Recursive Distributional Equations and Recursive Tree Processes : Lecture - III

Antar Bandyopadhyay
(Joint work with Professor David J. Aldous)
[Work done at UC, Berkeley and IMA, Minneapolis]

Mini-Workshop on Recursive Distributional Equations J.W. Goethe Universitt Frankfurt a.M., Germany

Department of Mathematics
Chalmers University of Technology
Gothenburg, Sweden

March 9, 2005

Tree-Structured Coupling From the Past

Finite RTF :
Given a RDE

$$
X \stackrel{d}{=} g\left(\xi ;\left(X_{j}, 1 \leq j \leq^{*} N\right)\right) \quad \text { on } S,
$$

we can define a RTF

$$
\left(\mathbb{T}_{\infty} ;\left(\xi_{\mathbf{i}}, N_{\mathbf{i}}\right)_{\mathbf{i} \in \mathcal{V}} ; g\right)
$$

Remark : Associated with a RTF there is a GaltonWatson branching process tree rooted at \emptyset defined only through $\left\{N_{\mathbf{i}} \mid \mathbf{i} \in \mathcal{V}\right\}$, call it \mathcal{T}. Essentially any associated invariant RTP lives on \mathcal{T}.

Proposition 1 If \mathcal{T} is almost surely finite (equivalently $\mathrm{E}[N] \leq 1$ and $\mathrm{P}(N=1)<1)$ then the associated RDE has unique solution and the RTP is endogenous.

Domain of the Function g

- The innovation ξ takes values in some measurable space (Θ, \mathfrak{F}).
- Recall our sample space is S.
- The function g which takes values in S, is defined on the space

$$
\Theta^{*}:=\Theta \times \underset{0 \leq d \leq \infty}{\cup} S^{d}
$$

Here S^{∞} is the usual infinite product space and $S^{0}:=\{\Delta\}$ where Δ is some "known object" !

Proof of Proposition 1 :

- Let \mathfrak{I} be the set of all finite rooted trees with vertex weights.
- We define a function $h: \mathfrak{I} \rightarrow S$ as follows
- Let $\mathfrak{T} \in \mathfrak{I}$ with weights $\left(w_{\mathrm{i}}\right)$.
- If a vertex \mathbf{i} is a leaf then define

$$
x_{\mathrm{i}}:=g\left(w_{\mathrm{i}} ; \Delta\right) .
$$

- For an internal vertex \mathbf{i} with $n_{\mathbf{i}} \geq 1$ children recursively define

$$
x_{\mathbf{i}}:=g\left(w_{\mathbf{i}} ;\left(x_{\mathbf{i} j}, 1 \leq j \leq n_{\mathbf{i}}\right)\right)
$$

- Take $h(\mathcal{T})=x_{\emptyset}$, where \emptyset is the root of \mathcal{T}.

Continuing ...

- GW tree \mathcal{T} with the node weights $\left(\xi_{\mathrm{i}}\right)$ is an element of \mathfrak{I}, let X_{\emptyset} be the h value of it.
- For a vertex \mathbf{i} of \mathcal{T} let $\mathcal{T}_{\mathbf{i}}$ be the family tree generated by i. Then \mathcal{T}_{i} with the node weights is also an element of \mathfrak{I}, let X_{i} be it's h value.
- It follows from definition of h that $\left(X_{\mathbf{i}}\right)$ is a RTP with some marginal. Thus the RDE has a solution and it is endogenous.
- Finally if μ is a solution of the RDE, let $\left(Y_{i}\right)$ be invariant RTP with marginal μ. From definition for a leaf \mathbf{i} we must have $Y_{\mathrm{i}}=X_{\mathrm{i}}$ a.s. Now since the tree is a.s. finite so by recursion we get

$$
Y_{\emptyset}=X_{\emptyset} \text { a.s. }
$$

This proves the uniqueness.

