Recursive Distributional Equations and Recursive Tree Processes : Lecture - III

Antar Bandyopadhyay

(Joint work with Professor David J. Aldous) [Work done at UC, Berkeley and IMA, Minneapolis]

Mini-Workshop on Recursive Distributional Equations J.W. Goethe Universitt Frankfurt a.M., Germany

> Department of Mathematics Chalmers University of Technology Gothenburg, Sweden

> > March 9, 2005

Tree-Structured Coupling From the Past

Finite RTF :

Given a RDE

$$X \stackrel{d}{=} g(\xi; (X_j, 1 \leq j \leq^* N)) \quad \text{on } S,$$

we can define a RTF

 $\left(\mathbb{T}_{\infty};\left(\xi_{\mathbf{i}},N_{\mathbf{i}}
ight)_{\mathbf{i}\in\mathcal{V}};g
ight)$.

Remark : Associated with a RTF there is a Galton-Watson branching process tree rooted at \emptyset defined only through $\{N_i | i \in \mathcal{V}\}$, call it \mathcal{T} . Essentially any associated invariant RTP lives on \mathcal{T} .

Proposition 1 If \mathcal{T} is almost surely finite (equivalently $E[N] \leq 1$ and P(N = 1) < 1) then the associated RDE has unique solution and the RTP is endogenous.

Domain of the Function g

- The innovation ξ takes values in some measurable space (Θ, ξ).
- Recall our sample space is S.
- The function g which takes values in S, is defined on the space

$$\Theta^* := \Theta \times \bigcup_{0 \le d \le \infty} S^d.$$

Here S^∞ is the usual infinite product space and $S^0:=\{\varDelta\}$ where \varDelta is some "known object" !

Proof of Proposition 1 :

- Let $\ensuremath{\mathfrak{I}}$ be the set of all finite rooted trees with vertex weights.
- We define a function $h: \Im \to S$ as follows
 - ▶ Let $\mathcal{T} \in \mathcal{I}$ with weights (w_i) .
 - ▶ If a vertex i is a leaf then define

$$x_{\mathbf{i}} := g(w_{\mathbf{i}}; \Delta).$$

 \blacktriangleright For an internal vertex i with $n_i \geq$ 1 children recursively define

$$x_{\mathrm{i}} := g\left(w_{\mathrm{i}}; \left(x_{\mathrm{i}j}, 1 \leq j \leq n_{\mathrm{i}}\right)\right)$$

▶ Take $h(\mathfrak{T}) = x_{\emptyset}$, where \emptyset is the root of \mathfrak{T} .

Continuing ...

- GW tree T with the node weights (ξ_i) is an element of ℑ, let X_∅ be the h value of it.
- For a vertex i of \mathcal{T} let \mathcal{T}_i be the family tree generated by i. Then \mathcal{T}_i with the node weights is also an element of \mathfrak{I} , let X_i be it's h value.
- It follows from definition of h that (X_i) is a RTP with some marginal. Thus the RDE has a solution and it is endogenous.
- Finally if μ is a solution of the RDE, let (Y_i) be invariant RTP with marginal μ . From definition for a leaf i we must have $Y_i = X_i$ a.s. Now since the tree is a.s. finite so by recursion we get

$$Y_{\emptyset} = X_{\emptyset}$$
 a.s.

This proves the uniqueness.

Pointwise Monotone *g*-function :

Proposition 2 Suppose $S = \mathbb{R}^+$. Assume the following properties for g

- (i) For each fixed θ and $1 \le n \le \infty$, $g(\theta; (x_j, 1 \le j \le n)) \le g(\theta; (y_j, 1 \le j \le n))$, whenever $x_j \le y_j$ for all $1 \le j \le n$.
- (ii) For each fixed θ , the map $\mathbf{x} \mapsto g(\theta; \mathbf{x})$ is continuous with respect to increasing limits.

Suppose further that, for the operator T, the sequence $(T^n(\delta_0))_{n>0}$ is tight. Then

$$T^n(\delta_0) \xrightarrow{d} \mu$$

where μ is a solution of the RDE and the invariant RTP with marginal μ is endogenous.

Remarks :

- In many applications the function g will naturally satisfy the assumptions of the proposition.
- The tightness of the sequence $(T^n(\delta_0))_{n\geq 0}$ is equivalent to having a solution supported on \mathbb{R}^+ .
- μ when exists has the property that $\mu \preccurlyeq \nu$ for any other solution ν .
- In context of *interacting particle system* μ parallels the concept of *lower invariant measure*.
- The theorem do not provide any obvious uniqueness criterion !

