Recursive Distributional
Equations and Recursive Tree
Processes : Lecture - III

Antar Bandyopadhyay

(Joint work with Professor David J. Aldous)
[Work done at UC, Berkeley and IMA, Minneapolis]

Mini-Workshop on Recursive Distributional Equations
J.W. Goethe Universitt Frankfurt a.M., Germany

Department of Mathematics
Chalmers University of Technology
Gothenburg, Sweden

March 9, 2005



Tree-Structured Coupling From the Past

Finite RTF :

Given a RDE

X = g(&(X;,1<j<*N)) on 8,

we can define a RTF

(Too; (Si: Ni)iEV : g) .

Remark : Associated with a RTF there is a Galton-
Watson branching process tree rooted at () defined only
through {N;|i € V}, call it T. Essentially any associated
invariant RTP lives on T.

Proposition 1 If T is almost surely finite (equivalently
E[N] <1 and P(N = 1) < 1) then the associated RDE
has unique solution and the RTP is endogenous.



Domain of the Function g

e The innovation ¢ takes values in some measurable
space (©,35).

e Recall our sample space is S.

e The function g which takes values in S, is defined

on the space

O =0x U §°
0<d<oo

Here S*° is the usual infinite product space and
SO := {A} where A is some “known object” !



Proof of Proposition 1 :

e Let J be the set of all finite rooted trees with vertex
weights.
e \We define a function h:J — S as follows
» Let T € J with weights (wj;).
» If a vertex i is a leaf then define
z; ‘= g (w;; Q).

» For an internal vertex i with n; > 1 children
recursively define

zi 1= g (wi; (x5, 1 < j < my))
» Take h(T) = xpy, where () is the root of 7.



Continuing ...

e GW tree T with the node weights (&;) is an element
of J, let Xy be the h value of it.

e For avertexiof T let 7; be the family tree generated
by i. Then 7; with the node weights is also an
element of J, let X; be it's h value.

e It follows from definition of h that (Xj;) is a RTP
with some marginal. Thus the RDE has a solution
and it is endogenous.

e Finally if u is a solution of the RDE, let (Y;) be
invariant RTP with marginal . From definition for
a leaf 1 we must have Y; = X; a.s. Now since the
tree is a.s. finite so by recursion we get
Yy = Xy a.s.

This proves the uniqueness.



Pointwise Monotone g-function :

Proposition 2 Suppose S = RT. Assume the following
properties for g

(i) For each fixed 6§ and 1 <n < oo,
g(0;(z;;1<j<"n)) <g(0;(y;,1 <j<'n)),

whenever z; < y; for all 1 < 3 <*n.

(ii) For each fixed 0, the map x +— g (0;x) is continuous
with respect to increasing limits.

Suppose further that, for the operator T, the sequence

T (850) % p

where  is a solution of the RDE and the invariant RTP
with marginal u is endogenous.



Remarks :

e In many applications the function g will naturally
satisfy the assumptions of the proposition.

e The tightness of the sequence (1" (d0)),,>o IS €quiv-
alent to having a solution supported on RT.

e 1 When exists has the property that u < v for any
other solution v.

e In context of interacting particle system p parallels
the concept of lower invariant measure.

e [ he theorem do not provide any obvious unigueness
criterion !



Proof of Proposition 2 :

e Notice that under assumption (i), (7™ (0)),>q IS
increasing in stochastic-ordering. B

e Tightness of (1" (60)),>o implies T (do0) BN L.
e Moreover by (ii), p is a fixed-point of T.

o Let (Xj),.y be the RTP with marginal pu.

e For each d > 0 we define a d-depth RTP, say
<Xi(d)>|| . which satisfy the recursion with same
il<d

innovations but has Xi(d) = 0 when |i| = d.

e Then by assumption (i) we get

0<xV<xP < <Xy as.
e On the other hand from definition Xéd) ~ T (80).

e Thus Xéd) 1T Xy a.s. which proves the endogeny.



Examples of “Max” -type RDEs

Discounted Tree Sums

Consider the following RDE

X g n -+ max ngj on S:R_I_,
1<j<*N

where (n; (§;,1 < j3<*N)) has a given law and is inde-
pendent of (Xj)j>1 which are i.i.d. copies of X. We will

consider the general case where N < oo and possibly
random.



A Brief History :

e [ here are many interesting examples studied by
various authors [Athreya (1985), Devroye (2001),
Durrett and Limic (2002)] falling under this gen-
eral RDE.

e Special case of non-random finite N has been stud-
ied by Rachev and Rischendorf (1998).

e T he homogeneous case, that is by taking n = 0 a.s.
was considered independently by Jagers and RoOsler
(2004).

e In a recent work Neininger and Riischendorf (2005)
considered a more general form with multiple n's
but non-random N.



