Endogeny for Recursive Tree Processes: Application to Quicksort RDE

Antar Bandyopadhyay

(Joint work with Prof. David J. Aldous)
[Work done at UC, Berkeley and IMA, Minneapolis]

Kiel-Göteborg Workshop on Probability and Combinatorics

Department of Mathematics Chalmers University of Technology Götoborg, Sweden

November 13, 2004

Three Examples

Examples 1 (Height of a GW-Branching Tree): Consider a (sub)-critical Galton-Watson branching process with the progeny distribution N, so $\mathbf{E}\left[N\right] \leq 1$; we assume $\mathbf{P}\left(N=1\right) < 1$.

Height of the Tree : Let H:=1+ height of the G-W tree, then $H<\infty$ a.s. and

$$H \stackrel{d}{=} 1 + \max(H_1, H_2, \dots, H_N)$$
 on \mathbb{N} ,

where $(H_j)_{j\geq 1}$ are i.i.d. with same law as of H and are independent of N.

We will call such equation a *Recursive Distributional Equations* (RDE).

Example 2 (Quicksort Algorithm/Distribution):

- Select the first number from a pile of n numbers and divide the other (n-1) numbers into two piles, according to *less* than or *bigger* than the first number.
- Recursively sort the two piles (which are now smaller in size).
- X(n) := # comparisons needed to sort n numbers starting from a uniform random permutation of [n]. Then

$$X(n) \stackrel{d}{=} X_1(U_n) + X_2(n-1-U_n) + (n-1),$$

where $X_1(\cdot)$ and $X_2(\cdot)$ are i.i.d. with same law as of $X(\cdot)$ and are independent of U_n which is uniform on $\{0, 1, 2, \ldots, n-1\}$.

• Rösler (1990) showed $\mathrm{E}\left[X(n)\right] \sim 2n \log n$ and moreover

$$\frac{X(n) - 2n \log n}{n} \stackrel{d}{\longrightarrow} Y,$$

where distribution of Y satisfies the RDE

$$Y \stackrel{d}{=} UY_1 + (1 - U)Y_2 + C(U) \text{ on } \mathbb{R},$$

where Y_1 and Y_2 are i.i.d. with same law as of Y and are independent of $U \sim \text{Uniform}[0,1]$, and $C(u) := 1 + 2u \log u + 2(1-u) \log(1-u)$.

Examples 3 (Worst-Case Time of FIND):

$$T \stackrel{d}{=} 1 + \max(UT_1, (1-U)T_2)$$
 on \mathbb{R}_+

where (T_1, T_2) are i.i.d. copies of T and are independent of $U \sim \mathsf{Uniform}[0, 1]$.

- Studied by Grübel and Rösler (1996) and Devroye (2001).
- It gives the asymptotic distribution of the number of comparisons needed for the worst case of the FIND algorithm of Hoare (1961) after scaling.
- It has unique solution, which has all moments finite, and supported on $[2, \infty)$.

Typical features of RDEs

Ex. 1:
$$X \stackrel{d}{=} 1 + \max(X_1, X_2, ..., X_N)$$
 on \mathbb{N}
Ex. 2: $X \stackrel{d}{=} UX_1 + (1 - U)X_2 + C(U)$ on \mathbb{R}
Ex. 3: $X \stackrel{d}{=} 1 + \max(UX_1, (1 - U)X_2)$ on \mathbb{R}_+

- Unknown Quantity: Distribution of X.
- Known Quantities:
 - $-N \le \infty$ which may or may not be random (e.g. $N \equiv 2$ in Ex. 2 & 3).
 - Possibly some more randomness whose distribution is known (e.g. U in the Ex. 2 & 3).
 - How we combine the known and unknown randomness (e.g. "1 + max" operation in Ex. 1).
- What is the RDE doing? To find a distribution μ such that when we take i.i.d. samples $(X_j)_{j\geq 1}$ from it and only use N many of them (where N is independent of the samples) and do the manipulation then we end up with another sample $X \sim \mu$.

Remark: In the case N=1 a.s. it reduces to the question of finding a stationary distribution of a discrete time Markov chain.

Two main uses of RDEs

- **Direct use:** The RDE is used directly to define a distribution. Examples include,
 - ► The height of a (sub)-critical Galton-Watson tree (Ex. 1).
 - ▶ The Quicksort distribution (Ex. 2).
 - ▶ Discounted tree sums / inhomogeneous percolation on trees (Ex. 3 is a special case).
 - ▶ ... and many others.
- Indirect use: The RDE is used to define some auxiliary variables which help in defining/characterizing some other quantity of interest. Among others the following two type of applications are of special interest (but we will not discuss these in this talk),
 - ▶ 540° argument!
 - ▶ Determining critical points and scaling laws.

General Setup

- Let (S,\mathfrak{S}) be a measurable space, and \mathcal{P} be the collection of all probabilities on (S,\mathfrak{S}) .
- Let (ξ, N) be a pair of random variables such that N takes values in $\{0, 1, 2, ...; \infty\}$.
- Let $(X_j)_{j\geq 1}$ be **i.i.d.** S-valued random variables, which are independent of (ξ, N) .
- $g(\cdot)$ is a S-valued measurable function with appropriate domain.

Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on \mathcal{P} is called a Recursive Distributional Equation (RDE)

$$X \stackrel{d}{=} g(\xi; X_j, 1 \le j \le N)$$
 on S ,

where $(X_j)_{j\geq 1}$ are independent copies of X and are independent of (ξ, N) .

Remark: A more conventional (analysis) way of writing the equation would be

$$\mu = T(\mu)$$

where T is the operator associated with the above equation, which depends on the function g and the joint distribution of the pair (ξ, N) , and μ is the (unknown) law of X.

Recursive Tree Framework (RTF)

- **Skeleton**: $\mathbb{T}_{\infty} := (\mathcal{V}, \mathcal{E})$ is the canonical infinite tree with vertex set $\mathcal{V} := \{\mathbf{i} \mid \mathbf{i} \in \mathbb{N}^d, d \geq 1\} \cup \{\emptyset\}$, and edge set $\mathcal{E} := \{e = (\mathbf{i}, \mathbf{i}j) \mid \mathbf{i} \in \mathcal{V}, j \in \mathbb{N}\}$, and root \emptyset .
- Innovations: Collection of i.i.d. pairs $\{(\xi_i, N_i) \mid i \in \mathcal{V}\}$.
- Function: The function $g(\cdot)$.

Recursive Tree Process (RTP)

Consider a RTF and let μ be a solution of the associated RDE . A collection of S-valued random variables $(X_i)_{i\in\mathcal{V}}$ is called an invariant $Recursive\ Tree\ Process\ (RTP)$ with marginal μ if

- $X_{\mathbf{i}} \sim \mu \ \forall \ \mathbf{i} \in \mathcal{V}$.
- $X_{\mathbf{i}} = g\left(\xi_{\mathbf{i}}; X_{\mathbf{i}j}, 1 \leq j \leq^* N_{\mathbf{i}}\right)$ a.s. $\forall \ \mathbf{i} \in \mathcal{V}$.
- X_i is independent of $\{(\xi_{i'}, N_{i'}) \mid |i'| < |i| \}$, for all $i \in \mathcal{V} \setminus \{\emptyset\}$, where |i| = d if $i \in \mathbb{N}^d$.

Remark: Using Kolmogorov's consistency, an invariant RTP with marginal μ exists if and only if μ is a solution of the associated RDE.

Endogeny

Natural Question: Does X_{\emptyset} only depend on the innovation process (the *data*) $(\xi_{\mathbf{i}}, N_{\mathbf{i}})_{\mathbf{i} \in \mathcal{V}}$?

Definition 2 Let \mathcal{G} be the σ -field generated by the innovation process $\{(\xi_i, N_i) \mid i \in \mathcal{V}\}$. We will say an invariant RTP is endogenous if X_{\emptyset} is \mathcal{G} -measurable.

Motivations

- Presence / absence of external randomness.
- Influence of the boundary at infinity!
- Sometime can be used for characterization of certain solutions (we will see how this works for Quicksort distribution).

One easy fact to built our confidence

Remark: Associated with a RTF there is a Galton-Watson branching process tree rooted at \emptyset defined only through $\{N_i | i \in \mathcal{V}\}$, call it \mathcal{T} . Essentially any associated invariant RTP lives on \mathcal{T} .

Proposition 1 If \mathcal{T} is almost surely finite (equivalently $\mathrm{E}\left[N\right] \leq 1$) then the associated RDE has unique solution and the RTP is endogenous.

Remarks:

- The RDEs in Ex. 1 have unique solutions and it is endogenous.
- Perhaps the simplest example of a RDE with no non-trivial endogenous solution is the following

$$X \stackrel{d}{=} \frac{X_1 + X_2}{\sqrt{2}}.$$

The solution set is the Normal($0, \sigma^2$) family. But the associated RTF has no randomness involved and hence none of the non-trivial RTP is endogenous.

 The Quicksort RDE also has binary branching and hence a priory we can not say any thing about uniqueness/endogeny.

Bivariate Uniqueness

Consider the following bivariate RDE,

$$\left(egin{array}{c} X \ Y \end{array}
ight) \ \stackrel{d}{=} \ \left(egin{array}{c} g\left(\xi; X_j, 1 \leq j \leq^* N
ight) \ g\left(\xi; Y_j, 1 \leq j \leq^* N
ight) \end{array}
ight)$$

where $(X_j, Y_j)_{j\geq 1}$ are i.i.d. and has the same law as of (X, Y), and are independent of the innovation (ξ, N) .

Definition 3 An invariant RTP with marginal μ has bivariate uniqueness property if the above bivariate RDE has unique solution as X=Y a.s on the space of joint probabilities with both marginals μ .

An Equivalence Theorem

Theorem 1 Suppose the S is a Polish space. Consider an invariant RTP with marginal distribution μ .