Proof of Proposition 2 :

- Notice that under assumption (i), $(T^n(\delta_0))_{n\geq 0}$ is increasing in stochastic-ordering.
- Tightness of $(T^n(\delta_0))_{n\geq 0}$ implies $T^n(\delta_0) \xrightarrow{d} \mu$.
- Moreover by (ii), μ is a fixed-point of T.
- Let $(X_i)_{i \in \mathcal{V}}$ be the RTP with marginal μ .
- For each $d \ge 0$ we define a d-depth RTP, say $\left(X_{\mathbf{i}}^{(d)}\right)_{|\mathbf{i}|\le d}$, which satisfy the recursion with same innovations but has $X_{\mathbf{i}}^{(d)} = 0$ when $|\mathbf{i}| = d$.

$$0 \leq X_{\emptyset}^{(1)} \leq X_{\emptyset}^{(2)} \leq \cdots \leq X_{\emptyset}$$
 a.s.

- On the other hand from definition $X_{\emptyset}^{(d)} \sim T^d(\delta_0)$.
- Thus $X_{\emptyset}^{(d)} \uparrow X_{\emptyset}$ a.s. which proves the endogeny.

Examples of "Max"-type RDEs

Discounted Tree Sums

Consider the following RDE

$$X \stackrel{d}{=} \eta + \max_{1 \le j \le N} \xi_j X_j \quad \text{on} \quad S = \mathbb{R}^+,$$

where $(\eta; (\xi_j, 1 \le j \le N))$ has a given law and is independent of $(X_j)_{j\ge 1}$ which are i.i.d. copies of X. We will consider the general case where $N \le \infty$ and possibly random.

A Brief History :

- There are many interesting examples studied by various authors [Athreya (1985), Devroye (2001), Durrett and Limic (2002)] falling under this general RDE.
- Special case of non-random finite N has been studied by Rachev and Rüschendorf (1998).
- The homogeneous case, that is by taking $\eta = 0$ a.s. was considered independently by Jagers and Rösler (2004).
- In a recent work Neininger and Rüschendorf (2005) considered a more general form with multiple η 's but non-random N.

A "Story" and A Potential Solution

- For simplicity let us assume N = 2 a.s.
- $(\eta_i; (\xi_{i1}, \xi_{i2}))_{i \in \mathcal{V}}$ be the i.i.d. innovation process.
- Think η_i to be the weight of vertex i.
- Think ξ_{i1} and ξ_{i2} as edge-weights for the two edges coming out of the vertex i.
- For the path $(\emptyset = v_0, v_1, \dots, v_d)$ from the root \emptyset to v_d define the *influence* of vertex v_d at the root as

$$\eta_{v_d}\prod_{k=1}^d \xi_{(v_{k-1},v_k)}.$$

• For an infinite path $\pi := (\emptyset = v_0, v_1, v_2, ...)$ the total influence is

$$\sum_{d=0}^\infty \eta_{v_d} \prod_{k=1}^d \xi_{(v_{k-1},v_k)}.$$

• Let X be the maximal influence of any infinite path, that is,

$$X = \sup_{(\emptyset = v_0, v_1, v_2, \dots)} \sum_{d=0}^{\infty} \eta_{v_d} \prod_{k=1}^{d} \xi_{(v_{k-1}, v_k)}$$

• If $X < \infty$ a.s. then it is a solution of the RDE.

10

A Contraction Argument

Theorem 1 Suppose that $0 \le \xi_j < 1$ for $j \ge 1$ and $\eta \ge 0$ has all moments finite. Suppose for some $1 \le p < \infty$ $c(p) := \mathbf{E}\left[\sum_{j=1}^N \eta_j\right] < \infty$ then

(a) If T is the associated operator for the RDE then

$$T^n(\delta_0) \xrightarrow{d} X < \infty$$
 a.s.

and X has all moments finite.

(b) There is a $p_0 \ge 1$ such that $c(p_0) < 1$ and X is the unique solution amongst possible solutions with finite p_0^{th} moment.

Remarks :

- Here T becomes a contraction under (standard) Wasserstein metric with contraction coefficient c(p).
- We note the function g here is "nice" in the sense that it satisfies both conditions of Proposition 2.
- The contractive property proves that the sequence $(T^n(\delta_0))_{n\geq 0}$ is tight, which is equivalent of proving $X < \infty$ a.s.
- We only consider the case $0 \le \xi_j < 1$, but it makes sense to relax this assumption. All our examples satisfy this assumption though.

Three Interesting Examples :

Example 1 (Discounted BRW) : [Athreya (1985)]

$$X \stackrel{d}{=} \eta + c \max(X_1, X_2) \quad \text{on } \mathbb{R}^+,$$

where (X_1, X_2) are i.i.d. copies of X and are independent of η and 0 < c < 1 is a constant.

