Recursive Distributional Equations and Recursive Tree Processes : Lecture - II

Antar Bandyopadhyay

(Joint work with Professor David J. Aldous) [Work done at UC, Berkeley and IMA, Minneapolis]

Mini-Workshop on Recursive Distributional Equations J.W. Goethe Universitt Frankfurt a.M., Germany

> Department of Mathematics Chalmers University of Technology Gothenburg, Sweden

> > March 8, 2005

Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on \mathcal{P} is called a Recursive Distributional Equation (RDE)

$$X \stackrel{d}{=} g\left(\xi; \left(X_j, 1 \leq j \leq^* N\right)\right) \quad on \quad S,$$

where $(X_j)_{j\geq 1}$ are independent copies of X and are independent of (ξ, N) .

Remark : A more conventional (analysis) way of writing the equation would be

$$\mu = T(\mu)$$

where T is the operator associated with the above equation, which depends on the function g and the joint distribution of the pair (ξ, N) , and μ is the (unknown) law of X.

- Skeleton : $\mathbb{T}_{\infty} := (\mathcal{V}, \mathcal{E})$ is the canonical infinite tree with vertex set $\mathcal{V} := \{i \mid i \in \mathbb{N}^d, d \ge 1\} \cup \{\emptyset\}$, and edge set $\mathcal{E} := \{e = (i, ij) \mid i \in \mathcal{V}, j \in \mathbb{N}\}$, and root \emptyset .
- Innovations: Collection of i.i.d pairs $\{(\xi_i, N_i) \mid i \in \mathcal{V}\}$.
- **Function :** The function $g(\cdot)$.

Recursive Tree Process (RTP)

Consider a **RTF** and let μ be a solution of the associated **RDE**. A collection of *S*-valued random variables $(X_i)_{i \in \mathcal{V}}$ is called an invariant *Recursive Tree Process (RTP)* with marginal μ if

- $X_{\mathbf{i}} \sim \mu \ \forall \ \mathbf{i} \in \mathcal{V}.$
- Fix $d \ge 0$ then $(X_i)_{|i|=d}$ are independent.
- $X_{\mathbf{i}} = g\left(\xi_{\mathbf{i}}; X_{\mathbf{i}j}, 1 \leq j \leq^* N_{\mathbf{i}}\right)$ a.s. $\forall \mathbf{i} \in \mathcal{V}$.
- $X_{\mathbf{i}}$ is independent of $\{(\xi_{\mathbf{i}'}, N_{\mathbf{i}'}) \mid |\mathbf{i}'| < |\mathbf{i}|\} \quad \forall \mathbf{i} \in \mathcal{V}.$

Remark : Using *Kolmogorov's consistency*, an invariant RTP with marginal μ exists if and only if μ is a solution of the associated RDE.

Questions

Given a RDE

$$X \stackrel{d}{=} g\left(\xi; \left(X_j, \mathbf{1} \leq j \leq^* N\right)\right)$$
 on S

one can ask several questions, such as ...

- (i) Does it have a solution ? (*existence*)
- (ii) If yes, is it unique ? (*uniqueness*)
- (iii) If μ is a solution then for what other measure say ν , do we have $T^n(\nu) \xrightarrow{d} \mu$? (domain of attraction)
- (iv) If μ is a solution then is the invariant RTP with marginal μ endogenous ? (*endogeny*)
- (v) If μ is a solution the does the invariant RTP with marginal μ has trivial tail ? (*tail triviality of RTP*) [will not discuss this issue in this series]

··· perhaps many more !

Endogeny

Definition 2 Let \mathcal{G} be the σ -field generated by the innovation process $\{(\xi_i, N_i) | i \in \mathcal{V}\}$. We will say an invariant RTP is endogenous if X_{\emptyset} is almost surely \mathcal{G} -measurable.

Endogeny vs Uniqueness

Example (Uniqueness \Rightarrow Endogeny) :

 $X \stackrel{d}{=} \operatorname{sign}(X_1) \times \xi \quad \text{on } \mathbb{R},$

where $\xi \sim \text{Normal}(0, 1)$ and is independent of X_1 .

- Trivially the unique solution is Normal (0, 1).
- Once again invariant RTP can be indexed by nonnegative integers. Let $(X_i)_{i\geq 0}$ be invariant RTP with marginal Normal (0, 1), from definition

$$X_i = \operatorname{sign}(X_{i+1}) \times \xi_i$$
 a.s.

