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Three ExamplesExamples 1 : Consider a (sub)-
riti
al Galton-Watsonbran
hing pro
ess with the progeny distribution N , soE [N ℄ � 1; we assume P (N = 1) < 1.
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Height of the Tree : Let H := 1+ height of the G-Wtree, then H <1 a.s. andH d= 1+max (H1;H2; : : : ;HN) on N ;where (Hj)j�1 are i.i.d. with same law as of H and areindependent of N . 1



Examples 2 : Consider the same (sub)-
riti
al Galton-Watson bran
hing pro
ess.
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Size of the Tree : Let S := total size of the tree. On
eagain S < 1 a.s. sin
e the pro
ess is (sub)-
riti
al.Further S d= 1+ (S1+ S2+ � � �SN) on N ;where (Sj)j�1 are i.i.d. with same law as of S and areindependent of N .We will 
all su
h equations Re
ursive Distributional Equa-tions (RDE). 2



Example 3 (Qui
ksort Algorithm/Distribution) :� Sele
t the �rst number from a pile of n numbersand divide the other (n�1) numbers into two piles,a

ording to less than or bigger than the �rst num-ber.� Re
ursively sort the two piles (whi
h are now smallerin size).� X(n) := # 
omparisons needed to sort n numbersstarting from a uniform random permutation of [n℄.ThenX(n) d= X1(Un) +X2(n� 1� Un) + (n� 1);where X1(�) and X2(�) are i.i.d. with same law asof X(�) and are independent of Un whi
h is uniformon f0;1;2; : : : ; n� 1g.� R�osler (1990) showed E [X(n)℄ � 2n logn and more-over X(n)� 2n lognn d�! Y;where distribution of Y satis�es the RDEY d= UY1+ (1� U)Y2+ C(U) on R ;where Y1 and Y2 are i.i.d. with same law as ofY and are independent of U � Uniform[0;1℄, and
(u) := 1+ 2u logu+2(1� u) log(1� u). 3



Typi
al features of RDEs
Ex. 1 : X d= 1+max ( X1;X2; : : : ;XN ) on NEx. 2 : X d= 1+ (X1+X2+ � � �+XN) on NEx. 3 : X d= UX1+ (1� U)X2+ C(U) on R� Unknown Quantity : Distribution of X.� Known Quantities :{ N � 1 whi
h may or may not be random (e.g.N � 2 in Ex. 3).{ Possibly some more randomness whose distribu-tion is known (e.g. U in the Ex. 3).{ How we 
ombine the known and unknown ran-domness (e.g. \1 +max" operation in Ex. 1).� What is the RDE doing ? To �nd a distribution� su
h that when we take i.i.d. samples (Xj)j�1from it and only use N many of them (where N isindependent of the samples) and do the manipula-tion then we end up with another sample X � �.Remark : In the 
ase N = 1 a.s. it redu
es to thequestion of �nding a stationary distribution of a dis
retetime Markov 
hain. 4



Two main uses of RDEs� Dire
t use : The RDE is used dire
tly to de�ne adistribution. Examples in
lude,I The height (and also the size) of a (sub)-
riti
alGalton-Watson tree (the �rst two examples).I The Qui
ksort distribution (Example 3).I Dis
ounted tree sums / inhomogeneous per
o-lation on trees. [Le
ture - III℄I : : : and many others.
� Indire
t use: The RDE is used to de�ne some aux-iliary variables whi
h help in de�ning/
hara
terizingsome other quantity of interest. Among others thefollowing two type of appli
ations are of spe
ial in-terestI 540Æ argument ! (will give an example).I Determining 
riti
al points and s
aling laws (willnot give an example).
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General Setup� Let (S;S) be a measurable spa
e, and P be the
olle
tion of all probabilities on (S;S).� Let (�;N) be a pair of random variables su
h thatN takes values in f0;1;2; : : : ;1g.� Let (Xj)j�1 be i.i.d S-valued random variables, whi
hare independent of (�;N).� g (�) is a S-valued measurable fun
tion with appro-priate domain.
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Re
ursive Distributional Equation (RDE)De�nition 1 The following �xed-point equation on Pis 
alled a Re
ursive Distributional Equation (RDE)
X d= g ��; �Xj;1 � j��N�� on S;where (Xj)j�1 are independent 
opies of X and are in-dependent of (�;N).Remark : A more 
onventional (analysis) way of writingthe equation would be � = T (�)where T is the operator asso
iated with the above equa-tion, whi
h depends on the fun
tion g and the joint dis-tribution of the pair (�;N), and � is the (unknown) lawof X.
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Re
ursive Tree Framework (RTF)
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� Skeleton : T1 := (V; E) is the 
anoni
al in�nitetree with vertex set V := �i j i 2 N d; d � 1	[f;g, andedge set E := fe= (i; ij) j i 2 V; j 2 N g, and root ;.� Innovations : Colle
tion of i.i.d pairs f(�i; Ni) j i 2 Vg.� Fun
tion : The fun
tion g (�). 9