- Instead of binary branching one can also consider a random branching with distribution N.
- Here $c(p) = \mathbf{E}[N] \times c^p$, so by our theorem it has a solution with all moments finite if $\mathbf{E}[N] < \infty$ and if we assume all moments of η are finite. Moreover if c is "small" then this is unique amongst possible solutions with finite mean.
- One interpretation is as *inhomogeneous* percolation on the planted (binary) tree (the root has degree one), where an edge at depth d has traversal time distributed as $c^d \eta$. Then X is the time for the entire tree to be traversed.

Example 2 (FIND Algorithm) : [Devroye (2001)]

$$X \stackrel{d}{=} 1 + \max(UX_1, (1 - U)X_2) \text{ on } \mathbb{R}^+,$$

where (X_1, X_2) are i.i.d. copies of X and are independent of $U \sim \text{Uniform } (0, 1)$.

- Arise in the context of the probabilistic worst-case analysis of Hoare's FIND algorithm.
- Here $c(p) = \frac{2}{1+p}$ and so this also has a solution with all moments finite. This solution is unique amongst possible solutions with finite $(1 + \varepsilon)^{\text{th}}$ moment, for some $\varepsilon > 0$.
- Devroye (2001) proved that any solution has all moments finite and hence proving uniqueness.

Example 3 : [Durrett and Limic (2002)]

$$X \stackrel{d}{=} \eta + \max_{j>1} e^{-\xi_j} X_j \quad \text{on } \mathbb{R}^+,$$

where $(X_j)_{j\geq 1}$ are i.i.d. copies of X and are independent of $\left(\eta; (\xi_j)_{j\geq 1}\right)$. Here $(\xi_j)_{j\geq 1}$ are points of a Poisson point process with rate 1 on $(0,\infty)$ and independent of $\eta \sim$ Exponential (1).

Remarks :

- The model studied by Durrett and Limic (2002) gives this equation through the following story.
- Consider the following Markov process on countable subsets of $[0,\infty)$
 - ▶ Each individual at position x lives for an independent Exponential (e^x) lifetime.
 - ► After which it dies and instantaneously gives birth to infinitely many offsprings which are placed at positions $(x + \xi_j)_{j \ge 1}$ where $(\xi_j)_{j \ge 1}$ are points of a Poisson process of rate 1 on $(0, \infty)$.
 - ► Then X is the extinction time for the process started with a single individual at position 0.
- $c(p) = \frac{1}{p}$, so the general result proves that there is a solution with all moments finite which is also endogenous.
- Interesting enough in this case there are many other solutions, which of course do not have finite expectation !

Homogeneous Equation and Uniqueness

Proposition 3 Consider the homogeneous RDE

$$X \stackrel{d}{=} \max_{1 \le j \le^* N} \xi_j X_j \quad on \ \mathbb{R}^+,$$

where $(X_j)_{j\geq 1}$ are i.i.d. copies of X and are independent of $(\xi_j)_{j\geq 1}$. Suppose dist (Y) is a non-zero solution of it. Let T be the operator associated with the original (inhomogeneous) RDE and we assume that $X < \infty$ a.s. Then for each $0 \leq a < \infty$

 $T^n(dist(aY)) \stackrel{d}{\longrightarrow} \mu_a$

where each μ_a are fixed-point of T, $\mu_0 = dist(X)$ and $\mu_a \preccurlyeq \mu_b$ if $0 \le a \le b < \infty$.

Remarks :

- Under some technical conditions one can also prove that μ_a 's are all distinct.
- In particular for Example 3 one can explicitly find all the solutions of the homogeneous equation, which then give other solutions of the original equation.
- If we take log-transformation of the homogeneous equation then we get the following RDE

$$\widehat{X} \stackrel{d}{=} \max_{1 \le j \le^* N} \left(\widehat{\xi_j} + \widehat{X_j} \right).$$

This equation relates to (possible) appropriately centered limit of the right-most position of a BRW. In general it is non-trivial to solve.

• We conjecture that the solution μ_a is not endogenous if a > 0.

Mean-Field Combinatorial Optimization Problems

Mean-Field Model of Distance

- We have *n* points.
- $\binom{n}{2}$ inter point distances are i.i.d. random variables.

Note : This is different than the Uniform-Euclidean model, which is to take n uniformly distributed points inside a closed box in some Euclidean space.

- Think it as the complete graph K_n with i.i.d. edge lengths.
- The model with i.i.d. Exponential edge lengths is of particular interest.

Question : What happens to this model as n becomes large ?