Let $Y_i = -X_i$, $i \ge 0$ then

 $Y_i = \operatorname{sign}(Y_{i+1}) \times \xi_i$ a.s.

Thus $(Y_i)_{i\geq 0}$ is also an invariant RTP with marginal Normal (0, 1). So RTP $(X_i)_{i\geq 0}$ can not be endogenous.

Remarks :

- We will see that *uniqueness* of a "modified" RDE will imply endogeny.
- Later we will see that a RDE may have many solutions some endogenous while others are not.

Endogeny vs The Operator T

RDE - I	RDE- II
$X \stackrel{d}{=} \xi$ on \mathbb{R} ,	$X \stackrel{d}{=} \operatorname{sign} (X_1) \times \xi$ on \mathbb{R} ,
where $\xi \sim Normal(0,1)$	where $\xi \sim$ Normal $(0,1)$

Observations :

- Both RDEs define the same operator T, namely mapping every probability measure to Normal (0, 1).
- Trivially the invariant RTP for **RDE I** is endogenous, while that for **RDE II** is not.
- Note T is a "very nice" function ! (It is continuous, monotone, a contraction ...)

Remark : In order to answer the question of endogeny, we need the whole structure of the RTF. In particular the function g. We will later see [Lecture-III] that if g has some "nice" properties then endogeny will follow for certain solution(s).

Bivariate Uniqueness

Consider the following **bivariate RDE**,

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} g(\xi; (X_j, 1 \le j \le^* N)) \\ g(\xi; (Y_j, 1 \le j \le^* N)) \end{pmatrix}$$

where $(X_j, Y_j)_{j\geq 1}$ are i.i.d and has the same law as of (X, Y), and are independent of the innovation (ξ, N) .

Note : We will denote the operator associated with this bivariate RDE by $T^{(2)}$.

Definition 3 An invariant RTP with marginal μ has **bivariate uniqueness** property if the above bivariate RDE has unique solution as X = Y a.s on the space of joint probabilities with both marginals μ .

Uniqueness vs Bivariate Uniqueness

 It is possible to have an RDE which has unique solution but the solution fail to have bivariate uniqueness.

$$X \stackrel{d}{=} \xi + X_1 \pmod{2}$$
 on $\{0, 1\},$

where $\xi \sim \text{Bernoulli}(p)$ for some $0 and is independent of <math>X_1$.

- ► Easy to see that the unique solution is $X \sim$ Bernoulli $\left(\frac{1}{2}\right)$.
- ▶ It is also not hard to see that, any joint distribution (X, Y) with marginal Bernoulli $(\frac{1}{2})$, is a solution of the bivariate RDE.

Remark : Later we will have an example (*Quicksort RDE*) where the RDE has many solutions among which only one has bivariate uniqueness.

Equivalence Theorem

Theorem 1 Suppose the *S* is a Polish space. Consider an invariant RTP with marginal distribution μ .

(a) If the endogenous property holds then the bivariate uniqueness property holds.

(b) Conversely, suppose the bivariate uniqueness property holds. If also $T^{(2)}$ is continuous with respect to the weak convergence on the set of bivariate distributions with marginal μ , then the endogenous property holds.

(c) Further, the endogenous property holds if and only if

 $T^{(2)^n}(\mu\otimes\mu) \xrightarrow{d} \mu^{\nearrow},$

where $\mu \otimes \mu$ is the product measure, and μ^{\nearrow} is the measure concentrated on the diagonal with both marginal μ .

Proof of the Equivalence Theorem

Part (a) (Endogeny \Rightarrow Bivariate Uniqueness) :

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} g(\xi; (X_j, 1 \le j \le^* N)) \\ g(\xi; (Y_j, 1 \le j \le^* N)) \end{pmatrix}$$

- ν be a solution of the bivariate RDE with marginal μ .
- Using i.i.d. innovations $(\xi_i, N_i)_{i \in \mathcal{V}}$ construct bivariate RTP $((X_i, Y_i))_{i \in \mathcal{V}}$ such that $(X_i, Y_i) \sim \nu$ for all $i \in \mathcal{V}$.

