.s., that is, bivariate uniqueness
holds.
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Proof of the “only if”-part

(X) d (UX1+(1—U>X2+C(U))
Yy )] = \ Uvi+ (1 -U)Ya+C(U)

e Suppose o2 > 0.

e We will show that (Q + Z,Q + W) is a solution of
the bivariate equation, where Z and W are i.i.d.
Cauchy (m,0?) and are independent of Q ~ v.

e Observe that if Z; and Z» are i.i.d. Cauchy (m,o?)
and are independent of U ~ Uniform[0, 1] then

Z=UZ1+ (1 -U)Z

is also Cauchy (m,0?) and it is independent of U
(follows by computing the characteristic function).
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Take (Z1, Z>; W1, W>) i.i.d. Cauchy (m,0?); (Q1,Q2)
i.i.d. copies of Q ~ v; and U ~ Uniform[0,1]. All
are independent.

Define X; :=Q;+ Z; and Y; :=Q; + W;, j € {1,2}.
Let Q :=UQ1+ (1 —U)Q2+ C(U) then Q ~ v.

IfZ.=UZ1+(1-U)Zxand W :=UW14+ (1 -U)W>
then

Q@ + Z
Q@ + W

UXi1+(1-U)Xo+CU)
Ui+ (1-0U)Y24+C(U)

But Z and W are i.i.d. Cauchy (m,0?) and are in-
dependent of Q.

Thus (Q+ Z,Q + W) is a non-trivial solution of the
bivariate RDE and hence bivariate unigueness fails.
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