- It has the skeleton \mathbb{T}_{∞} rooted at \emptyset .
- For the edges $(\mathbf{i}, \mathbf{i}j)_{j \ge 1}$ coming out of the vertex \mathbf{i} , the weights are points of Poisson point process of rate 1 on $(0, \infty)$ written as $(\xi_{\mathbf{i}j})_{j \ge 1}$. The processes are independent as \mathbf{i} varies.

Local Weak Limit

- Considered the *rooted* graph G_n with edge lengths, obtained from K_n with i.i.d. Exponential $\left(\frac{1}{n}\right)$ edge lengths and selecting a vertex uniformly at random as the root.
- Then G_n converges in the sense of *local weak convergence* to the **PWIT**. [Aldous (1992, 2001), Aldous and Steele (2003)]
- The main reason is the following simple observation

Suppose $\left(\xi_{(1)}^n < \xi_{(2)}^n < \cdots < \xi_{(n)}^n\right)$ is a ordered statistics from n i.i.d. Exponential random variables with mean n then

$$\left(\xi_{(i)}^{n}\right)_{i=1}^{n} \xrightarrow{d} \text{Poisson Process}(1).$$

Random Assignment Problem

Problem : Suppose n is even, on K_n find the *complete* matching which has minimum total length.

More preciously the objective function is defined as

$$M_n := \inf \left\{ \text{length} \left(\mathcal{M} \right) \ \Big| \ \mathcal{M} \ \text{is a matching} \right\}$$

where length of a matching $\ensuremath{\mathcal{M}}$ is the sum of the lengths of the edges in the matching.

Remark : Typically it is stated in the setting of bipartite graph but from asymptotic point of view they give same answer !

Theorem 2 (Aldous (2001)) For *i.i.d.* Exponential edge lengths with mean n

$$\frac{2}{n}\mathbf{E}\left[M_n\right] \to \frac{\pi^2}{6}.$$

Remark : Mézard and Parisi "proved" this result in 1987 using *non-rigorous* statistical physics argument.

A Program

(How to Prove Such a Theorem ?)

- We know that the limiting structure is **PWIT** .
- Suppose we have a *corresponding* optimization problem on the infinite-size model.
- Suppose we can solve that optimization problem and can compute the optimal solution.
- Suppose we can prove convergence of the finite problem to the infinite problem.
- All this will give the result !!!

Optimal Matching Problem on PWIT

Problem : Find a complete matching on **PWIT** which is *invariant* and minimizes *average* edge length.

Remarks :

- Here *invariant* means, intuitively, that in defining the complete matching on the **PWIT**, the root Ø should not play any special role.
- Once a matching is *invariant* by *average* edge length we will mean the expected length of the edge which matches the root Ø with one of its children.

540° argument

- Step 1 : For each vertex i of the PWIT, let Tⁱ be the infinite tree rooted at i containing only its descendents. We define the quantities
 - ▶ $W_i := Total$ weight of optimal matching on T^i .
 - $\blacktriangleright \ \widetilde{W_i} := \ \textit{Total} \ \text{weight of optimal matching on} \\ \mathbf{T^i} \setminus \{i\}.$
 - $X_i := W_i \widetilde{W}_i$. Note : $X_i = \infty \infty$!
- Step 2 : Assuming these quantities make sense one can write the following *recursion*

$$X_{\emptyset} = \min_{j \ge 1} \left(\xi_j - X_j \right) \quad \text{on } \ \mathbb{R},$$

where $(X_j)_{j\geq 1}$ are i.i.d. with same law as of X_{\emptyset} , and are independent of $(\xi_j)_{j\geq 1}$ which are points of a Poisson point process of rate 1 on $(0, \infty)$.

- Step 3 : One can show [Aldous, 2001]
 - The RDE is well defined and has unique solution as the Logistic distribution. We will call this RDE the Logistic RDE.
 - Now we can reconstruct (rigorously) the optimal matching on **PWIT** using the variables X_i. For example, match root Ø with arg min (ξ_j − X_j).

Role of Endogeny

- Endogeny will show that the optimal solution is a measurable function of the data (innovations), in the infinite-size problem. Since a measurable function is a.s. continuous, we can pull back to define almost-feasible solution of the finite size-*n* problem with almost equal cost.
- It will then remain to show that in the finite size-*n* problem one can patch an almost-feasible solution into a feasible solution for asymptotically negligible cost.

Theorem 3 (B. (2002)) The unique solution of the Logistic RDE is endogenous.

Remark : Proof uses the *equivalence theorem* and involves analytic argument.

My Apology for Not Covering ...

- The **linear** RDEs which have been extensively studied by various authors, mainly in the context of probabilistic analysis of random algorithms.
- RDEs related to branching processes and branching random walks.
- Relation of certain max-type RDEs (appear in context of BRW) with linear RDEs.
- ... and many more some of which I may not even be aware of !

Thank You