• Observe for every $n \ge 0$,

$$(X_{\emptyset}; ((\xi_{\mathbf{i}}, N_{\mathbf{i}}), |\mathbf{i}| \leq n)) \stackrel{d}{=} (Y_{\emptyset}; ((\xi_{\mathbf{i}}, N_{\mathbf{i}}), |\mathbf{i}| \leq n))$$

• So if $\Lambda : S \to \mathbb{R}$ is a bounded measurable function then

$$\mathbf{E}\left[\Lambda\left(X_{\emptyset}\right) \mid \mathcal{G}_{n}\right] = \mathbf{E}\left[\Lambda\left(Y_{\emptyset}\right) \mid \mathcal{G}_{n}\right] \quad \text{a.s.},$$

where \mathcal{G}_n is the σ -field generated by $\{(\xi_i, N_i) \mid |i| \leq n \}$.

• By martingale convergence theorem and using the endogeny property we get

$$\Lambda(X_{\emptyset}) = \Lambda(Y_{\emptyset})$$
 a.s.

This is true for any bounded measurable function Λ , so

$$X_{\emptyset} = Y_{\emptyset}$$
 a.s.

12

Part (b) : Bivariate Uniqueness \Rightarrow Endogeny :

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} g(\xi; (X_j, 1 \le j \le^* N)) \\ g(\xi; (Y_j, 1 \le j \le^* N)) \end{pmatrix}$$

- Fix $\Lambda: S \to \mathbb{R}$, a bounded continuous function.
- Let $(X_i)_{i \in \mathcal{V}}$ be an invariant RTP with marginal μ .
- By martingale convergence theorem

$$\mathbf{E}\left[\Lambda\left(X_{\emptyset}\right) \mid \mathcal{G}_{n}\right] \xrightarrow{\mathsf{a.s.}}_{\mathcal{L}_{2}} \mathbf{E}\left[\Lambda\left(X_{\emptyset}\right) \mid \mathcal{G}\right],$$

where \mathcal{G}_n is the σ -field generated by $\{(\xi_i, N_i) \mid |i| \leq n \}$.

- For each $n \ge 0$ we will construct Y_{\emptyset}^n as follows :
 - ► Take $(V_i)_{i \in \mathcal{V}}$ i.i.d. sample from μ which are independent of the innovations $(\xi_i, N_i)_{i \in \mathcal{V}}$ as well as $(X_i)_{i \in \mathcal{V}}$.
 - Fix $n \ge 0$ and define $Y_i^n = V_i$ for $|\mathbf{i}| = n$.
 - ▶ For $|\mathbf{i}| < n$ define $Y_{\mathbf{i}}^n$ recursively.
- Some immediate consequence of the construction are as follows :

$$\blacktriangleright X_{\emptyset} \stackrel{d}{=} Y_{\emptyset}^{n} \stackrel{d}{=} \mu \text{ for every } n \ge 0.$$

- For each $n \ge 0$, the random variables X_{\emptyset} and Y_{\emptyset}^{n} when conditioned on the σ -algebra \mathcal{G}_{n} , are independent and identically distributed.
- Moreover for each $n \ge 0$,

$$\left[\begin{array}{c} X_{\emptyset} \\ Y_{\emptyset}^{n+1} \end{array}\right] \stackrel{d}{=} T^{(2)} \left(\operatorname{dist} \left(\left[\begin{array}{c} X_{\emptyset} \\ Y_{\emptyset}^{n} \end{array}\right] \right) \right).$$

► Finally we also note that

$$\left[\begin{array}{c} X_{\emptyset} \\ Y_{\emptyset}^n \end{array}\right] \stackrel{d}{=} T^{(2)^n} \left(\mu \otimes \mu\right).$$

- Consider the sequence $(X_{\emptyset}, Y_{\emptyset}^n)_{n>0}$.
- It is tight because all the marginals are same which is μ .
- If $f,h:S\rightarrow \mathbb{R}$ be two bounded continuous functions then

$$\mathbf{E} \left[f \left(X_{\emptyset} \right) h \left(Y_{\emptyset}^{n} \right) \right] = \mathbf{E} \left[\mathbf{E} \left[f \left(X_{\emptyset} \right) h \left(Y_{\emptyset}^{n} \right) | \mathcal{G}_{n} \right] \right] = \mathbf{E} \left[\mathbf{E} \left[f \left(X_{\emptyset} \right) | \mathcal{G}_{n} \right] \mathbf{E} \left[h \left(X_{\emptyset} \right) | \mathcal{G}_{n} \right] \right] \rightarrow \mathbf{E} \left[\mathbf{E} \left[f \left(X_{\emptyset} \right) | \mathcal{G} \right] \mathbf{E} \left[h \left(X_{\emptyset} \right) | \mathcal{G} \right] \right]$$

• So we conclude that

$$(X_{\emptyset}, Y_{\emptyset}^n) \xrightarrow{d} (X^*, Y^*),$$

for some (X^*, Y^*) which has marginal μ .

