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Three ExamplesExamples 1 : Consider a (sub)-ritial Galton-Watsonbranhing proess with the progeny distribution N , soE [N ℄ � 1; we assume P (N = 1) < 1.
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Height of the Tree : Let H := 1+ height of the G-Wtree, then H <1 a.s. andH d= 1+max (H1;H2; : : : ;HN) on N ;where (Hj)j�1 are i.i.d. with same law as of H and areindependent of N . 1



Examples 2 : Consider the same (sub)-ritial Galton-Watson branhing proess.
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Size of the Tree : Let S := total size of the tree. Oneagain S < 1 a.s. sine the proess is (sub)-ritial.Further S d= 1+ (S1+ S2+ � � �SN) on N ;where (Sj)j�1 are i.i.d. with same law as of S and areindependent of N .We will all suh equations Reursive Distributional Equa-tions (RDE). 2



Example 3 (Quiksort Algorithm/Distribution) :� Selet the �rst number from a pile of n numbersand divide the other (n�1) numbers into two piles,aording to less than or bigger than the �rst num-ber.� Reursively sort the two piles (whih are now smallerin size).� X(n) := # omparisons needed to sort n numbersstarting from a uniform random permutation of [n℄.ThenX(n) d= X1(Un) +X2(n� 1� Un) + (n� 1);where X1(�) and X2(�) are i.i.d. with same law asof X(�) and are independent of Un whih is uniformon f0;1;2; : : : ; n� 1g.� R�osler (1990) showed E [X(n)℄ � 2n logn and more-over X(n)� 2n lognn d�! Y;where distribution of Y satis�es the RDEY d= UY1+ (1� U)Y2+ C(U) on R ;where Y1 and Y2 are i.i.d. with same law as ofY and are independent of U � Uniform[0;1℄, and(u) := 1+ 2u logu+2(1� u) log(1� u). 3



Typial features of RDEs
Ex. 1 : X d= 1+max ( X1;X2; : : : ;XN ) on NEx. 2 : X d= 1+ (X1+X2+ � � �+XN) on NEx. 3 : X d= UX1+ (1� U)X2+ C(U) on R� Unknown Quantity : Distribution of X.� Known Quantities :{ N � 1 whih may or may not be random (e.g.N � 2 in Ex. 3).{ Possibly some more randomness whose distribu-tion is known (e.g. U in the Ex. 3).{ How we ombine the known and unknown ran-domness (e.g. \1 +max" operation in Ex. 1).� What is the RDE doing ? To �nd a distribution� suh that when we take i.i.d. samples (Xj)j�1from it and only use N many of them (where N isindependent of the samples) and do the manipula-tion then we end up with another sample X � �.Remark : In the ase N = 1 a.s. it redues to thequestion of �nding a stationary distribution of a disretetime Markov hain. 4



Two main uses of RDEs� Diret use : The RDE is used diretly to de�ne adistribution. Examples inlude,I The height (and also the size) of a (sub)-ritialGalton-Watson tree (the �rst two examples).I The Quiksort distribution (Example 3).I Disounted tree sums / inhomogeneous pero-lation on trees. [Leture - III℄I : : : and many others.
� Indiret use: The RDE is used to de�ne some aux-iliary variables whih help in de�ning/haraterizingsome other quantity of interest. Among others thefollowing two type of appliations are of speial in-terestI 540Æ argument ! (will give an example).I Determining ritial points and saling laws (willnot give an example).

5



General Setup� Let (S;S) be a measurable spae, and P be theolletion of all probabilities on (S;S).� Let (�;N) be a pair of random variables suh thatN takes values in f0;1;2; : : : ;1g.� Let (Xj)j�1 be i.i.d S-valued random variables, whihare independent of (�;N).� g (�) is a S-valued measurable funtion with appro-priate domain.
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Reursive Distributional Equation (RDE)De�nition 1 The following �xed-point equation on Pis alled a Reursive Distributional Equation (RDE)
X d= g ��; �Xj;1 � j��N�� on S;where (Xj)j�1 are independent opies of X and are in-dependent of (�;N).Remark : A more onventional (analysis) way of writingthe equation would be � = T (�)where T is the operator assoiated with the above equa-tion, whih depends on the funtion g and the joint dis-tribution of the pair (�;N), and � is the (unknown) lawof X.
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Reursive Tree Framework (RTF)
ξ Φ NΦ,( )

ξ N,( )1 1 ξ N,( )2 2 ξ N,( )3 3

21 3

11 12 13 21 22 23 31 32 33

Φ

g

g

� Skeleton : T1 := (V; E) is the anonial in�nitetree with vertex set V := �i j i 2 N d; d � 1	[f;g, andedge set E := fe= (i; ij) j i 2 V; j 2 N g, and root ;.� Innovations : Colletion of i.i.d pairs f(�i; Ni) j i 2 Vg.� Funtion : The funtion g (�). 9