Pointwise Monotone g-function :

Proposition 2 Suppose $S=\mathbb{R}^{+}$. Assume the following properties for g
(i) For each fixed θ and $1 \leq n \leq \infty$,

$$
g\left(\theta ;\left(x_{j}, 1 \leq j \leq^{*} n\right)\right) \leq g\left(\theta ;\left(y_{j}, 1 \leq j \leq^{*} n\right)\right),
$$

whenever $x_{j} \leq y_{j}$ for all $1 \leq j \leq^{*} n$.
(ii) For each fixed θ, the map $\mathrm{x} \mapsto g(\theta ; \mathbf{x})$ is continuous with respect to increasing limits.

Suppose further that, for the operator T, the sequence $\left(T^{n}\left(\delta_{0}\right)\right)_{n \geq 0}$ is tight. Then

$$
T^{n}\left(\delta_{0}\right) \xrightarrow{d} \mu
$$

where μ is a solution of the RDE and the invariant RTP with marginal μ is endogenous.

Remarks :

- In many applications the function g will naturally satisfy the assumptions of the proposition.
- The tightness of the sequence $\left(T^{n}\left(\delta_{0}\right)\right)_{n \geq 0}$ is equivalent to having a solution supported on \mathbb{R}^{+}.
- μ when exists has the property that $\mu \preccurlyeq \nu$ for any other solution ν.
- In context of interacting particle system μ parallels the concept of lower invariant measure.
- The theorem do not provide any obvious uniqueness criterion!

Proof of Proposition 2 :

- Notice that under assumption (i), $\left(T^{n}\left(\delta_{0}\right)\right)_{n \geq 0}$ is increasing in stochastic-ordering.
- Tightness of $\left(T^{n}\left(\delta_{0}\right)\right)_{n \geq 0}$ implies $T^{n}\left(\delta_{0}\right) \xrightarrow{d} \mu$.
- Moreover by (ii), μ is a fixed-point of T.
- Let $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathcal{V}}$ be the RTP with marginal μ.
- For each $d \geq 0$ we define a d-depth RTP, say $\left(X_{\mathrm{i}}^{(d)}\right)_{|\mathrm{i}| \leq d}$, which satisfy the recursion with same innovations but has $X_{\mathbf{i}}^{(d)}=0$ when $|\mathbf{i}|=d$.
- Then by assumption (i) we get

$$
0 \leq X_{\emptyset}^{(1)} \leq X_{\emptyset}^{(2)} \leq \cdots \leq X_{\emptyset} \text { a.s. }
$$

- On the other hand from definition $X_{\emptyset}^{(d)} \sim T^{d}\left(\delta_{0}\right)$.
- Thus $X_{\emptyset}^{(d)} \uparrow X_{\emptyset}$ a.s. which proves the endogeny.

Examples of "Max"-type RDEs

Discounted Tree Sums

Consider the following RDE

$$
X \stackrel{d}{=} \eta+\max _{1 \leq j \leq * N} \xi_{j} X_{j} \quad \text { on } \quad S=\mathbb{R}^{+},
$$

where $\left(\eta ;\left(\xi_{j}, 1 \leq j \leq * N\right)\right)$ has a given law and is independent of $\left(X_{j}\right)_{j \geq 1}$ which are i.i.d. copies of X. We will consider the general case where $N \leq \infty$ and possibly random.

A Brief History :

- There are many interesting examples studied by various authors [Athreya (1985), Devroye (2001), Durrett and Limic (2002)] falling under this general RDE.
- Special case of non-random finite N has been studied by Rachev and Rüschendorf (1998).
- The homogeneous case, that is by taking $\eta=0$ a.s. was considered independently by Jagers and Rösler (2004).
- In a recent work Neininger and Rüschendorf (2005) considered a more general form with multiple η 's but non-random N.

