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Three Examples

Examples 1 : Consider a (sub)-critical Galton-Watson
branching process with the progeny distribution N, so
E[N] <1; we assume P(N =1) < 1.

Height of the Tree : Let H := 1+ height of the G-W
tree, then H < oo a.s. and

a4

H 1—|—max(H1,H2,...,HN) on N,

where (Hj),,, are i.i.d. with same law as of H and are
independent of N.



Examples 2 : Consider the same (sub)-critical Galton-
Watson branching process.

Size of the Tree : Let S := total size of the tree. Once
again S < oo a.s. since the process is (sub)-critical.
Further

d

S £ 14(Si+S+---Sy) on N,

where (5;);5, are i.i.d. with same law as of S and are
independent of N.

We will call such equations Recursive Distributional Equa-
tions (RDE).



Example 3 (Quicksort Algorithm/Distribution) :

e Select the first number from a pile of n numbers
and divide the other (n—1) numbers into two piles,
according to less than or bigger than the first num-
ber.

e Recursively sort the two piles (which are now smaller
in size).

e X (n) := # comparisons needed to sort n numbers
starting from a uniform random permutation of [n].
Then

X(n) = X1(Un) + Xa(n—1—Up) + (n — 1),

where X;1(-) and X»(-) are i.i.d. with same law as
of X (-) and are independent of U, which is uniform
on {0,1,2,...,n—1}.

e ROsler (1990) showed E [X (n)] ~ 2nlogn and more-
over

X(n) —2nlogn g4

> Y,
n
where distribution of Y satisfies the RDE
Y £ Uvi+(1-U)Y>+CU) on R,

where Y; and Y> are i.i.d. with same law as of
Y and are independent of U ~ Uniform][0, 1], and

c(u) ' =14 2ulogu+ 2(1 —u)log(1l —u).



Typical features of RDESs

Ex. 1: X = 1+4max(Xy,Xo,...,Xy) on N
Ex. 2: X = 14+(X1+Xo+---+Xy) on N
Ex. 3: X =% UX;4+(1-U)Xa4+CW) on R

e Unknown Quantity : Distribution of X.

e Known Quantities :

— N < oo which may or may not be random (e.q.
N =2 in Ex. 3).

— Possibly some more randomness whose distribu-
tion is known (e.g. U in the Ex. 3).

— How we combine the known and unknown ran-
domness (e.g. “1 4+ max” operation in Ex. 1).

e What is the RDE doing ? To find a distribution
p such that when we take i.i.d. samples (X;)..,

from it and only use N many of them (where N is
independent of the samples) and do the manipula-
tion then we end up with another sample X ~ pu.

Remark : In the case N = 1 a.s. it reduces to the
question of finding a stationary distribution of a discrete
time Markov chain.



TwoO main uses of RDES

e Direct use : The RDE is used directly to define a
distribution. Examples include,

» The height (and also the size) of a (sub)-critical
Galton-Watson tree (the first two examples).

» The Quicksort distribution (Example 3).

» Discounted tree sums / inhomogeneous perco-
lation on trees. [Lecture - III]

» ... and many others.

e Indirect use: The RDE is used to define some aux-
iliary variables which help in defining/characterizing
some other quantity of interest. Among others the
following two type of applications are of special in-
terest

» 540° argument ! (will give an example).

» Determining critical points and scaling laws (will
not give an example).



General Setup

Let (S5,8) be a measurable space, and P be the
collection of all probabilities on (S,8).

Let (&, N) be a pair of random variables such that
N takes values in {0,1,2,...;00}.

Let (X;),, bei.i.d S-valued random variables, which
are independent of (&, N).

g () is a S-valued measurable function with appro-
priate domain.



Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P
is called a Recursive Distributional Equation (RDE)

X £ g(&(X;1<5<N)) on s,

where (Xj)j>1 are independent copies of X and are in-
dependent of (£, N).

Remark : A more conventional (analysis) way of writing
the equation would be

p="T(pn)
where T' is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair (¢, N), and pu is the (unknown) law
of X.
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Recursive Tree Framework (RTF)

e Skeleton : T, := (V,€) is the canonical infinite
tree with vertex set V := {i|i € N% d > 1 }u{0}, and
edge set £ :={e = (i,ij) |[i€ V,j € N}, and root 0.

e Innovations : Collection of i.i.d pairs {(&, V;) |1 € V}.

e Function : The function g ().



