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Tree-Strutured Coupling From the PastFinite RTF :Given a RDEX d= g (�; (Xj;1 � j��N)) on S;we an de�ne a RTF�T1; (�i; Ni)i2V ; g� :Remark : Assoiated with a RTF there is a Galton-Watson branhing proess tree rooted at ; de�ned onlythrough fNi j i 2 V g, all it T . Essentially any assoiatedinvariant RTP lives on T .Proposition 1 If T is almost surely �nite (equivalentlyE [N ℄ � 1 and P (N = 1) < 1) then the assoiated RDEhas unique solution and the RTP is endogenous.
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Domain of the Funtion g� The innovation � takes values in some measurablespae (�;F).� Reall our sample spae is S.� The funtion g whih takes values in S, is de�nedon the spae�� := �� [0�d�1Sd:Here S1 is the usual in�nite produt spae andS0 := f�g where � is some \known objet" !
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Proof of Proposition 1 :� Let I be the set of all �nite rooted trees with vertexweights.� We de�ne a funtion h : I! S as followsI Let T 2 I with weights (wi).I If a vertex i is a leaf then de�nexi := g (wi;�) :I For an internal vertex i with ni � 1 hildrenreursively de�nexi := g �wi; �xij;1 � j � ni��I Take h (T) = x;, where ; is the root of T.
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Continuing ...� GW tree T with the node weights (�i) is an elementof I, let X; be the h value of it.� For a vertex i of T let Ti be the family tree generatedby i. Then Ti with the node weights is also anelement of I, let Xi be it's h value.� It follows from de�nition of h that (Xi) is a RTPwith some marginal. Thus the RDE has a solutionand it is endogenous.� Finally if � is a solution of the RDE, let (Yi) beinvariant RTP with marginal �. From de�nition fora leaf i we must have Yi = Xi a.s. Now sine thetree is a.s. �nite so by reursion we getY; = X; a.s.This proves the uniqueness.
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Pointwise Monotone g-funtion :Proposition 2 Suppose S = R+. Assume the followingproperties for g(i) For eah �xed � and 1 � n � 1,g (�; (xj;1 � j�� n)) � g (�; (yj;1 � j�� n)) ;whenever xj � yj for all 1 � j�� n.(ii) For eah �xed �, the map x 7! g (�;x) is ontinuouswith respet to inreasing limits.Suppose further that, for the operator T , the sequene(T n (Æ0))n�0 is tight. ThenT n (Æ0) d�! �where � is a solution of the RDE and the invariant RTPwith marginal � is endogenous.
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Remarks :� In many appliations the funtion g will naturallysatisfy the assumptions of the proposition.� The tightness of the sequene (T n (Æ0))n�0 is equiv-alent to having a solution supported on R+.� � when exists has the property that � 4 � for anyother solution �.� In ontext of interating partile system � parallelsthe onept of lower invariant measure.� The theorem do not provide any obvious uniquenessriterion !
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Proof of Proposition 2 :� Notie that under assumption (i), (T n (Æ0))n�0 isinreasing in stohasti-ordering.� Tightness of (T n (Æ0))n�0 implies T n (Æ0) d�! �.� Moreover by (ii), � is a �xed-point of T .� Let (Xi)i2V be the RTP with marginal �.� For eah d � 0 we de�ne a d-depth RTP, say�X(d)i �jij�d, whih satisfy the reursion with sameinnovations but has X(d)i = 0 when jij= d.� Then by assumption (i) we get0 � X(1); � X(2); � � � � � X; a.s.� On the other hand from de�nition X(d); � T d (Æ0).� Thus X(d); " X; a.s. whih proves the endogeny.
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Examples of \Max"-type RDEs
Disounted Tree Sums

Consider the following RDEX d= �+ max1�j��N �jXj on S = R+;
where (�; (�j;1 � j��N)) has a given law and is inde-pendent of (Xj)j�1 whih are i.i.d. opies of X. We willonsider the general ase where N � 1 and possiblyrandom.
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A Brief History :� There are many interesting examples studied byvarious authors [Athreya (1985), Devroye (2001),Durrett and Limi (2002)℄ falling under this gen-eral RDE.� Speial ase of non-random �nite N has been stud-ied by Rahev and R�ushendorf (1998).� The homogeneous ase, that is by taking � = 0 a.s.was onsidered independently by Jagers and R�osler(2004).� In a reent work Neininger and R�ushendorf (2005)onsidered a more general form with multiple �'sbut non-random N .
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A \Story" and A Potential Solution� For simpliity let us assume N = 2 a.s.� (�i; (�i1; �i2))i2V be the i.i.d. innovation proess.� Think �i to be the weight of vertex i.� Think �i1 and �i2 as edge-weights for the two edgesoming out of the vertex i.� For the path (; = v0; v1; : : : ; vd) from the root ; tovd de�ne the inuene of vertex vd at the root as�vd dYk=1 �(vk�1;vk):� For an in�nite path � := (; = v0; v1; v2; : : :) the totalinuene is 1Xd=0 �vd dYk=1 �(vk�1;vk):� Let X be the maximal inuene of any in�nite path,that is, X = sup(;=v0;v1;v2;:::) 1Xd=0 �vd dYk=1 �(vk�1;vk):� If X <1 a.s. then it is a solution of the RDE.10



