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Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P

is called a Recursive Distributional Equation (RDE)

X £ g(&(x;1<5<*N)) on s,

where (Xj)j>1 are independent copies of X and are in-
dependent of (¢, N).

Remark : A more conventional (analysis) way of writing
the equation would be

p="T(u)

where T' is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair ((,N), and u is the (unknown) law
of X.



Recursive Tree Framework (RTF)

e Skeleton : T, := (V,€) is the canonical infinite
tree with vertex set V := {i|i € N% d > 1 }u{0}, and
edge set £ :={e = (i,ij) |[i€ V,j € N}, and root 0.

e Innovations : Collection of i.i.d pairs {(&, NV;) |1 € V}.

e Function : The function g ().



Recursive Tree Process (RTP)

(&, Np)

Consider a RTF and let u be a solution of the associated
RDE . A collection of S-valued random variables (X;),.p

is called an invariant Recursive Tree Process (RTP) with
marginal p if

o Xij~uViey,

e Fix d > 0 then (Xj);—, are independent.

e Xi=g(& Xij,1 <j<*N;) as. Viev,

e X; is independent of {(&, Ny) ||| < |i|} VieV.
Remark : Using Kolmogorov’s consistency, an invariant

RTP with marginal p exists if and only if u is a solution
of the associated RDE.



Questions

Given a RDE

X £ g(¢(X;,1<j<*N)) on S

one can ask several questions, such as ...

(i)
(i)
(i)

(iv)

(v)

Does it have a solution ? (existence)
If yes, is it unique 7 (uniqueness)

If i is a solution then for what other measure say v,
do we have T" (v) -% u ? (domain of attraction)

If u is a solution then is the invariant RTP with
marginal u endogenous ? (endogeny)

If 1 is a solution the does the invariant RTP with
marginal p has trivial tail ? (tail triviality of RTP)
[will not discuss this issue in this series]

..+« perhaps many more !



Endogeny

Definition 2 Let G be the o-field generated by
the innovation process { (&, N;) |ie V. We
will say an invariant RTP is endogenous if Xj
is almost surely Gg-measurable.



Endogeny vs Uniqueness
Example (Uniqueness # Endogeny) :

x = sign(X1) x ¢ on R,

where £ ~ Normal (0,1) and is independent of Xj.

e Trivially the unique solution is Normal (0, 1).

e Once again invariant RTP can be indexed by non-
negative integers. Let (X;),., be invariant RTP
with marginal Normal (0, 1), from definition

X; =sign (X;+1) X & a.s.
Let YV, = —X;, ¢« > 0 then
Y; = sign (Y;4+1) X & a.s.

Thus (Y;),~q IS also an invariant RTP with marginal
Normal (0,1). So RTP (X;),~o can not be endoge-
nous. B

Remarks :

e We will see that uniqueness of a “modified’” RDE
will imply endogeny.

e L ater we will see that a RDE may have many solu-
tions some endogenous while others are not.



Endogeny vs The Operator T

RDE - 1 RDE- II
X < £ on R, X < sign (X1) x ¢ on R,
where £ ~ Normal (0,1) where £ ~ Normal (0,1)

Observations :

e Both RDEs define the same operator T, namely
mapping every probability measure to Normal (0,1).

e Trivially the invariant RTP for RDE - I is endoge-
nous, while that for RDE - II is not.

e Note T is a “very nice” function ! (It is continuous,
monotone, a contraction ...)

Remark : In order to answer the question of endogeny,
we need the whole structure of the RTF. In particular
the function g. We will later see [Lecture-III] that if g
has some “nice” properties then endogeny will follow for
certain solution(s).



Bivariate Uniqueness

Consider the following bivariate RDE,

X 9(& (X1 <j<"N))

Y g(&(Y;;1<j<*N))

where (X;,Y;),,; are i.i.d and has the same law as of
(X,Y), and are independent of the innovation (&, N).

Note : We will denote the operator associated with this
bivariate RDE by T2,

Definition 3 An invariant RTP with marginal u has bi-
variate uniqueness property if the above bivariate RDE
has unique solution as X =Y a.s on the space of joint
probabilities with both marginals p.



Uniqueness vs Bivariate Uniqueness

e It is possible to have an RDE which has unique so-
lution but the solution fail to have bivariate unique-

ness.
x £ ¢+ X1 (mod?2) on {0,1},

where £ ~ Bernoulli(p) for some 0 < p < 1 and is
independent of Xj.