Reursive Tree Proess (RTP)
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Consider a RTF and let � be a solution of the assoiatedRDE . A olletion of S-valued random variables (Xi)i2Vis alled an invariant Reursive Tree Proess (RTP) withmarginal � if� Xi � � 8 i 2 V.� Fix d � 0 then (Xi)jij=d are independent.� Xi = g ��i;Xij;1 � j��Ni� a.s. 8 i 2 V.� Xi is independent of f(�i0; Ni0) j ji0j < jij g 8 i 2 V.Remark : Using Kolmogorov's onsisteny, an invariantRTP with marginal � exists if and only if � is a solutionof the assoiated RDE. 10



EndogenyNatural Question : Does X; only depend on the inno-vation proess (the data) (�i; Ni)i2V ?
De�nition 2 Let G be the �-�eld generated by the in-novation proess f (�i; Ni) j i 2 V g. We will say an in-variant RTP is endogenous if X; is almost surely G-measurable.
Motivations� Presene / absene of external randomness.� Inuene of the boundary at in�nity !� Relation with long-range independene ? [reentwork of Gamarnik, Nowiki, Swirssz (2004), andBandyopadhyay (2005)℄
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A Fat to Built Our Con�deneRemark : Assoiated with a RTF there is a Galton-Watson branhing proess tree rooted at ; de�ned onlythrough fNi j i 2 V g, all it T . Essentially any assoiatedinvariant RTP lives on T .
Proposition 1 If T is almost surely �nite (equivalentlyE [N ℄ � 1 and P (N = 1) < 1) then the assoiated RDEhas unique solution and the RTP is endogenous.[Proof/disussion in Leture-III℄
Remarks :� The RDEs in the �rst two examples have uniquesolutions and are endogenous.� Perhaps the simplest example of a RDE with nonon-trivial endogenous solution is the followingX d= X1+X2p2 :The solution set is the Normal(0; �2) family. Butthe assoiated RTF has no randomness involvedand hene none of the non-trivial RTP is endoge-nous. 12
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Bivariate UniquenessConsider the following bivariate RDE,0� XY 1A d= 0� g (�; (Xj;1 � j��N))g (�; (Yj;1 � j��N)) 1A
where (Xj; Yj)j�1 are i.i.d and has the same law as of(X;Y ), and are independent of the innovation (�;N).
De�nition 3 An invariant RTP with marginal � has bi-variate uniqueness property if the above bivariate RDEhas unique solution as X = Y a.s on the spae of jointprobabilities with both marginals �.
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An Equivalene TheoremTheorem 1 Suppose the S is a Polish spae. Consideran invariant RTP with marginal distribution �.(a) If the endogenous property holds then the bivariateuniqueness property holds.(b) Conversely, (under some tehnial onditions) if thebivariate uniqueness property holds and then the en-dogenous property holds.() If T (2) be the operator assoiated with the bivariateRDE then endogenous property holds if and only ifT (2)n (�
 �) d�! �%;where �
� is the produt measure, and �% is the mea-sure onentrated on the diagonal with both marginal�.
Remark : Results of similar type an also be found inthe study of Gibbs measures and Markov random �elds.15



Suessful Use and/or Appliation ofEndogeny� Charaterization : Some time one an show thatonly the \fundamental" solution of an RDE is en-dogenous. For example one an show that for theQuiksort RDE only the limiting Quiksort distri-bution is endogenous. [Leture -II℄
� 540Æ argument :I Can onstrut approximate solution for the ran-dom assignment problem by using endogenousoptimal solution of the mathing problem onPWIT. (will disussion in Leture-III)I Can show existene of an automorphism invari-ant version of frozen perolation proess on anin�nite regular tree without having presene ofany external randomness.
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Frozen Perolation on Regular Binary TreeThe Setup :� Let T3 = (V ; E ) be the in�nite regular binary tree.� Eah edge e 2 E is equipped with independent edgeweight Ue � Uniform[0;1℄.� Think of time moving from 0 to 1.Frozen Perolation Proess (informal desription):� For an edge e 2 E at the time instane t= Ue openthe edge e if eah of its end vertex is in a �niteomponent; otherwise do not open e.� Let (At)t�0 be set proess of open edges startingfrom A0 = ;.
17