• From the (technical) continuity assumption of $T^{(2)}$ we get that (X^*, Y^*) is a solution of the bivariate equation with marginal μ , so using bivariate uniqueness we get

$$X^* = Y^* \quad \text{a.s.}$$

- Let $\sigma_n^2(\Lambda) := \|\mathbf{E}[\Lambda(X_{\emptyset}) | \mathcal{G}_n] \Lambda(X_{\emptyset}) \|_2^2$.
- Easy calculation shows

$$\sigma_n^2(\Lambda) = \mathbf{E} \left[\operatorname{Var} \left(\Lambda \left(X_{\emptyset} \right) \mid \mathcal{G}_n \right) \right] \\ = \frac{1}{2} \mathbf{E} \left[\left(\Lambda \left(X_{\emptyset} \right) - \Lambda \left(Y_{\emptyset}^n \right) \right)^2 \right]$$

The last inequality follows from the simple fact that for any random variable U with finite second moment,

$$\operatorname{Var}(U) = \frac{1}{2} \operatorname{E} \left[(U_1 - U_2)^2 \right]$$

where (U_1, U_2) are two independent copies of U.

- Taking $n \to \infty$ limit we can then conclude that $\sigma_n^2(\Lambda) \to 0$, because $(X_{\emptyset}, Y_{\emptyset}^n) \xrightarrow{d} (X^*, X^*)$.
- So $\wedge (X_{\emptyset}) = \mathbf{E} [\wedge (X_{\emptyset}) | \mathcal{G}]$ a.s.
- This is true for every bounded continuous function Λ , so we conclude that X_{\emptyset} is a.s. \mathcal{G} measurable, proving the endogeny property.

Part (c) ["if"-part] :

- We know that the construction of $(Y_{\mathbf{i}}^n)_{|\mathbf{i}| \le n}$ yields $(X_{\emptyset}, Y_{\emptyset}^n)$ has distribution $T^{(2)^n}(\mu \otimes \mu)$.
- So we get

$$(X_{\emptyset}, Y_{\emptyset}^n) \xrightarrow{d} \mu^{\nearrow}.$$

• The rest follows from the previous argument.

Part (c) ["only if"-part] :

- Again work with the same construction of $(Y_{\emptyset}^n)_{n\geq 0}$.
- Let $\Lambda_1, \Lambda_2 : S \to \mathbb{R}$ be two bounded continuous functions.

$$E \left[\Lambda_{1} \left(X_{\emptyset} \right) \Lambda_{2} \left(Y_{\emptyset}^{n} \right) \right]$$

$$= E \left[E \left[\Lambda_{1} \left(X_{\emptyset} \right) \Lambda_{2} \left(Y_{\emptyset}^{n} \right) \mid \mathcal{G}_{n} \right] \right]$$

$$= E \left[E \left[\Lambda_{1} \left(X_{\emptyset} \right) \mid \mathcal{G}_{n} \right] E \left[\Lambda_{2} \left(X_{\emptyset} \right) \mid \mathcal{G}_{n} \right] \right]$$

$$\rightarrow E \left[E \left[\Lambda_{1} \left(X_{\emptyset} \right) \mid \mathcal{G} \right] E \left[\Lambda_{2} \left(X_{\emptyset} \right) \mid \mathcal{G} \right] \right]$$

$$= E \left[\Lambda_{1} \left(X_{\emptyset} \right) \Lambda_{2} \left(X_{\emptyset} \right) \right]$$

The last equality follows from endogeny assumption.