A “Story” and A Potential Solution

For simplicity let us assume N = 2 a.s.
(mi; (gil,giz))iev be the i.i.d. innovation process.
Think n; to be the weight of vertex i.

Think &1 and &> as edge-weights for the two edges
coming out of the vertex i.

For the path (0 = vg,v1,...,vy) from the root ( to
vg define the influence of vertex vy at the root as

d
N, H €(vk,1 U ) *
k=1

For an infinite path = := (0 = vg, v1,v2,...) the total

influence is
o0 d
Z Ir]Ud H S(kal,’l)k) *
d=0 k=1

Let X be the maximal influence of any infinite path,
that is,

0.0}

d
X = sup Z Mo, H &(vev)-
k=1

(D=wvo,v1,v2,...) d—0
If X < oo a.s. then it is a solution of the RDE.
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A Contraction Argument

Theorem 1 SupposethatO<¢;<1forj>1andn>0
has all moments finite. Suppose for some 1 < p < oo

c(p) .= E |:Z§'V:]_ 77]} < oo then
(a) If T is the associated operator for the RDE then
T () - X < oo a.s.

and X has all moments finite.

(b) There is a po > 1 such that c(pg) < 1 and X is
the unique solution amongst possible solutions with
finite poth moment.

11



Remarks :

e Here T becomes a contraction under (standard)
Wasserstein metric with contraction coefficient c¢(p).

e We note the function g here is “nice” in the sense
that it satisfies both conditions of Proposition 2.

e T he contractive property proves that the sequence
(T" (60)),,>¢ is tight, which is equivalent of proving
X < oo a.s.

e We only consider the case 0 < ¢; < 1, but it makes
sense to relax this assumption. AIll our examples
satisfy this assumption though.
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Three Interesting Examples :

Example 1 (Discounted BRW) : [Athreya (1985)]

X 4 n+ cmax(Xq,Xo) on ]Ri"’,

where (X1, X»2) arei.i.d. copies of X and are independent
of n and O < ¢ < 1 is a constant.

e Instead of binary branching one can also consider a
random branching with distribution N.

e Here ¢c(p) = E[N] x P, so by our theorem it has a
solution with all moments finite if E[N] < oo and if
we assume all moments of n are finite. Moreover
if ¢is “small” then this is unique amongst possible
solutions with finite mean.

e One interpretation is as inhomogeneous percolation
on the planted (binary) tree (the root has degree
one), where an edge at depth d has traversal time
distributed as ¢?n. Then X is the time for the entire
tree to be traversed.
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Example 2 (FIND Algorithm) : [Devroye (2001)]

X £ 14 max(UXy,(1-U)X,) on RT,

where (X1, X»2) arei.i.d. copies of X and are independent
of U ~ Uniform (0,1).

e Arise in the context of the probabilistic worst-case
analysis of Hoare's FIND algorithm.

e Here c(p) = %ﬂ, and so this also has a solution with

all moments finite. This solution is unigue amongst

possible solutions with finite (1 + e)th moment, for
some € > 0.

e Devroye (2001) proved that any solution has all
moments finite and hence proving unigqueness.
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Example 3 : [Durrett and Limic (2002)]

d s
X = n—+ maxe 59Xj on R"‘,
J>1
where (Xj)j>1 are i.i.d. copies of X and are independent

of (77; (§j)j21>. Here (¢;),-, are points of a Poisson point

process with rate 1 on (0,00) and independent of n ~
Exponential (1).
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Remarks :

e The model studied by Durrett and Limic (2002)
gives this equation through the following story.

e Consider the following Markov process on countable
subsets of [0, c0)

» Each individual at position z lives for an inde-
pendent Exponential (e*) lifetime.

» After which it dies and instantaneously gives
birth to infinitely many offsprings which are placed
at positions (z + §;),-,; where (¢;),,, are points
of a Poisson process of rate 1 on (0, c0).

» Then X is the extinction time for the process
started with a single individual at position O.

o c(p) = %, so the general result proves that there

is a solution with all moments finite which is also
endogenous.

e Interesting enough in this case there are many other
solutions, which of course do not have finite expec-
tation !

16



Homogeneous Equation and Uniqueness

Proposition 3 Consider the homogeneous RDE

X 4 max &;X; on ]Ri"’,
1<j<*N

where (Xj)j>1 are i.i.d. copies of X and are independent
of (§;);>1- Suppose dist(Y) is a non-zero solution of

it. Let T be the operator associated with the original
(inhomogeneous) RDE and we assume that X < co a.s.
Then for each 0 <a < oo

T (dist (aY)) -5 i

where each u, are fixed-point of T, uo = dist(X) and
o X p IFO0<a<b< oo.
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Remarks :

e Under some technical conditions one can also prove
that ug's are all distinct.

e In particular for Example 3 one can explicitly find all
the solutions of the homogeneous equation, which
then give other solutions of the original equation.

e If we take log-transformation of the homogeneous
equation then we get the following RDE

X 1§T%§N@+X;)'

This equation relates to (possible) appropriately cen-
tered limit of the right-most position of a BRW. In
general it is non-trivial to solve.

e We conjecture that the solution u, is not endoge-
nous if a > 0.
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Mean-Field Combinatorial Optimization
Problems

Mean-Field Model of Distance

e We have n points.

e (7) inter point distances are i.i.d. random variables.