The Regular Perolation Proess :� For an edge e 2 E at the time instane t= Ue openthe edge e.� If (Bt)t�0 be the set proess of open edges the itan be desribed asBt = fe 2 E jUe � t gRemarks : Unlike the regular perolation proess it isnot lear whether the frozen perolation proess existsand if so whether it admits a simpler desription usingonly the edge weights.Two Easy Observations : If frozen perolation pro-ess exists then following must hold� At � Bt for all t 2 [0;1℄.� At = Bt if t � 12 (sine the ritial probability forin�nite binary tree is 12).
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540Æ Argument [Aldous, 2000℄� Stage 1 : Suppose that the proess exists on T3.Let fT3 be the planted binary tree whih is a modi�-ation of T3 where we distinguish a vertex of degree1 as the root and all other verties have degree 3.
X1 X2

root
X

U

I X := Time it takes for the root to join 1 (willwrite X =1 if it never joins).I Xj := Time it takes for the root to join to 1 inthe jth sub-tree for j = 1;2.I X1 and X2 are independent opies of X.I It is easy to see thatX d= � X1 ^X2 if X1 ^X2 > U1 otherwise 19



� Stage 2 :I The RDE has only one solution with full supportgiven by�(dy) = dy2y2 ; 12 < y < 1; �(f1g) = 12:So using the general theory we an onstrutthe invariant RTP with marginal �.
e
e

e1

e2

e3

e4

I Eah edge e 2 E de�nes two direted edges, andeah direted edge �!e de�nes one planted tree,let X�!e be the orresponding X variable.I Eah direted edge �!e has two hildren say �!e 1and �!e 2 then nX�!e 1;X�!e 2o and X�!e satis�es theequation with the edge weight Ue.I Eah edge e 2 E has a set of four hildren whihare the four direted edges away from e. Wedenote it by �feg.I De�ne A1 := �e 2 E jUe <min �Xf : f 2 �feg� 	and At := fe 2 A1 jUe � t g for 0 � t < 1. 20



� Stage 3 : Using this external random variables�X�!e � repeat the original omputation to prove theexistene of a frozen perolation proess on T3. Infat it is easy to see that this onstrution gives anautomorphism invariant version of the proess.
Remark :� The onstrution of the proess not only uses theedge weights (Ue) but also (possibly) external ran-dom variables, namely �X�!e �.� If we an prove that the solution � of the frozenperolation RDE is endogenous then it will auto-matially follow that the variables �X�!e � are mea-surable with respet to the edge weights (Ue). Thusthe proess (At) as onstruted above will not haveany external randomness. This will then imply thatthe informal desription de�nes a proess on T3

21



Frozen Perolation RDE
� Reall the RDE assoiated with the frozen pero-lation proess,X d= �(X1 ^X2;U)where X1;X2 are independent opies of X and areindependent of U � Uniform[0;1℄ and the funtion� is given by�(x;u) := � x if x > u1 otherwise :� Also reall that it has unique solution with full sup-port given by�(dy) = dy2y2; 12 < y < 1; �(f1g) = 12:
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Theorem 2 (B. (2004)) The invariant RTP with marginal� has bivariate uniqueness property, that is, the follow-ing bivariate RDE has unique solution as X = Y a.swith marginal �0B� XY
1CA d= 0B� �(X1 ^X2;U)�(Y1 ^ Y2;U)

1CA
where (Xj; Yj)j=1;2 are independent opies of (X;Y ), andare independent of U � Uniform[0;1℄.
Corollary 2.1 The invariant RTP with marginal � isendogenous. Thus the frozen perolation proess on T3as onstruted is measurable with respet to the edgeweights.
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Outline of the proof of Theorem 2� Notie that X and Y have the same distribution�. So if F(x; y) = P (X � x; Y � y) and G(x; y) =P (X > x; Y > y) then for every x; y 2 [12;1℄G(x; y) = F(x; y) + 12x + 12y � 1:� From the bivariate RDE we getF(x; y) =Z x^y0 �G2(x; y)�G2(x; u)�G2(u; y) +G2(u; u)� du:� We know that X = Y a.s. is a solution so G0(x; y) =12(x_y) is a solution of the integral equation. It isenough to prove that G = G0 is the only solution.� Let H(x; y) = 1� G(x;y)G0(x;y), so we need to show H � 0on D := [12;1℄2.
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� Substituting bak into the equation and after somealgebra we getH(x; y) = 1G0(x; y) Z x^y0 �(x; y; u) du;where � is a funtion (has long expression !) whihsatis�es the estimatej�(x; y; u)j � 4G20(u; u) �2jH(x; y)j+ jH2(x; y)j� ;whenever u � x ^ y.� Find 12 = �0 < �1 < � � � < �k = 1 suh thatZ �i�i�1G20(u; u) du < 148:� We partition D into L-shape parts (as in the �gure)where Li := f(x; y) j�i�1 � x ^ y < �ig. 25
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� De�ne k H ki:= supx;y2Li jH(x; y)j.� Start with i = 1, let (x; y) 2 L1. Note G0(x; y) � 12.Thus from the estimate of � we getjH(x; y)j � 24 k H ki Z �i�i�1G20(u; u) du� 12 k H ki� Thus H � 0 on L1. Now proeed indutively fori= 2;3; : : : k to onlude H � 0 on D.
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