A "Story" and A Potential Solution

- For simplicity let us assume $N=2$ a.s.
- $\left(\eta_{\mathrm{i}} ;\left(\xi_{\mathrm{i} 1}, \xi_{\mathrm{i} 2}\right)\right)_{\mathrm{i} \in \mathcal{V}}$ be the i.i.d. innovation process.
- Think η_{i} to be the weight of vertex \mathbf{i}.
- Think $\xi_{\mathrm{i} 1}$ and $\xi_{\mathrm{i} 2}$ as edge-weights for the two edges coming out of the vertex \mathbf{i}.
- For the path $\left(\emptyset=v_{0}, v_{1}, \ldots, v_{d}\right)$ from the root \emptyset to v_{d} define the influence of vertex v_{d} at the root as

$$
\eta_{v_{d}} \prod_{k=1}^{d} \xi_{\left(v_{k-1}, v_{k}\right)}
$$

- For an infinite path $\pi:=\left(\emptyset=v_{0}, v_{1}, v_{2}, \ldots\right)$ the total influence is

$$
\sum_{d=0}^{\infty} \eta_{v_{d}} \prod_{k=1}^{d} \xi_{\left(v_{k-1}, v_{k}\right)}
$$

- Let X be the maximal influence of any infinite path, that is,

$$
X=\sup _{\left(\emptyset=v_{0}, v_{1}, v_{2}, \ldots\right)} \sum_{d=0}^{\infty} \eta_{v_{d}} \prod_{k=1}^{d} \xi_{\left(v_{k-1}, v_{k}\right)}
$$

- If $X<\infty$ a.s. then it is a solution of the RDE.

A Contraction Argument

Theorem 1 Suppose that $0 \leq \xi_{j}<1$ for $j \geq 1$ and $\eta \geq 0$ has all moments finite. Suppose for some $1 \leq p<\infty$ $c(p):=\mathbf{E}\left[\sum_{j=1}^{N} \eta_{j}\right]<\infty$ then
(a) If T is the associated operator for the RDE then

$$
T^{n}\left(\delta_{0}\right) \xrightarrow{d} X<\infty \text { a.s. }
$$

and X has all moments finite.
(b) There is a $p_{0} \geq 1$ such that $c\left(p_{0}\right)<1$ and X is the unique solution amongst possible solutions with finite $p_{0}{ }^{\text {th }}$ moment.

Remarks :

- Here T becomes a contraction under (standard) Wasserstein metric with contraction coefficient $c(p)$.
- We note the function g here is "nice" in the sense that it satisfies both conditions of Proposition 2.
- The contractive property proves that the sequence ($\left.T^{n}\left(\delta_{0}\right)\right)_{n>0}$ is tight, which is equivalent of proving $X<\infty$ a.s.
- We only consider the case $0 \leq \xi_{j}<1$, but it makes sense to relax this assumption. All our examples satisfy this assumption though.

Three Interesting Examples :

Example 1 (Discounted BRW) : [Athreya (1985)]

$$
X \stackrel{d}{=} \eta+c \max \left(X_{1}, X_{2}\right) \quad \text { on } \mathbb{R}^{+},
$$

where (X_{1}, X_{2}) are i.i.d. copies of X and are independent of η and $0<c<1$ is a constant.

- Instead of binary branching one can also consider a random branching with distribution N.
- Here $c(p)=\mathrm{E}[N] \times c^{p}$, so by our theorem it has a solution with all moments finite if $\mathrm{E}[N]<\infty$ and if we assume all moments of η are finite. Moreover if c is "small" then this is unique amongst possible solutions with finite mean.
- One interpretation is as inhomogeneous percolation on the planted (binary) tree (the root has degree one), where an edge at depth d has traversal time distributed as $c^{d} \eta$. Then X is the time for the entire tree to be traversed.

Example 2 (FIND Algorithm) : [Devroye (2001)]

$$
X \stackrel{d}{=} 1+\max \left(U X_{1},(1-U) X_{2}\right) \quad \text { on } \quad \mathbb{R}^{+}
$$

where $\left(X_{1}, X_{2}\right)$ are i.i.d. copies of X and are independent of $U \sim$ Uniform $(0,1)$.

