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Tree-Stru
tured Coupling From the PastFinite RTF :Given a RDEX d= g (�; (Xj;1 � j��N)) on S;we 
an de�ne a RTF�T1; (�i; Ni)i2V ; g� :Remark : Asso
iated with a RTF there is a Galton-Watson bran
hing pro
ess tree rooted at ; de�ned onlythrough fNi j i 2 V g, 
all it T . Essentially any asso
iatedinvariant RTP lives on T .Proposition 1 If T is almost surely �nite (equivalentlyE [N ℄ � 1 and P (N = 1) < 1) then the asso
iated RDEhas unique solution and the RTP is endogenous.
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Domain of the Fun
tion g� The innovation � takes values in some measurablespa
e (�;F).� Re
all our sample spa
e is S.� The fun
tion g whi
h takes values in S, is de�nedon the spa
e�� := �� [0�d�1Sd:Here S1 is the usual in�nite produ
t spa
e andS0 := f�g where � is some \known obje
t" !
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Proof of Proposition 1 :� Let I be the set of all �nite rooted trees with vertexweights.� We de�ne a fun
tion h : I! S as followsI Let T 2 I with weights (wi).I If a vertex i is a leaf then de�nexi := g (wi;�) :I For an internal vertex i with ni � 1 
hildrenre
ursively de�nexi := g �wi; �xij;1 � j � ni��I Take h (T) = x;, where ; is the root of T.
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Continuing ...� GW tree T with the node weights (�i) is an elementof I, let X; be the h value of it.� For a vertex i of T let Ti be the family tree generatedby i. Then Ti with the node weights is also anelement of I, let Xi be it's h value.� It follows from de�nition of h that (Xi) is a RTPwith some marginal. Thus the RDE has a solutionand it is endogenous.� Finally if � is a solution of the RDE, let (Yi) beinvariant RTP with marginal �. From de�nition fora leaf i we must have Yi = Xi a.s. Now sin
e thetree is a.s. �nite so by re
ursion we getY; = X; a.s.This proves the uniqueness.
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Pointwise Monotone g-fun
tion :Proposition 2 Suppose S = R+. Assume the followingproperties for g(i) For ea
h �xed � and 1 � n � 1,g (�; (xj;1 � j�� n)) � g (�; (yj;1 � j�� n)) ;whenever xj � yj for all 1 � j�� n.(ii) For ea
h �xed �, the map x 7! g (�;x) is 
ontinuouswith respe
t to in
reasing limits.Suppose further that, for the operator T , the sequen
e(T n (Æ0))n�0 is tight. ThenT n (Æ0) d�! �where � is a solution of the RDE and the invariant RTPwith marginal � is endogenous.
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Remarks :� In many appli
ations the fun
tion g will naturallysatisfy the assumptions of the proposition.� The tightness of the sequen
e (T n (Æ0))n�0 is equiv-alent to having a solution supported on R+.� � when exists has the property that � 4 � for anyother solution �.� In 
ontext of intera
ting parti
le system � parallelsthe 
on
ept of lower invariant measure.� The theorem do not provide any obvious uniqueness
riterion !
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Proof of Proposition 2 :� Noti
e that under assumption (i), (T n (Æ0))n�0 isin
reasing in sto
hasti
-ordering.� Tightness of (T n (Æ0))n�0 implies T n (Æ0) d�! �.� Moreover by (ii), � is a �xed-point of T .� Let (Xi)i2V be the RTP with marginal �.� For ea
h d � 0 we de�ne a d-depth RTP, say�X(d)i �jij�d, whi
h satisfy the re
ursion with sameinnovations but has X(d)i = 0 when jij= d.� Then by assumption (i) we get0 � X(1); � X(2); � � � � � X; a.s.� On the other hand from de�nition X(d); � T d (Æ0).� Thus X(d); " X; a.s. whi
h proves the endogeny.
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Examples of \Max"-type RDEs
Dis
ounted Tree Sums

