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Re
ursive Distributional Equation (RDE)
De�nition 1 The following �xed-point equation on Pis 
alled a Re
ursive Distributional Equation (RDE)

X d= g ��; �Xj;1 � j��N�� on S;where (Xj)j�1 are independent 
opies of X and are in-dependent of (�;N).
Remark : A more 
onventional (analysis) way of writingthe equation would be � = T (�)where T is the operator asso
iated with the above equa-tion, whi
h depends on the fun
tion g and the joint dis-tribution of the pair (�;N), and � is the (unknown) lawof X.
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Re
ursive Tree Framework (RTF)
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� Skeleton : T1 := (V; E) is the 
anoni
al in�nitetree with vertex set V := �i j i 2 N d; d � 1	[f;g, andedge set E := fe= (i; ij) j i 2 V; j 2 N g, and root ;.� Innovations : Colle
tion of i.i.d pairs f(�i; Ni) j i 2 Vg.� Fun
tion : The fun
tion g (�). 2



Re
ursive Tree Pro
ess (RTP)
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Consider a RTF and let � be a solution of the asso
iatedRDE . A 
olle
tion of S-valued random variables (Xi)i2Vis 
alled an invariant Re
ursive Tree Pro
ess (RTP) withmarginal � if� Xi � � 8 i 2 V.� Fix d � 0 then (Xi)jij=d are independent.� Xi = g ��i;Xij;1 � j��Ni� a.s. 8 i 2 V.� Xi is independent of f(�i0; Ni0) j ji0j < jij g 8 i 2 V.Remark : Using Kolmogorov's 
onsisten
y, an invariantRTP with marginal � exists if and only if � is a solutionof the asso
iated RDE. 3



QuestionsGiven a RDEX d= g ��; �Xj;1 � j��N�� on Sone 
an ask several questions, su
h as ...(i) Does it have a solution ? (existen
e)(ii) If yes, is it unique ? (uniqueness)(iii) If � is a solution then for what other measure say �,do we have T n (�) d�! � ? (domain of attra
tion)
(iv) If � is a solution then is the invariant RTP withmarginal � endogenous ? (endogeny)
(v) If � is a solution the does the invariant RTP withmarginal � has trivial tail ? (tail triviality of RTP)[will not dis
uss this issue in this series℄

� � � perhaps many more ! 4



Endogeny
De�nition 2 Let G be the �-�eld generated bythe innovation pro
ess f (�i; Ni) j i 2 V g. Wewill say an invariant RTP is endogenous if X;is almost surely G-measurable.
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Endogeny vs UniquenessExample (Uniqueness ; Endogeny) :X d= sign (X1)� � on R ;where � � Normal (0;1) and is independent of X1.� Trivially the unique solution is Normal (0;1).� On
e again invariant RTP 
an be indexed by non-negative integers. Let (Xi)i�0 be invariant RTPwith marginal Normal (0;1), from de�nitionXi = sign (Xi+1)� �i a.s.Let Yi = �Xi, i � 0 thenYi = sign (Yi+1)� �i a.s.Thus (Yi)i�0 is also an invariant RTP with marginalNormal (0;1). So RTP (Xi)i�0 
an not be endoge-nous.Remarks :� We will see that uniqueness of a \modi�ed" RDEwill imply endogeny.� Later we will see that a RDE may have many solu-tions some endogenous while others are not.6