» Easy to see that the unique solution is X ~
Bernoulli (%)

» It is also not hard to see that, any joint distri-
bution (X,Y) with marginal Bernoulli (1), is a
solution of the bivariate RDE.

Remark : Later we will have an example (Quicksort
RDE) where the RDE has many solutions among which
only one has bivariate uniqueness.



Equivalence Theorem

Theorem 1 Suppose the S is a Polish space. Consider
an invariant R TP with marginal distribution pu.

(a) If the endogenous property holds then the bivariate
uniqueness property holds.

(b) Conversely, suppose the bivariate uniqueness prop-
erty holds. If also T? js continuous with respect to the
weak convergence on the set of bivariate distributions
with marginal u, then the endogenous property holds.

(c) Further, the endogenous property holds if and only
if

TO" (nop) -5 uw,

where u® p is the product measure, and p/ is the mea-
sure concentrated on the diagonal with both marginal

Lo
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Proof of the Equivalence Theorem

Part (a) (Endogeny = Bivariate Uniqueness) :

X 9(& (X1 <j<*N))

Y g(& (Y;,1<j<*N))

e v be a solution of the bivariate RDE with marginal
.

e Using i.i.d. innovations (gi,Ni)iEV construct bivari-

ate RTP ((Xj,Yi));c) such that (X;,Y;) ~ v for all
1eV.
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e Observe for every n > 0,

d

(Xp: (&1, Ny, li] <)) (Yo, ((&, Ny, i < n)) .

e SOiIf\AN: S — R is a bounded measurable function
then
E[A(Xg) |Gn] =E[AN(Yp) |Gn] as.,
where G, is the o-field generated by {(&;, V) | |i] < n }.

e By martingale convergence theorem and using the

endogeny property we get

A (X(Z)) = A (Y(Z)> a.S.

This is true for any bounded measurable function

N\, SO

X(Z) = Y(Z) a.S.
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Part (b) : Bivariate Uniqueness = Endogeny :

X 9(& (X1 <j<"N))

Y g(&(Y;,1<j<*N))

e FiXx N: S — R, a bounded continuous function.
e Let (Xj);.y be an invariant RTP with marginal pu.

e By martingale convergence theorem

BA (Xy) |Gn] 225 EIA(X) [6],

2

where G, is the o-field generated by {(&, V;) | |i] < n }.
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e For each n > 0 we will construct Y;* as follows :

>

Take (Vj),cp i.i.d. sample from p which are in-
dependent of the innovations (&, NVi);.) as well

as (Xi)ep-
Fix n > 0 and define Y;" = V; for [i| = n.

» For |i| < n define Y;" recursively.

e Some immediate consequence of the construction
are as follows :

>
>

d d
Xy = Yy = pfor every n > 0.

For each n > 0, the random variables X, and
Y;D" when conditioned on the o-algebra G,, are
independent and identically distributed.

Moreover for each n > 0,

Xg | 4 1 (dist([ 5@2 m

n+1
Yy
Finally we also note that

X d n
vn | = TP (nep).
0
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Consider the sequence (X@,Y@”)n>0.

It is tight because all the marginals are same which
IS .

If f,h:S — R be two bounded continuous functions
then

E[f (Xo) 2 (Yy')]

E[E [ (Xo) h (Y") |Gn]]
E [E[f (Xo) |Ga] E [h (Xp) | Gall
— E[E[f(Xp) |G] E[h(Xy) |G]]

So we conclude that
(X0, Yy) 5 (X%, Y%,

for some (X*,Y*) which has marginal .

From the (technical) continuity assumption of T(2)
we get that (X*, Y*) is a solution of the bivariate
equation with marginal i, so using bivariate unique-
ness we get

X*=Y* a.s.
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o Let o2 (N) = [E[A(Xp) |Gn]l — A (Xp) 5.

e Easy calculation shows
on (N) = E[Var (A (Xp) |Gn)]
LE | (A (X0) = A ()]

The last inequality follows from the simple fact that
for any random variable U with finite second mo-
ment,

Var (U) = %E [(Ul — Uz)z]

where (U1, U>) are two independent copies of U.

e Taking n — oo limit we can then conclude that
02 (A) — 0, because (Xp,Yy") —& (X%, X*).

e SO AN(Xp) =E[N(Xp) |F] a.s.

e T his is true for every bounded continuous function
A\, so we conclude that X is a.s. ¢ measurable,
proving the endogeny property.
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Part (c) [“if"-part] :

e We know that the construction of (YI”)
(Xp,Yy) has distribution T™" (u® p).

i<n yields

e SO we get

(X, Y7 -5 u/.

e [ he rest follows from the previous argument.
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Part (c) [“only if”-part] :

e Again work with the same construction of (Y@n)n>0'

e Let A\1,\2: S — R be two bounded continuous func-
tions.