A Contration ArgumentTheorem 1 Suppose that 0 � �j < 1 for j � 1 and � � 0has all moments �nite. Suppose for some 1 � p < 1(p) := E hPNj=1 �ji <1 then(a) If T is the assoiated operator for the RDE thenT n (Æ0) d�! X <1 a.s.and X has all moments �nite.(b) There is a p0 � 1 suh that (p0) < 1 and X isthe unique solution amongst possible solutions with�nite p0th moment.
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Remarks :� Here T beomes a ontration under (standard)Wasserstein metri with ontration oeÆient (p).� We note the funtion g here is \nie" in the sensethat it satis�es both onditions of Proposition 2.� The ontrative property proves that the sequene(T n (Æ0))n�0 is tight, whih is equivalent of provingX <1 a.s.� We only onsider the ase 0 � �j < 1, but it makessense to relax this assumption. All our examplessatisfy this assumption though.
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Three Interesting Examples :Example 1 (Disounted BRW) : [Athreya (1985)℄
X d= �+ max(X1; X2) on R+;where (X1;X2) are i.i.d. opies of X and are independentof � and 0 <  < 1 is a onstant.� Instead of binary branhing one an also onsider arandom branhing with distribution N .� Here (p) = E [N ℄ � p, so by our theorem it has asolution with all moments �nite if E [N ℄ <1 and ifwe assume all moments of � are �nite. Moreoverif  is \small" then this is unique amongst possiblesolutions with �nite mean.� One interpretation is as inhomogeneous perolationon the planted (binary) tree (the root has degreeone), where an edge at depth d has traversal timedistributed as d�. Then X is the time for the entiretree to be traversed. 13



Example 2 (FIND Algorithm) : [Devroye (2001)℄
X d= 1+max(UX1; (1� U)X2) on R+;where (X1;X2) are i.i.d. opies of X and are independentof U � Uniform (0;1).� Arise in the ontext of the probabilisti worst-aseanalysis of Hoare's FIND algorithm.� Here (p) = 21+p and so this also has a solution withall moments �nite. This solution is unique amongstpossible solutions with �nite (1 + ")th moment, forsome " > 0.� Devroye (2001) proved that any solution has allmoments �nite and hene proving uniqueness.
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Example 3 : [Durrett and Limi (2002)℄
X d= �+maxj�1 e��jXj on R+;where (Xj)j�1 are i.i.d. opies of X and are independentof ��; (�j)j�1�. Here (�j)j�1 are points of a Poisson pointproess with rate 1 on (0;1) and independent of � �Exponential (1).
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Remarks :� The model studied by Durrett and Limi (2002)gives this equation through the following story.� Consider the following Markov proess on ountablesubsets of [0;1)I Eah individual at position x lives for an inde-pendent Exponential (ex) lifetime.I After whih it dies and instantaneously givesbirth to in�nitely many o�springs whih are plaedat positions (x+ �j)j�1 where (�j)j�1 are pointsof a Poisson proess of rate 1 on (0;1).I Then X is the extintion time for the proessstarted with a single individual at position 0.� (p) = 1p , so the general result proves that thereis a solution with all moments �nite whih is alsoendogenous.� Interesting enough in this ase there are many othersolutions, whih of ourse do not have �nite expe-tation !
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Homogeneous Equation and UniquenessProposition 3 Consider the homogeneous RDE
X d= max1�j��N �jXj on R+;

where (Xj)j�1 are i.i.d. opies of X and are independentof (�j)j�1. Suppose dist (Y ) is a non-zero solution ofit. Let T be the operator assoiated with the original(inhomogeneous) RDE and we assume that X <1 a.s.Then for eah 0 � a <1T n (dist (aY )) d�! �awhere eah �a are �xed-point of T , �0 = dist (X) and�a 4 �b if 0 � a � b <1.
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Remarks :� Under some tehnial onditions one an also provethat �a's are all distint.� In partiular for Example 3 one an expliitly �nd allthe solutions of the homogeneous equation, whihthen give other solutions of the original equation.� If we take log-transformation of the homogeneousequation then we get the following RDEX d= max1�j��N ��j +dXj� :This equation relates to (possible) appropriately en-tered limit of the right-most position of a BRW. Ingeneral it is non-trivial to solve.� We onjeture that the solution �a is not endoge-nous if a > 0.
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Mean-Field Combinatorial OptimizationProblems
Mean-Field Model of Distane� We have n points.� �n2� inter point distanes are i.i.d. random variables.Note : This is di�erent than the Uniform-Eulideanmodel, whih is to take n uniformly distributed pointsinside a losed box in some Eulidean spae.� Think it as the omplete graph Kn with i.i.d. edgelengths.� The model with i.i.d. Exponential edge lengths isof partiular interest.Question : What happens to this model as n beomeslarge ? 19