Endogeny vs The Operator TRDE - I RDE- IIX d= � on R , X d= sign (X1)� � on R ,where � � Normal (0;1) where � � Normal (0;1)Observations :� Both RDEs de�ne the same operator T , namelymapping every probability measure to Normal (0;1).� Trivially the invariant RTP for RDE - I is endoge-nous, while that for RDE - II is not.� Note T is a \very ni
e" fun
tion ! (It is 
ontinuous,monotone, a 
ontra
tion : : :)
Remark : In order to answer the question of endogeny,we need the whole stru
ture of the RTF. In parti
ularthe fun
tion g. We will later see [Le
ture-III℄ that if ghas some \ni
e" properties then endogeny will follow for
ertain solution(s).
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Bivariate UniquenessConsider the following bivariate RDE,0� XY 1A d= 0� g (�; (Xj;1 � j��N))g (�; (Yj;1 � j��N)) 1A
where (Xj; Yj)j�1 are i.i.d and has the same law as of(X;Y ), and are independent of the innovation (�;N).
Note : We will denote the operator asso
iated with thisbivariate RDE by T (2).
De�nition 3 An invariant RTP with marginal � has bi-variate uniqueness property if the above bivariate RDEhas unique solution as X = Y a.s on the spa
e of jointprobabilities with both marginals �.
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Uniqueness vs Bivariate Uniqueness
� It is possible to have an RDE whi
h has unique so-lution but the solution fail to have bivariate unique-ness.X d= �+X1 (mod 2) on f0;1g ;where � � Bernoulli(p) for some 0 < p � 1 and isindependent of X1.I Easy to see that the unique solution is X �Bernoulli �12�.I It is also not hard to see that, any joint distri-bution (X;Y ) with marginal Bernoulli �12�, is asolution of the bivariate RDE.Remark : Later we will have an example (Qui
ksortRDE) where the RDE has many solutions among whi
honly one has bivariate uniqueness.
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Equivalen
e TheoremTheorem 1 Suppose the S is a Polish spa
e. Consideran invariant RTP with marginal distribution �.(a) If the endogenous property holds then the bivariateuniqueness property holds.(b) Conversely, suppose the bivariate uniqueness prop-erty holds. If also T (2) is 
ontinuous with respe
t to theweak 
onvergen
e on the set of bivariate distributionswith marginal �, then the endogenous property holds.(
) Further, the endogenous property holds if and onlyif T (2)n (�
 �) d�! �%;where �
� is the produ
t measure, and �% is the mea-sure 
on
entrated on the diagonal with both marginal�.
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Proof of the Equivalen
e TheoremPart (a) (Endogeny ) Bivariate Uniqueness) :0� XY 1A d= 0� g (�; (Xj;1 � j��N))g (�; (Yj;1 � j��N)) 1A
� � be a solution of the bivariate RDE with marginal�.� Using i.i.d. innovations (�i; Ni)i2V 
onstru
t bivari-ate RTP ((Xi; Yi))i2V su
h that (Xi; Yi) � � for alli 2 V.
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� Observe for every n � 0,�X;; ((�i; Ni) ; jij � n)� d= �Y;; ((�i; Ni) ; jij � n)� :� So if � : S ! R is a bounded measurable fun
tionthenE �� �X;� j Gn� = E �� �Y;� j Gn� a.s.;where Gn is the �-�eld generated by f(�i; Ni) j jij � n g.� By martingale 
onvergen
e theorem and using theendogeny property we get� �X;� = � �Y;� a.s.This is true for any bounded measurable fun
tion�, so X; = Y; a.s.
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Part (b) : Bivariate Uniqueness ) Endogeny :0� XY 1A d= 0� g (�; (Xj;1 � j��N))g (�; (Yj;1 � j��N)) 1A
� Fix � : S ! R , a bounded 
ontinuous fun
tion.� Let (Xi)i2V be an invariant RTP with marginal �.� By martingale 
onvergen
e theoremE �� �X;� j Gn� a.s.�!L2 E �� �X;� j G� ;where Gn is the �-�eld generated by f(�i; Ni) j jij � n g.
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� For ea
h n � 0 we will 
onstru
t Y n; as follows :I Take (Vi)i2V i.i.d. sample from � whi
h are in-dependent of the innovations (�i; Ni)i2V as wellas (Xi)i2V .I Fix n � 0 and de�ne Y ni = Vi for jij = n.I For jij < n de�ne Y ni re
ursively.� Some immediate 
onsequen
e of the 
onstru
tionare as follows :I X; d= Y n; d= � for every n � 0.I For ea
h n � 0, the random variables X; andY n; when 
onditioned on the �-algebra Gn, areindependent and identi
ally distributed.I Moreover for ea
h n � 0,� X;Y n+1; � d= T (2)�dist�� X;Y n; ��� :I Finally we also note that� X;Y n; � d= T (2)n (�
 �) :
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� Consider the sequen
e �X;; Y n; �n�0.� It is tight be
ause all the marginals are same whi
his �.� If f; h : S ! R be two bounded 
ontinuous fun
tionsthenE �f (X;)h �Y n; �� = E �E �f (X;)h �Y n; � j Gn��= E [E [f (X;) j Gn℄ E [h (X;) j Gn℄℄! E [E [f (X;) j G℄ E [h (X;) j G℄℄� So we 
on
lude that�X;; Y n; � d�! (X�; Y �) ;for some (X�; Y �) whi
h has marginal �.� From the (te
hni
al) 
ontinuity assumption of T (2)we get that (X�; Y �) is a solution of the bivariateequation with marginal �, so using bivariate unique-ness we get X� = Y � a.s.
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� Let �2n (�) := kE [� (X;) j Gn℄� �(X;) k22.� Easy 
al
ulation shows�2n (�) = E [Var (� (X;) j Gn)℄= 12E h��(X;)� � �Y n; ��2iThe last inequality follows from the simple fa
t thatfor any random variable U with �nite se
ond mo-ment, Var (U) = 12E �(U1 � U2)2�where (U1; U2) are two independent 
opies of U .� Taking n ! 1 limit we 
an then 
on
lude that�2n (�)! 0, be
ause �X;; Y n; � d�! (X�;X�).� So � (X;) = E [� (X;) j G℄ a.s.� This is true for every bounded 
ontinuous fun
tion�, so we 
on
lude that X; is a.s. G measurable,proving the endogeny property.
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Part (
) [\if"-part℄ :� We know that the 
onstru
tion of �Y ni �jij�n yields�X;; Y n; � has distribution T (2)n (�
 �).� So we get �X;; Y n; � d�! �%:� The rest follows from the previous argument.
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Part (
) [\only if"-part℄ :� Again work with the same 
onstru
tion of �Y n; �n�0.� Let �1;�2 : S ! R be two bounded 
ontinuous fun
-tions. E ��1 (X;)�2 �Y n; ��= E �E ��1 (X;)�2 �Y n; � j Gn��= E [E [�1 (X;) j Gn℄ E [�2 (X;) j Gn℄℄! E [E [�1 (X;) j G℄ E [�2 (X;) j G℄℄= E [�1 (X;)�2 (X;)℄The last equality follows from endogeny assump-tion.� This of 
ourse then implies�X;; Y n; � d�! (X;; X;) ;whi
h is same as sayingT (2)n (�
 �) d�! �%:
18