E [A1 (Xp) A2 (Yg'))
E [E [A1(Xp) A2 (Y5') |Gal]
E[E [A1 (Xg) |Ga] E[A2 (Xp) | Gnl]

E[E[A1 (Xp) |G] E[A2 (Xp) |G]]
E [A1 (Xp) N2 (Xp)]

|

The last equality follows from endogeny assump-
tion.

e T his of course then implies

(Xp, Yg) 5 (Xp, Xg)

which is same as saying

T@" (peou) -5 u’
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Application to Solutions of the Quicksort
RDE

Recall that the Quicksort RDE is given by

X £ Ux;+(1-U)Xo4+CW) on R,

where (X1, X»2) arei.i.d. copies of X and are independent
of U ~ Uniform|[0, 1], and

C(u) =14 2ulogu+ 2(1 —u)log(1l — u).

Known :

e If X is a solution then so is (m + X) for any m € R.

e There is a unique solution with E[X] = 0 and
E [X?] < oo [Ro&sler (1992)].

e Let v be the solution with mean zero and finite
variance then the set of all solutions is given by

{1/ x Cauchy (m,02) lm ER, 62 € Ry }
[Fill and Janson (2000)]

e Note that the only mean zero solution is v.

19



Theorem 2 A solution of the Quicksort RDE
is endogenous if and only if 02 =

Remark : In other words, the solution v and

its translates are the only endogenous solu-
tions.
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Proof of Theorem 2

e \We will use the bivariate unigueness technique.

e Let u = v * Cauchy(m,0?) be a solution of the
Quicksort RDE. Consider the bivariate RDE

X\ 4 (UXi+(1-U)X>+CU)
(%) 2 (MIhoowiés )

where (X;,Y;),_,, arei.i.d. copies of (X,Y’) and are

independent of U ~ Uniform[0,1]. Further assume

X v £,
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Proof of the “if”-part
X\ 4 (UX1i+(1-U)Xo+CU)
- U1+ (1 -0U)Y>2+C(U)
e We assume ¢2 = 0.
o Let D =X —Y and similarly define D1 and D».

e Then D =< UD;+ (1 -U)D> on R.

e Since 62 =0, so X 4y 4 v % 8,,, thus D has

finite second moment.
e Simple calculation then shows E[D] = 0 = E [D?].

e Thus X = Y a.s., that is, bivariate uniqueness
holds.
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Proof of the “only if”-part

(X) a (UX1+(1—U)X2+C(U)>
Yy ] = L ovi+ Q1 -U)Y2+C(U)

e Suppose 2 > 0.

e We will show that (Q + Z,Q + W) is a solution of
the bivariate equation, where Z and W are i.i.d.
Cauchy (m,0?) and are independent of Q ~ v.

e Observe that if Z; and Z» are i.i.d. Cauchy (m,o?)
and are independent of U ~ Uniform[0, 1] then

Z=UZ1+(1-U)Z>

is also Cauchy (m,0?) and it is independent of U
(follows by computing the characteristic function).
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Take (Z1, Z2; W1, Wh) i.i.d. Cauchy (m,o?); (Q1, Q2)
i.i.d. copies of Q ~ v; and U ~ Uniform[0,1]. All
are independent.

Define X, :=Q;+ Z; and Y; :=Q; + W;, j € {1,2}.
Let @ =UQ:1+(1-U)Q2+4+C(U) then Q ~v.

If Z . =UZ1+(1Q-U)Zy and W :=UW1+4+ (1 -U)W>
then

Q + Z
Q@ + W

UX:1+(1-U)X2+4 C(U)
U1+ (1 -U)Y2+C(U)

But Z and W are i.i.d. Cauchy (m,c?) and are in-
dependent of Q.

Thus (Q+ Z,Q + W) is a non-trivial solution of the
bivariate RDE and hence bivariate uniqgueness fails.
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