Recursive Tree Process (RTP)

(&, Np)

Consider a RTF and let u be a solution of the associated
RDE . A collection of S-valued random variables (X;),.p

is called an invariant Recursive Tree Process (RTP) with
marginal p if

o XiN,LL VIEV

e Fix d > 0 then (Xj);—, are independent.

e Xi=g (& Xi,1<j<*N) as. Viev.
e X; is independent of {(&,Ny) |[i| < [|i|} Vie V.
Remark : Using Kolmogorov’s consistency, an invariant

RTP with marginal p exists if and only if u is a solution
of the associated RDE.
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Endogeny

Natural Question : Does X only depend on the inno-
vation process (the data) (&, Ni),.p 7

Definition 2 Let G be the o-field generated by the in-
novation process {(&,N;) |[i€eV}. We will say an in-
variant RTP is endogenous if Xy is almost surely G-
measurable.

Motivations
e Presence / absence of external randomness.
e Influence of the boundary at infinity !

e Relation with long-range independence ? [recent
work of Gamarnik, Nowicki, Swirscsz (2004), and
Bandyopadhyay (2005)]
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A Fact to Built Our Confidence

Remark : Associated with a RTF there is a Galton-
Watson branching process tree rooted at () defined only
through {N;|i € V}, call it T. Essentially any associated
invariant RTP lives on T.

Proposition 1 If T is almost surely finite (equivalently
E[N] <1 and P(N = 1) < 1) then the associated RDE
has unique solution and the RTP is endogenous.

[Proof/discussion in Lecture-III]

Remarks :

e The RDEs in the first two examples have unique
solutions and are endogenous.

e Perhaps the simplest example of a RDE with no
non-trivial endogenous solution is the following

4 X1+ Xo
V2 oo

The solution set is the Normal(0,s?) family. But
the associated RTF has no randomness involved
and hence none of the non-trivial RTP is endoge-
nous.

X
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Input at Infinity RTF Output

Independent
Inputs

Independent E

Inputs E
Independent E

Inputs E
Independent E

Inputs E

g(&; X, 1< i <N)
9(%; Y, 1< ] <'N)
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Bivariate Uniqueness

Consider the following bivariate RDE,
X 9 (& (X;,1 <j<"N))
Y g(&(Y;,1<j5<*N))

where (X;,Y;),,; are i.i.d and has the same law as of
(X,Y), and are independent of the innovation (&, N).

Definition 3 An invariant RTP with marginal u has bi-
variate uniqueness property if the above bivariate RDE
has unique solution as X =Y a.s on the space of joint
probabilities with both marginals p.

14



An Equivalence Theorem

Theorem 1 Suppose the S is a Polish space. Consider
an invariant R TP with marginal distribution pu.

(a) If the endogenous property holds then the bivariate
uniqueness property holds.

(b) Conversely, (under some technical conditions) if the
bivariate uniqueness property holds and then the en-
dogenous property holds.

(c) If T®) be the operator associated with the bivariate
RDE then endogenous property holds if and only if

T®" (peu) -5 u,

where u® p is the product measure, and p/ is the mea-
sure concentrated on the diagonal with both marginal

Lo

Remark : Results of similar type can also be found in
the study of Gibbs measures and Markov random fields.
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Successful Use and/or Application of
Endogeny

e Characterization : Some time one can show that
only the “fundamental’ solution of an RDE is en-
dogenous. For example one can show that for the
Quicksort RDE only the limiting Quicksort distri-
bution is endogenous. [Lecture -II]

e 540° argument .

» Can construct approximate solution for the ran-
dom assignment problem by using endogenous
optimal solution of the matching problem on
PWIT. (will discussion in Lecture-III)

» Can show existence of an automorphism invari-
ant version of frozen percolation process on an
infinite regular tree without having presence of
any external randomness.

16



Frozen Percolation on Regular Binary Tree

The Setup :
o Let T3 = (V,E) be the infinite regular binary tree.

e Each edge e € K is equipped with independent edge
weight U, ~ Uniform][0, 1].

e Think of time moving from 0 to 1.

Frozen Percolation Process (informal description):

e For an edge e € E at the time instance ¢t = U, open
the edge e if each of its end vertex is in a finite
component; otherwise do not open e.

o Let ('At)tzo be set process of open edges starting
from Ag = 0.

17



The Regular Percolation Process :

e For an edge e € E at the time instance t = U, open
the edge e.

o If (B:),~o be the set process of open edges the it
can be described as

Bt:{GEE|Ue§t}

Remarks : Unlike the regular percolation process it is
not clear whether the frozen percolation process exists
and if so whether it admits a simpler description using
only the edge weights.

Two Easy Observations : If frozen percolation pro-
cess exists then following must hold

o A; C B; for all t € [0, 1].

e Ay = B; if t <  (since the critical probability for
infinite binary tree is ).

18



540° Argument [Aldous, 2000]

° Stagg 1 : Suppose that the process exists on Ts.

Let Ts be the planted binary tree which is a modifi-
cation of T3 where we distinguish a vertex of degree
1 as the root and all other vertices have degree 3.