Consider the following RDEX d= �+ max1�j��N �jXj on S = R+;
where (�; (�j;1 � j��N)) has a given law and is inde-pendent of (Xj)j�1 whi
h are i.i.d. 
opies of X. We will
onsider the general 
ase where N � 1 and possiblyrandom.
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A Brief History :� There are many interesting examples studied byvarious authors [Athreya (1985), Devroye (2001),Durrett and Limi
 (2002)℄ falling under this gen-eral RDE.� Spe
ial 
ase of non-random �nite N has been stud-ied by Ra
hev and R�us
hendorf (1998).� The homogeneous 
ase, that is by taking � = 0 a.s.was 
onsidered independently by Jagers and R�osler(2004).� In a re
ent work Neininger and R�us
hendorf (2005)
onsidered a more general form with multiple �'sbut non-random N .
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A \Story" and A Potential Solution� For simpli
ity let us assume N = 2 a.s.� (�i; (�i1; �i2))i2V be the i.i.d. innovation pro
ess.� Think �i to be the weight of vertex i.� Think �i1 and �i2 as edge-weights for the two edges
oming out of the vertex i.� For the path (; = v0; v1; : : : ; vd) from the root ; tovd de�ne the in
uen
e of vertex vd at the root as�vd dYk=1 �(vk�1;vk):� For an in�nite path � := (; = v0; v1; v2; : : :) the totalin
uen
e is 1Xd=0 �vd dYk=1 �(vk�1;vk):� Let X be the maximal in
uen
e of any in�nite path,that is, X = sup(;=v0;v1;v2;:::) 1Xd=0 �vd dYk=1 �(vk�1;vk):� If X <1 a.s. then it is a solution of the RDE.10



A Contra
tion ArgumentTheorem 1 Suppose that 0 � �j < 1 for j � 1 and � � 0has all moments �nite. Suppose for some 1 � p < 1
(p) := E hPNj=1 �ji <1 then(a) If T is the asso
iated operator for the RDE thenT n (Æ0) d�! X <1 a.s.and X has all moments �nite.(b) There is a p0 � 1 su
h that 
(p0) < 1 and X isthe unique solution amongst possible solutions with�nite p0th moment.
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Remarks :� Here T be
omes a 
ontra
tion under (standard)Wasserstein metri
 with 
ontra
tion 
oeÆ
ient 
(p).� We note the fun
tion g here is \ni
e" in the sensethat it satis�es both 
onditions of Proposition 2.� The 
ontra
tive property proves that the sequen
e(T n (Æ0))n�0 is tight, whi
h is equivalent of provingX <1 a.s.� We only 
onsider the 
ase 0 � �j < 1, but it makessense to relax this assumption. All our examplessatisfy this assumption though.
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Three Interesting Examples :Example 1 (Dis
ounted BRW) : [Athreya (1985)℄
X d= �+ 
max(X1; X2) on R+;where (X1;X2) are i.i.d. 
opies of X and are independentof � and 0 < 
 < 1 is a 
onstant.� Instead of binary bran
hing one 
an also 
onsider arandom bran
hing with distribution N .� Here 
(p) = E [N ℄ � 
p, so by our theorem it has asolution with all moments �nite if E [N ℄ <1 and ifwe assume all moments of � are �nite. Moreoverif 
 is \small" then this is unique amongst possiblesolutions with �nite mean.� One interpretation is as inhomogeneous per
olationon the planted (binary) tree (the root has degreeone), where an edge at depth d has traversal timedistributed as 
d�. Then X is the time for the entiretree to be traversed. 13