Re
ursive Tree Pro
ess (RTP)
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Consider a RTF and let � be a solution of the asso
iatedRDE . A 
olle
tion of S-valued random variables (Xi)i2Vis 
alled an invariant Re
ursive Tree Pro
ess (RTP) withmarginal � if� Xi � � 8 i 2 V.� Fix d � 0 then (Xi)jij=d are independent.� Xi = g ��i;Xij;1 � j��Ni� a.s. 8 i 2 V.� Xi is independent of f(�i0; Ni0) j ji0j < jij g 8 i 2 V.Remark : Using Kolmogorov's 
onsisten
y, an invariantRTP with marginal � exists if and only if � is a solutionof the asso
iated RDE. 10



EndogenyNatural Question : Does X; only depend on the inno-vation pro
ess (the data) (�i; Ni)i2V ?
De�nition 2 Let G be the �-�eld generated by the in-novation pro
ess f (�i; Ni) j i 2 V g. We will say an in-variant RTP is endogenous if X; is almost surely G-measurable.
Motivations� Presen
e / absen
e of external randomness.� In
uen
e of the boundary at in�nity !� Relation with long-range independen
e ? [re
entwork of Gamarnik, Nowi
ki, Swirs
sz (2004), andBandyopadhyay (2005)℄
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A Fa
t to Built Our Con�den
eRemark : Asso
iated with a RTF there is a Galton-Watson bran
hing pro
ess tree rooted at ; de�ned onlythrough fNi j i 2 V g, 
all it T . Essentially any asso
iatedinvariant RTP lives on T .
Proposition 1 If T is almost surely �nite (equivalentlyE [N ℄ � 1 and P (N = 1) < 1) then the asso
iated RDEhas unique solution and the RTP is endogenous.[Proof/dis
ussion in Le
ture-III℄
Remarks :� The RDEs in the �rst two examples have uniquesolutions and are endogenous.� Perhaps the simplest example of a RDE with nonon-trivial endogenous solution is the followingX d= X1+X2p2 :The solution set is the Normal(0; �2) family. Butthe asso
iated RTF has no randomness involvedand hen
e none of the non-trivial RTP is endoge-nous. 12
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Bivariate UniquenessConsider the following bivariate RDE,0� XY 1A d= 0� g (�; (Xj;1 � j��N))g (�; (Yj;1 � j��N)) 1A
where (Xj; Yj)j�1 are i.i.d and has the same law as of(X;Y ), and are independent of the innovation (�;N).
De�nition 3 An invariant RTP with marginal � has bi-variate uniqueness property if the above bivariate RDEhas unique solution as X = Y a.s on the spa
e of jointprobabilities with both marginals �.
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An Equivalen
e TheoremTheorem 1 Suppose the S is a Polish spa
e. Consideran invariant RTP with marginal distribution �.(a) If the endogenous property holds then the bivariateuniqueness property holds.(b) Conversely, (under some te
hni
al 
onditions) if thebivariate uniqueness property holds and then the en-dogenous property holds.(
) If T (2) be the operator asso
iated with the bivariateRDE then endogenous property holds if and only ifT (2)n (�
 �) d�! �%;where �
� is the produ
t measure, and �% is the mea-sure 
on
entrated on the diagonal with both marginal�.
Remark : Results of similar type 
an also be found inthe study of Gibbs measures and Markov random �elds.15



Su

essful Use and/or Appli
ation ofEndogeny� Chara
terization : Some time one 
an show thatonly the \fundamental" solution of an RDE is en-dogenous. For example one 
an show that for theQui
ksort RDE only the limiting Qui
ksort distri-bution is endogenous. [Le
ture -II℄
� 540Æ argument :I Can 
onstru
t approximate solution for the ran-dom assignment problem by using endogenousoptimal solution of the mat
hing problem onPWIT. (will dis
ussion in Le
ture-III)I Can show existen
e of an automorphism invari-ant version of frozen per
olation pro
ess on anin�nite regular tree without having presen
e ofany external randomness.

16



Frozen Per
olation on Regular Binary TreeThe Setup :� Let T3 = (V ; E ) be the in�nite regular binary tree.� Ea
h edge e 2 E is equipped with independent edgeweight Ue � Uniform[0;1℄.� Think of time moving from 0 to 1.Frozen Per
olation Pro
ess (informal des
ription):� For an edge e 2 E at the time instan
e t= Ue openthe edge e if ea
h of its end vertex is in a �nite
omponent; otherwise do not open e.� Let (At)t�0 be set pro
ess of open edges startingfrom A0 = ;.
17



The Regular Per
olation Pro
ess :� For an edge e 2 E at the time instan
e t= Ue openthe edge e.� If (Bt)t�0 be the set pro
ess of open edges the it
an be des
ribed asBt = fe 2 E jUe � t gRemarks : Unlike the regular per
olation pro
ess it isnot 
lear whether the frozen per
olation pro
ess existsand if so whether it admits a simpler des
ription usingonly the edge weights.Two Easy Observations : If frozen per
olation pro-
ess exists then following must hold� At � Bt for all t 2 [0;1℄.� At = Bt if t � 12 (sin
e the 
riti
al probability forin�nite binary tree is 12).
18