[/ \

» X := Time it takes for the root to join oco (will
write X = oo if it never joins).

» X, := Time it takes for the root to join to oo in
the jth sub-tree for 3y =1, 2.

» X; and X, are independent copies of X.

» It is easy to see that

d X1 N Xo if XiANXo>U
X = .
00 otherwise
19



e Stage 2 :
» The RDE has only one solution with full support
given by
dy) = —, — <y <1, = —.
p(dy) 247" 2 <Y p({oo}) = 3

So using the general theory we can construct
the invariant RTP with marginal u.

dy 1 1

» Each edge e € E defines two directed edges, and
each directed edge @ defines one planted tree,
let X? be the corresponding X variable.

» Each directed edge @ has two children say ¢
and ¢, then {X? , X~ } and X-, satisfies the
equation with the edge weight U..

» Each edge e € E has a set of four children which
are the four directed edges away from e. We
denote it by 9{e}.

» Define A; := {e € E|U. < min (X;: f € 0{e}) }
and A, :={ec A1 |U. <t} for 0 <t < 1.

20



e Stage 3 : Using this external random variables
(X?) repeat the original computation to prove the
existence of a frozen percolation process on Tz. In
fact it is easy to see that this construction gives an
automorphism invariant version of the process.

Remark :

e [ he construction of the process not only uses the
edge weights (U.) but also (possibly) external ran-
dom variables, namely (X?).

e If we can prove that the solution u of the frozen
percolation RDE is endogenous then it will auto-
matically follow that the variables (X?) are mea-
surable with respect to the edge weights (U.). Thus
the process (\A;) as constructed above will not have
any external randomness. This will then imply that
the informal description defines a process on T3

21



Frozen Percolation RDE

Recall the RDE associated with the frozen perco-
lation process,

d

X D (X1 AXo; U)

where X1, X> are independent copies of X and are
independent of U ~ Uniform|[0, 1] and the function

&$ is given by

_ ) = if > u
P(@iu) = { 00 otherwise

Also recall that it has unique solution with full sup-

port given by

dy 1 1
dy) = —F, —<y<1, = —.
p(dy) 22 2 <Y p({oo}) = 3
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Theorem 2 (B. (2004)) Theinvariant RTP with marginal
@ has bivariate uniqueness property, that is, the follow-
ing bivariate RDE has unique solution as X =Y a.s

with marginal u

X D (X1 AXo; U)
Y P (Y1 AYy U)
where (X;,Y;)._, , are independent copies of (X,Y), and

are independent of U ~ Uniform|[0, 1].

Corollary 2.1 The invariant RTP with marginal u is
endogenous. Thus the frozen percolation process on Ts
as constructed is measurable with respect to the edge
weights.

23



Outline of the proof of Theorem 2

Notice that X and Y have the same distribution
. So if F(z,y) = P (X <ax,Y <y) and G(x,y) =
P (X >z,Y > y) then for every z,y € [3,1]
1 1
G(z,y) = F(z,y) + —+ —— 1.
2r 2y

From the bivariate RDE we get

F(z,y) =

/0 P y) — G (@) — GP(u,y) + G (u, ) du.

We know that X = Y a.s. is a solution so Go(zx,y) =

—2(1:1\/y) is a solution of the integral equation. It is

enough to prove that G = Gg is the only solution.

Let H(x,y) =1 —% so we need to show H =0
on D :=[,1]2

24



1,1/2) 11

(ai, i)
(6, 03)
(a2 02) Ls
(a1, ap) L2
Gayxay Y L
(1/2, 1/2) (V2,1)

e Substituting back into the equation and after some
algebra we get

1 TA\Yy
H 3 — =, ~ A s I d 3
(0) = Gy Ay u)d

where A is a function (has long expression !) which
satisfies the estimate

A(z,y,uw)| < 4G5 (u,uw) (2|H (z,9)| + |H*(z,)]) ,
whenever u < z A y.
e Find 3 =ao<ai<---<a,=1such that
1

@2 cu)du < —.
. o(u,u) du 15

(6

e We partition D into L-shape parts (as in the figure)
where L; := {(z,y) |ai-1 <z Ay < a;}.
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1,1/2) 1,1

GO
(63, 03)
(a2 012) =
(a1, ap) L2
Gayxay Y L
(1/2, 1/2) (V2,1)

Define || H ||;:= sup, yer, |[H(z,y)|.

Start with i = 1, let (z,y) € L1. Note Go(z,y) > 2.
Thus from the estimate of A we get
[H(z,y)l < 24| H|;  Gi(u,u)du

a1

1
< SIHI;

Thus H = 0 on Li. Now proceed inductively for
1 =2,3,...k to conclude H =0 on D.
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