Example 2 (FIND Algorithm) : [Devroye (2001)℄
X d= 1+max(UX1; (1� U)X2) on R+;where (X1;X2) are i.i.d. 
opies of X and are independentof U � Uniform (0;1).� Arise in the 
ontext of the probabilisti
 worst-
aseanalysis of Hoare's FIND algorithm.� Here 
(p) = 21+p and so this also has a solution withall moments �nite. This solution is unique amongstpossible solutions with �nite (1 + ")th moment, forsome " > 0.� Devroye (2001) proved that any solution has allmoments �nite and hen
e proving uniqueness.
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Example 3 : [Durrett and Limi
 (2002)℄
X d= �+maxj�1 e��jXj on R+;where (Xj)j�1 are i.i.d. 
opies of X and are independentof ��; (�j)j�1�. Here (�j)j�1 are points of a Poisson pointpro
ess with rate 1 on (0;1) and independent of � �Exponential (1).
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Remarks :� The model studied by Durrett and Limi
 (2002)gives this equation through the following story.� Consider the following Markov pro
ess on 
ountablesubsets of [0;1)I Ea
h individual at position x lives for an inde-pendent Exponential (ex) lifetime.I After whi
h it dies and instantaneously givesbirth to in�nitely many o�springs whi
h are pla
edat positions (x+ �j)j�1 where (�j)j�1 are pointsof a Poisson pro
ess of rate 1 on (0;1).I Then X is the extin
tion time for the pro
essstarted with a single individual at position 0.� 
(p) = 1p , so the general result proves that thereis a solution with all moments �nite whi
h is alsoendogenous.� Interesting enough in this 
ase there are many othersolutions, whi
h of 
ourse do not have �nite expe
-tation !
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Homogeneous Equation and UniquenessProposition 3 Consider the homogeneous RDE
X d= max1�j��N �jXj on R+;

where (Xj)j�1 are i.i.d. 
opies of X and are independentof (�j)j�1. Suppose dist (Y ) is a non-zero solution ofit. Let T be the operator asso
iated with the original(inhomogeneous) RDE and we assume that X <1 a.s.Then for ea
h 0 � a <1T n (dist (aY )) d�! �awhere ea
h �a are �xed-point of T , �0 = dist (X) and�a 4 �b if 0 � a � b <1.
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Remarks :� Under some te
hni
al 
onditions one 
an also provethat �a's are all distin
t.� In parti
ular for Example 3 one 
an expli
itly �nd allthe solutions of the homogeneous equation, whi
hthen give other solutions of the original equation.� If we take log-transformation of the homogeneousequation then we get the following RDE
X d= max1�j��N �
�j +dXj� :This equation relates to (possible) appropriately 
en-tered limit of the right-most position of a BRW. Ingeneral it is non-trivial to solve.� We 
onje
ture that the solution �a is not endoge-nous if a > 0.
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Mean-Field Combinatorial OptimizationProblems
Mean-Field Model of Distan
e� We have n points.� �n2� inter point distan
es are i.i.d. random variables.Note : This is di�erent than the Uniform-Eu
lideanmodel, whi
h is to take n uniformly distributed pointsinside a 
losed box in some Eu
lidean spa
e.� Think it as the 
omplete graph Kn with i.i.d. edgelengths.� The model with i.i.d. Exponential edge lengths isof parti
ular interest.Question : What happens to this model as n be
omeslarge ? 19