Appli
ation to Solutions of the Qui
ksortRDERe
all that the Qui
ksort RDE is given byX d= UX1+ (1� U)X2+ C(U) on R ;where (X1;X2) are i.i.d. 
opies of X and are independentof U � Uniform[0;1℄, andC(u) := 1+ 2u logu+2(1� u) log(1� u):
Known :� If X is a solution then so is (m+X) for any m 2 R .� There is a unique solution with E [X℄ = 0 andE �X2� <1 [R�osler (1992)℄.� Let � be the solution with mean zero and �nitevarian
e then the set of all solutions is given by�� �Cau
hy �m;�2� jm 2 R ; �2 2 R+ 	[Fill and Janson (2000)℄� Note that the only mean zero solution is �. 19



Theorem 2 A solution of the Qui
ksort RDEis endogenous if and only if �2 = 0.
Remark : In other words, the solution � andits translates are the only endogenous solu-tions.
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Proof of Theorem 2� We will use the bivariate uniqueness te
hnique.� Let � = � � Cau
hy �m;�2� be a solution of theQui
ksort RDE. Consider the bivariate RDE� XY � d= � UX1+ (1� U)X2+ C(U)UY1+ (1� U)Y2+ C(U) � ;where (Xj; Yj)j=1;2 are i.i.d. 
opies of (X;Y ) and areindependent of U � Uniform[0;1℄. Further assumeX d= Y d= �.
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Proof of the \if"-part� XY � d= � UX1+ (1� U)X2+ C(U)UY1+ (1� U)Y2+ C(U) �
� We assume �2 = 0.� Let D = X � Y and similarly de�ne D1 and D2.� Then D d= UD1+ (1� U)D2 on R .� Sin
e �2 = 0, so X d= Y d= � � Æm, thus D has�nite se
ond moment.� Simple 
al
ulation then shows E [D℄ = 0 = E �D2�.� Thus X = Y a.s., that is, bivariate uniquenessholds.
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Proof of the \only if"-part� XY � d= � UX1+ (1� U)X2+ C(U)UY1+ (1� U)Y2+ C(U) �
� Suppose �2 > 0.� We will show that (Q+ Z;Q+W) is a solution ofthe bivariate equation, where Z and W are i.i.d.Cau
hy �m;�2� and are independent of Q � �.� Observe that if Z1 and Z2 are i.i.d. Cau
hy �m;�2�and are independent of U � Uniform[0;1℄ thenZ = UZ1+ (1� U)Z2is also Cau
hy �m;�2� and it is independent of U(follows by 
omputing the 
hara
teristi
 fun
tion).
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� Take (Z1; Z2;W1;W2) i.i.d. Cau
hy �m;�2�; (Q1; Q2)i.i.d. 
opies of Q � �; and U � Uniform[0;1℄. Allare independent.� De�ne Xj := Qj + Zj and Yj := Qj +Wj, j 2 f1;2g.� Let Q := UQ1+ (1� U)Q2+ C(U) then Q � �.� If Z := UZ1+(1�U)Z2 and W := UW1+(1�U)W2then Q + Z = UX1+ (1� U)X2+ C(U)Q + W = UY1+ (1� U)Y2+ C(U)� But Z and W are i.i.d. Cau
hy �m;�2� and are in-dependent of Q.� Thus (Q+Z;Q+W) is a non-trivial solution of thebivariate RDE and hen
e bivariate uniqueness fails.
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