540Æ Argument [Aldous, 2000℄� Stage 1 : Suppose that the pro
ess exists on T3.Let fT3 be the planted binary tree whi
h is a modi�-
ation of T3 where we distinguish a vertex of degree1 as the root and all other verti
es have degree 3.
X1 X2

root
X

U

I X := Time it takes for the root to join 1 (willwrite X =1 if it never joins).I Xj := Time it takes for the root to join to 1 inthe jth sub-tree for j = 1;2.I X1 and X2 are independent 
opies of X.I It is easy to see thatX d= � X1 ^X2 if X1 ^X2 > U1 otherwise 19



� Stage 2 :I The RDE has only one solution with full supportgiven by�(dy) = dy2y2 ; 12 < y < 1; �(f1g) = 12:So using the general theory we 
an 
onstru
tthe invariant RTP with marginal �.
e
e

e1

e2

e3

e4

I Ea
h edge e 2 E de�nes two dire
ted edges, andea
h dire
ted edge �!e de�nes one planted tree,let X�!e be the 
orresponding X variable.I Ea
h dire
ted edge �!e has two 
hildren say �!e 1and �!e 2 then nX�!e 1;X�!e 2o and X�!e satis�es theequation with the edge weight Ue.I Ea
h edge e 2 E has a set of four 
hildren whi
hare the four dire
ted edges away from e. Wedenote it by �feg.I De�ne A1 := �e 2 E jUe <min �Xf : f 2 �feg� 	and At := fe 2 A1 jUe � t g for 0 � t < 1. 20



� Stage 3 : Using this external random variables�X�!e � repeat the original 
omputation to prove theexisten
e of a frozen per
olation pro
ess on T3. Infa
t it is easy to see that this 
onstru
tion gives anautomorphism invariant version of the pro
ess.
Remark :� The 
onstru
tion of the pro
ess not only uses theedge weights (Ue) but also (possibly) external ran-dom variables, namely �X�!e �.� If we 
an prove that the solution � of the frozenper
olation RDE is endogenous then it will auto-mati
ally follow that the variables �X�!e � are mea-surable with respe
t to the edge weights (Ue). Thusthe pro
ess (At) as 
onstru
ted above will not haveany external randomness. This will then imply thatthe informal des
ription de�nes a pro
ess on T3
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Frozen Per
olation RDE
� Re
all the RDE asso
iated with the frozen per
o-lation pro
ess,X d= �(X1 ^X2;U)where X1;X2 are independent 
opies of X and areindependent of U � Uniform[0;1℄ and the fun
tion� is given by�(x;u) := � x if x > u1 otherwise :� Also re
all that it has unique solution with full sup-port given by�(dy) = dy2y2; 12 < y < 1; �(f1g) = 12:
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Theorem 2 (B. (2004)) The invariant RTP with marginal� has bivariate uniqueness property, that is, the follow-ing bivariate RDE has unique solution as X = Y a.swith marginal �0B� XY
1CA d= 0B� �(X1 ^X2;U)�(Y1 ^ Y2;U)

1CA
where (Xj; Yj)j=1;2 are independent 
opies of (X;Y ), andare independent of U � Uniform[0;1℄.
Corollary 2.1 The invariant RTP with marginal � isendogenous. Thus the frozen per
olation pro
ess on T3as 
onstru
ted is measurable with respe
t to the edgeweights.
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Outline of the proof of Theorem 2� Noti
e that X and Y have the same distribution�. So if F(x; y) = P (X � x; Y � y) and G(x; y) =P (X > x; Y > y) then for every x; y 2 [12;1℄G(x; y) = F(x; y) + 12x + 12y � 1:� From the bivariate RDE we getF(x; y) =Z x^y0 �G2(x; y)�G2(x; u)�G2(u; y) +G2(u; u)� du:� We know that X = Y a.s. is a solution so G0(x; y) =12(x_y) is a solution of the integral equation. It isenough to prove that G = G0 is the only solution.� Let H(x; y) = 1� G(x;y)G0(x;y), so we need to show H � 0on D := [12;1℄2.
24
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� Substituting ba
k into the equation and after somealgebra we getH(x; y) = 1G0(x; y) Z x^y0 �(x; y; u) du;where � is a fun
tion (has long expression !) whi
hsatis�es the estimatej�(x; y; u)j � 4G20(u; u) �2jH(x; y)j+ jH2(x; y)j� ;whenever u � x ^ y.� Find 12 = �0 < �1 < � � � < �k = 1 su
h thatZ �i�i�1G20(u; u) du < 148:� We partition D into L-shape parts (as in the �gure)where Li := f(x; y) j�i�1 � x ^ y < �ig. 25
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� De�ne k H ki:= supx;y2Li jH(x; y)j.� Start with i = 1, let (x; y) 2 L1. Note G0(x; y) � 12.Thus from the estimate of � we getjH(x; y)j � 24 k H ki Z �i�i�1G20(u; u) du� 12 k H ki� Thus H � 0 on L1. Now pro
eed indu
tively fori= 2;3; : : : k to 
on
lude H � 0 on D.
26