• This of course then implies

$$(X_{\emptyset}, Y_{\emptyset}^n) \xrightarrow{d} (X_{\emptyset}, X_{\emptyset}),$$

which is same as saying

$$T^{(2)^n}(\mu\otimes\mu) \xrightarrow{d} \mu^{\nearrow}.$$

Application to Solutions of the Quicksort RDE

Recall that the Quicksort RDE is given by

$$X \stackrel{a}{=} UX_1 + (1 - U)X_2 + C(U)$$
 on \mathbb{R} ,

where (X_1, X_2) are i.i.d. copies of X and are independent of $U \sim \text{Uniform}[0, 1]$, and

$$C(u) := 1 + 2u \log u + 2(1 - u) \log(1 - u).$$

Known:

- If X is a solution then so is (m + X) for any $m \in \mathbb{R}$.
- There is a unique solution with E[X] = 0 and $E[X^2] < \infty$ [Rösler (1992)].
- Let ν be the solution with mean zero and finite variance then the set of all solutions is given by

$$\left\{\nu * \operatorname{Cauchy}\left(m, \sigma^{2}\right) \mid m \in \mathbb{R}, \, \sigma^{2} \in \mathbb{R}_{+}\right\}$$

[Fill and Janson (2000)]

• Note that the only mean zero solution is ν .

Theorem 2 A solution of the Quicksort RDE is endogenous if and only if $\sigma^2 = 0$.

Remark : In other words, the solution ν and its translates are the only endogenous solutions.

Proof of Theorem 2

- We will use the bivariate uniqueness technique.
- Let $\mu = \nu * \operatorname{Cauchy}(m, \sigma^2)$ be a solution of the Quicksort RDE. Consider the bivariate RDE

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} UX_1 + (1-U)X_2 + C(U) \\ UY_1 + (1-U)Y_2 + C(U) \end{pmatrix},$$

where $(X_j, Y_j)_{j=1,2}$ are i.i.d. copies of (X, Y) and are independent of $U \sim \text{Uniform}[0, 1]$. Further assume $X \stackrel{d}{=} Y \stackrel{d}{=} \mu$.

Proof of the "if"-part

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} UX_1 + (1-U)X_2 + C(U) \\ UY_1 + (1-U)Y_2 + C(U) \end{pmatrix}$$

- We assume $\sigma^2 = 0$.
- Let D = X Y and similarly define D_1 and D_2 .
- Then $D \stackrel{d}{=} UD_1 + (1 U)D_2$ on \mathbb{R} .
- Since $\sigma^2 = 0$, so $X \stackrel{d}{=} Y \stackrel{d}{=} \nu * \delta_m$, thus *D* has finite second moment.
- Simple calculation then shows $\mathbf{E}[D] = \mathbf{0} = \mathbf{E}[D^2]$.
- Thus X = Y a.s., that is, bivariate uniqueness holds.

Proof of the "only if"-part

$$\begin{pmatrix} X \\ Y \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} UX_1 + (1-U)X_2 + C(U) \\ UY_1 + (1-U)Y_2 + C(U) \end{pmatrix}$$

- Suppose $\sigma^2 > 0$.
- We will show that (Q + Z, Q + W) is a solution of the bivariate equation, where Z and W are i.i.d. Cauchy (m, σ^2) and are independent of $Q \sim \nu$.
- Observe that if Z_1 and Z_2 are i.i.d. Cauchy (m, σ^2) and are independent of $U \sim \text{Uniform}[0, 1]$ then

$$Z = UZ_1 + (1 - U)Z_2$$

is also Cauchy (m, σ^2) and it is independent of U (follows by computing the characteristic function).

- Take $(Z_1, Z_2; W_1, W_2)$ i.i.d. Cauchy (m, σ^2) ; (Q_1, Q_2) i.i.d. copies of $Q \sim \nu$; and $U \sim \text{Uniform}[0, 1]$. All are independent.
- Define $X_j := Q_j + Z_j$ and $Y_j := Q_j + W_j$, $j \in \{1, 2\}$.
- Let $Q := UQ_1 + (1 U)Q_2 + C(U)$ then $Q \sim \nu$.
- If $Z := UZ_1 + (1 U)Z_2$ and $W := UW_1 + (1 U)W_2$ then

$$Q + Z = UX_1 + (1 - U)X_2 + C(U)$$

$$Q + W = UY_1 + (1 - U)Y_2 + C(U)$$

- But Z and W are i.i.d. Cauchy (m, σ^2) and are independent of Q.
- Thus (Q + Z, Q + W) is a non-trivial solution of the bivariate RDE and hence bivariate uniqueness fails.