Note : This is different than the Uniform-Euclidean
model, which is to take n uniformly distributed points
inside a closed box in some Euclidean space.

e Think it as the complete graph K, with i.i.d. edge
lengths.

e The model with i.i.d. Exponential edge lengths is
of particular interest.

Question : What happens to this model as n becomes
large 7?7
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PWIT (Poisson Weighted Infinite Tree)

e It has the skeleton T., rooted at 0.

e For the edges (i,ij);>; coming out of the vertex i,
the weights are points of Poisson point process of
rate 1 on (0,c0) written as (&) The processes

are independent as 1 varies.

j>1
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Local Weak Limit

e Considered the rooted graph G, with edge lengths,
obtained from K, with i.i.d. Exponential (*) edge
lengths and selecting a vertex uniformly at random
as the root.

e [ hen (G, converges in the sense of local weak con-
vergence to the PWIT . [Aldous (1992, 2001),
Aldous and Steele (2003)]

e [ he main reason is the following simple observation

Suppose ( ?1) < 5?2) << 5&)) is a ordered

statistics from n i.i.d. EXxponential random
variables with mean n then

(5’(’;))_1 %, Poisson Process (1).
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Random Assignment Problem

Problem : Suppose n is even, on K, find the complete
matching which has minimum total length.

More preciously the objective function is defined as

M, = inf {Iength (M) | M is a matching}

where length of a matching M is the sum of the lengths
of the edges in the matching.

Remark : Typically it is stated in the setting of bipartite
graph but from asymptotic point of view they give same
answer !

Theorem 2 (Aldous (2001)) For i.i.d. Exponential
edge lengths with mean n

2

%E [Mn] — &

Remark : Mézard and Parisi “proved’” this result in
1987 using non-rigorous statistical physics argument.
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A Program

(How to Prove Such a Theorem 7)

We know that the limiting structure is PWIT .

Suppose we have a corresponding optimization prob-
lem on the infinite-size model.

Suppose we can solve that optimization problem
and can compute the optimal solution.

Suppose we can prove convergence of the finite
problem to the infinite problem.

All this will give the result !
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Optimal Matching Problem on PWIT

Problem : Find a complete matching on PWIT which
is invariant and minimizes average edge length.

Remarks :

e Here invariant means, intuitively, that in defining
the complete matching on the PWIT , the root ()
should not play any special role.

e Once a matching is invariant by average edge length
we will mean the expected length of the edge which
matches the root ) with one of its children.
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540° argument

e Step 1 : For each vertex i of the PWIT, let T!
be the infinite tree rooted at i containing only its
descendents. We define the quantities

» W;:= Total weight of optimal matching on T!.

» Wi := Total weight of optimal matching on
T\ {i}.
» X;:=W;, - W: Note: X;= 00— 00!
e Step 2 : Assuming these quantities make sense
one can write the following recursion
Xp=min (& — X;) on R,
Jj=>1
where (X;),,; are i.i.d. with same law as of Xy,

and are independent of (§;),.; which are points of
a Poisson point process of rate 1 on (0, c0).

e Step 3 : One can show [Aldous, 2001]

» The RDE is well defined and has unique solution
as the Logistic distribution. We will call this
RDE the Logistic RDE.

» Now we can reconstruct (rigorously) the optimal
matching on PWIT using the variables X;. For

example, match root () with arg min (¢; — X;).
Jj>1

25



Role of Endogeny

e Endogeny will show that the optimal solution is a
measurable function of the data (innovations), in
the infinite-size problem. Since a measurable func-
tion is a.s. continuous, we can pull back to define
almost-feasible solution of the finite size-n problem
with almost equal cost.

e It will then remain to show that in the finite size-n
problem one can patch an almost-feasible solution
into a feasible solution for asymptotically negligible
cost.

Theorem 3 (B. (2002)) The unique solution of the
Logistic RDE is endogenous.

Remark : Proof uses the equivalence theorem and in-
volves analytic argument.
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My Apology for Not Covering ...

e T he linear RDEs which have been extensively stud-
ied by various authors, mainly in the context of
probabilistic analysis of random algorithms.

e RDES related to branching processes and branch-
ing random walks.

e Relation of certain max-type RDEs (appear in con-
text of BRW) with linear RDEs.

e ... and many more some of which I may not even
be aware of !

T hank You
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