PWIT (Poisson Weighted In�nite Tree)
ξ  = 0.82ξ  = 0.51 ξ  = 2.13
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� It has the skeleton T1 rooted at ;.� For the edges (i; ij)j�1 oming out of the vertex i,the weights are points of Poisson point proess ofrate 1 on (0;1) written as ��ij�j�1. The proessesare independent as i varies.
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Loal Weak Limit� Considered the rooted graph Gn with edge lengths,obtained from Kn with i.i.d. Exponential �1n� edgelengths and seleting a vertex uniformly at randomas the root.� Then Gn onverges in the sense of loal weak on-vergene to the PWIT . [Aldous (1992, 2001),Aldous and Steele (2003)℄� The main reason is the following simple observationSuppose ��n(1) < �n(2) < � � � < �n(n)� is a orderedstatistis from n i.i.d. Exponential randomvariables with mean n then��n(i)�ni=1 d�! Poisson Proess (1) :
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Random Assignment ProblemProblem : Suppose n is even, on Kn �nd the ompletemathing whih has minimum total length.More preiously the objetive funtion is de�ned asMn := inf nlength (M) ���M is a mathingowhere length of a mathing M is the sum of the lengthsof the edges in the mathing.Remark : Typially it is stated in the setting of bipartitegraph but from asymptoti point of view they give sameanswer !
Theorem 2 (Aldous (2001)) For i.i.d. Exponentialedge lengths with mean n2n E [Mn℄! �26 :
Remark : M�ezard and Parisi \proved" this result in1987 using non-rigorous statistial physis argument.22



A Program(How to Prove Suh a Theorem ?)� We know that the limiting struture is PWIT .� Suppose we have a orresponding optimization prob-lem on the in�nite-size model.� Suppose we an solve that optimization problemand an ompute the optimal solution.� Suppose we an prove onvergene of the �niteproblem to the in�nite problem.� All this will give the result !!!
23



Optimal Mathing Problem on PWITProblem : Find a omplete mathing on PWIT whihis invariant and minimizes average edge length.Remarks :� Here invariant means, intuitively, that in de�ningthe omplete mathing on the PWIT , the root ;should not play any speial role.� One a mathing is invariant by average edge lengthwe will mean the expeted length of the edge whihmathes the root ; with one of its hildren.
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540Æ argument� Step 1 : For eah vertex i of the PWIT, let Tibe the in�nite tree rooted at i ontaining only itsdesendents. We de�ne the quantitiesI Wi := Total weight of optimal mathing on Ti.I fWi := Total weight of optimal mathing onTi n fig.I Xi :=Wi � fWi. Note : Xi =1�1 !� Step 2 : Assuming these quantities make senseone an write the following reursionX; = minj�1 (�j �Xj) on R ;where (Xj)j�1 are i.i.d. with same law as of X;,and are independent of (�j)j�1 whih are points ofa Poisson point proess of rate 1 on (0;1).� Step 3 : One an show [Aldous, 2001℄I The RDE is well de�ned and has unique solutionas the Logisti distribution. We will all thisRDE the Logisti RDE.I Now we an reonstrut (rigorously) the optimalmathing on PWIT using the variables Xi. Forexample, math root ; with arg minj�1 (�j �Xj).25



Role of Endogeny� Endogeny will show that the optimal solution is ameasurable funtion of the data (innovations), inthe in�nite-size problem. Sine a measurable fun-tion is a.s. ontinuous, we an pull bak to de�nealmost-feasible solution of the �nite size-n problemwith almost equal ost.� It will then remain to show that in the �nite size-nproblem one an path an almost-feasible solutioninto a feasible solution for asymptotially negligibleost.
Theorem 3 (B. (2002)) The unique solution of theLogisti RDE is endogenous.Remark : Proof uses the equivalene theorem and in-volves analyti argument.
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My Apology for Not Covering ...� The linear RDEs whih have been extensively stud-ied by various authors, mainly in the ontext ofprobabilisti analysis of random algorithms.� RDEs related to branhing proesses and branh-ing random walks.� Relation of ertain max-type RDEs (appear in on-text of BRW) with linear RDEs.� ... and many more some of whih I may not evenbe aware of !

Thank You
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