- (a) If the endogenous property holds then the bivariate uniqueness property holds.
- (b) Conversely, (under some technical conditions) if the bivariate uniqueness property holds and then the endogenous property holds.
- (c) If $\mathbf{T}^{(2)}$ be the operator associated with the bivariate RDE then endogenous property holds if and only if

$$\mathbf{T}^{(2)^n}(\mu\otimes\mu) \stackrel{d}{\longrightarrow} \mu^{\nearrow},$$

where $\mu \otimes \mu$ is the product measure, and μ^{\nearrow} is the measure concentrated on the diagonal with both marginal μ .

Remark: Results of similar type can also be found in the study of Gibbs measures and Markov random fields.

Successful Use and/or Application of Endogeny

- Characterization: Sometime one can show that only the "fundamental" solution(s) of a RDE is(are) endogenous.
 - ► We will show that for the *Quicksort RDE* the limiting *Quicksort* distribution and its translates are the only endogenous solutions.
- 540° argument : (will not discuss these)
 - ► Application to random assignment problem.
 - ► Application to *frozen percolation* process on infinite regular trees.

Solution Set of the Quicksort RDE

Recall that the Quicksort RDE is given by

$$X \stackrel{d}{=} UX_1 + (1 - U)X_2 + C(U) \text{ on } \mathbb{R},$$

where (X_1, X_2) are i.i.d. copies of X and are independent of $U \sim \text{Uniform}[0, 1]$, and $C(u) := 1 + 2u \log u + 2(1 - u) \log(1 - u)$.

Known:

- If X is a solution then so is (m + X) for any $m \in \mathbb{R}$.
- There is a unique solution with ${\bf E}[X]=0$ and ${\bf E}[X^2]<\infty$ [Rösler, 1992].
- \bullet Let ν be the solution with mean zero and finite variance then the set of all solutions is given by

$$\left\{\nu*\mathsf{Cauchy}\left(m,\sigma^2\right)\mid m\in\mathbb{R},\,\sigma^2\in\mathbb{R}_+\right\}$$
 [Fill and Janson, 2000]

• Note that the only mean zero solution is ν .

Theorem 2 A solution of the Quicksort RDE is endogenous if and only if $\sigma^2 = 0$.

Remark : In other words, the solution ν and its translates are the only endogenous solutions.

Proof of Theorem 2

- We will use the bivariate uniqueness technique.
- \bullet Let $\mu=\nu*{\rm Cauchy}\left(m,\sigma^2\right)$ be a solution of the Quicksort RDE. Consider the bivariate RDE

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} UX_1 + (1-U)X_2 + C(U) \\ UY_1 + (1-U)Y_2 + C(U) \end{pmatrix},$$

where $(X_j, Y_j)_{j=1,2}$ are i.i.d. copies of (X, Y) and are independent of $U \sim \text{Uniform}[0, 1]$. Further assume $X \stackrel{d}{=} Y \stackrel{d}{=} \mu$.

Proof of the "if"-part

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} UX_1 + (1-U)X_2 + C(U) \\ UY_1 + (1-U)Y_2 + C(U) \end{pmatrix}$$

- We assume $\sigma^2 = 0$.
- Let D = X Y and similarly define D_1 and D_2 .
- Then $D \stackrel{d}{=} UD_1 + (1-U)D_2$ on \mathbb{R} .
- Since $\sigma^2 = 0$, so $X \stackrel{d}{=} Y \stackrel{d}{=} \nu$, thus D has finite second moment.
- Simple calculation then shows $E[D] = 0 = E[D^2]$.
- ullet Thus X=Y a.s., that is, bivariate uniqueness holds.

Proof of the "only if"-part

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} UX_1 + (1-U)X_2 + C(U) \\ UY_1 + (1-U)Y_2 + C(U) \end{pmatrix}$$

- Suppose $\sigma^2 > 0$.
- We will show that (Q+Z,Q+W) is a solution of the bivariate equation, where Z and W are i.i.d. Cauchy (m,σ^2) and are independent of $Q\sim \nu$.
- Observe that if Z_1 and Z_2 are i.i.d. Cauchy $\left(m,\sigma^2\right)$ and are independent of $U\sim \mathsf{Uniform}[0,1]$ then

$$Z = UZ_1 + (1 - U)Z_2$$

is also Cauchy (m, σ^2) and it is independent of U (follows by computing the characteristic function).

- Take $(Z_1,Z_2;W_1,W_2)$ i.i.d. Cauchy (m,σ^2) ; (Q_1,Q_2) i.i.d. copies of $Q\sim \nu$; and $U\sim \text{Uniform}[0,1]$. All are independent.
- Define $X_j := Q_j + Z_j$ and $Y_j := Q_j + W_j$, $j \in \{1, 2\}$.
- Let $Q := UQ_1 + (1 U)Q_2 + C(U)$ then $Q \sim \nu$.
- If $Z := UZ_1 + (1 U)Z_2$ and $W := UW_1 + (1 U)W_2$ then

$$Q + Z = UX_1 + (1 - U)X_2 + C(U)$$

 $Q + W = UY_1 + (1 - U)Y_2 + C(U)$

- ullet But Z and W are i.i.d. Cauchy $\left(m,\sigma^2\right)$ and are independent of Q.
- Thus (Q + Z, Q + W) is a non-trivial solution of the bivariate RDE and hence bivariate uniqueness fails.