PWIT (Poisson Weighted In�nite Tree)
ξ  = 0.82ξ  = 0.51 ξ  = 2.13
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� It has the skeleton T1 rooted at ;.� For the edges (i; ij)j�1 
oming out of the vertex i,the weights are points of Poisson point pro
ess ofrate 1 on (0;1) written as ��ij�j�1. The pro
essesare independent as i varies.
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Lo
al Weak Limit� Considered the rooted graph Gn with edge lengths,obtained from Kn with i.i.d. Exponential �1n� edgelengths and sele
ting a vertex uniformly at randomas the root.� Then Gn 
onverges in the sense of lo
al weak 
on-vergen
e to the PWIT . [Aldous (1992, 2001),Aldous and Steele (2003)℄� The main reason is the following simple observationSuppose ��n(1) < �n(2) < � � � < �n(n)� is a orderedstatisti
s from n i.i.d. Exponential randomvariables with mean n then��n(i)�ni=1 d�! Poisson Pro
ess (1) :
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Random Assignment ProblemProblem : Suppose n is even, on Kn �nd the 
ompletemat
hing whi
h has minimum total length.More pre
iously the obje
tive fun
tion is de�ned asMn := inf nlength (M) ���M is a mat
hingowhere length of a mat
hing M is the sum of the lengthsof the edges in the mat
hing.Remark : Typi
ally it is stated in the setting of bipartitegraph but from asymptoti
 point of view they give sameanswer !
Theorem 2 (Aldous (2001)) For i.i.d. Exponentialedge lengths with mean n2n E [Mn℄! �26 :
Remark : M�ezard and Parisi \proved" this result in1987 using non-rigorous statisti
al physi
s argument.22



A Program(How to Prove Su
h a Theorem ?)� We know that the limiting stru
ture is PWIT .� Suppose we have a 
orresponding optimization prob-lem on the in�nite-size model.� Suppose we 
an solve that optimization problemand 
an 
ompute the optimal solution.� Suppose we 
an prove 
onvergen
e of the �niteproblem to the in�nite problem.� All this will give the result !!!
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Optimal Mat
hing Problem on PWITProblem : Find a 
omplete mat
hing on PWIT whi
his invariant and minimizes average edge length.Remarks :� Here invariant means, intuitively, that in de�ningthe 
omplete mat
hing on the PWIT , the root ;should not play any spe
ial role.� On
e a mat
hing is invariant by average edge lengthwe will mean the expe
ted length of the edge whi
hmat
hes the root ; with one of its 
hildren.
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540Æ argument� Step 1 : For ea
h vertex i of the PWIT, let Tibe the in�nite tree rooted at i 
ontaining only itsdes
endents. We de�ne the quantitiesI Wi := Total weight of optimal mat
hing on Ti.I fWi := Total weight of optimal mat
hing onTi n fig.I Xi :=Wi � fWi. Note : Xi =1�1 !� Step 2 : Assuming these quantities make senseone 
an write the following re
ursionX; = minj�1 (�j �Xj) on R ;where (Xj)j�1 are i.i.d. with same law as of X;,and are independent of (�j)j�1 whi
h are points ofa Poisson point pro
ess of rate 1 on (0;1).� Step 3 : One 
an show [Aldous, 2001℄I The RDE is well de�ned and has unique solutionas the Logisti
 distribution. We will 
all thisRDE the Logisti
 RDE.I Now we 
an re
onstru
t (rigorously) the optimalmat
hing on PWIT using the variables Xi. Forexample, mat
h root ; with arg minj�1 (�j �Xj).25



Role of Endogeny� Endogeny will show that the optimal solution is ameasurable fun
tion of the data (innovations), inthe in�nite-size problem. Sin
e a measurable fun
-tion is a.s. 
ontinuous, we 
an pull ba
k to de�nealmost-feasible solution of the �nite size-n problemwith almost equal 
ost.� It will then remain to show that in the �nite size-nproblem one 
an pat
h an almost-feasible solutioninto a feasible solution for asymptoti
ally negligible
ost.
Theorem 3 (B. (2002)) The unique solution of theLogisti
 RDE is endogenous.Remark : Proof uses the equivalen
e theorem and in-volves analyti
 argument.
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My Apology for Not Covering ...� The linear RDEs whi
h have been extensively stud-ied by various authors, mainly in the 
ontext ofprobabilisti
 analysis of random algorithms.� RDEs related to bran
hing pro
esses and bran
h-ing random walks.� Relation of 
ertain max-type RDEs (appear in 
on-text of BRW) with linear RDEs.� ... and many more some of whi
h I may not evenbe aware of !

Thank You
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