- Arise in the context of the probabilistic worst-case analysis of Hoare's FIND algorithm.
- Here $c(p)=\frac{2}{1+p}$ and so this also has a solution with all moments finite. This solution is unique amongst possible solutions with finite $(1+\varepsilon)^{\text {th }}$ moment, for some $\varepsilon>0$.
- Devroye (2001) proved that any solution has all moments finite and hence proving uniqueness.

Example 3 : [Durrett and Limic (2002)]

$$
X \stackrel{d}{=} \eta+\max _{j \geq 1} e^{-\xi_{j}} X_{j} \quad \text { on } \quad \mathbb{R}^{+}
$$

where $\left(X_{j}\right)_{j \geq 1}$ are i.i.d. copies of X and are independent of $\left(\eta ;\left(\xi_{j}\right)_{j \geq 1}\right)$. Here $\left(\xi_{j}\right)_{j \geq 1}$ are points of a Poisson point process with rate 1 on $(0, \infty)$ and independent of $\eta \sim$ Exponential (1).

Remarks :

- The model studied by Durrett and Limic (2002) gives this equation through the following story.
- Consider the following Markov process on countable subsets of $[0, \infty)$
- Each individual at position x lives for an independent Exponential (e^{x}) lifetime.
- After which it dies and instantaneously gives birth to infinitely many offsprings which are placed at positions $\left(x+\xi_{j}\right)_{j \geq 1}$ where $\left(\xi_{j}\right)_{j \geq 1}$ are points of a Poisson process of rate 1 on $(0, \infty)$.
- Then X is the extinction time for the process started with a single individual at position 0 .
- $c(p)=\frac{1}{p}$, so the general result proves that there is a solution with all moments finite which is also endogenous.
- Interesting enough in this case there are many other solutions, which of course do not have finite expectation!

Homogeneous Equation and Uniqueness

Proposition 3 Consider the homogeneous RDE

$$
X \stackrel{d}{=} \max _{1 \leq j \leq^{*} N} \xi_{j} X_{j} \quad \text { on } \mathbb{R}^{+}
$$

where $\left(X_{j}\right)_{j \geq 1}$ are i.i.d. copies of X and are independent of $\left(\xi_{j}\right)_{j \geq 1}$. Suppose dist (Y) is a non-zero solution of it. Let T be the operator associated with the original (inhomogeneous) RDE and we assume that $X<\infty$ a.s. Then for each $0 \leq a<\infty$

$$
T^{n}(\operatorname{dist}(a Y)) \xrightarrow{d} \mu_{a}
$$

where each μ_{a} are fixed-point of $T, \mu_{0}=\operatorname{dist}(X)$ and $\mu_{a} \preccurlyeq \mu_{b}$ if $0 \leq a \leq b<\infty$.

Remarks :

- Under some technical conditions one can also prove that μ_{a} 's are all distinct.
- In particular for Example 3 one can explicitly find all the solutions of the homogeneous equation, which then give other solutions of the original equation.
- If we take log-transformation of the homogeneous equation then we get the following RDE

$$
\widehat{X} \stackrel{d}{=} \max _{1 \leq j \leq^{*} N}\left(\widehat{\xi_{j}}+\widehat{X_{j}}\right)
$$

This equation relates to (possible) appropriately centered limit of the right-most position of a BRW. In general it is non-trivial to solve.

- We conjecture that the solution μ_{a} is not endogenous if $a>0$.

Mean-Field Combinatorial Optimization Problems

Mean-Field Model of Distance

- We have n points.
- $\binom{n}{2}$ inter point distances are i.i.d. random variables.

Note: This is different than the Uniform-Euclidean model, which is to take n uniformly distributed points inside a closed box in some Euclidean space.

- Think it as the complete graph K_{n} with i.i.d. edge lengths.
- The model with i.i.d. Exponential edge lengths is of particular interest.

Question : What happens to this model as n becomes large ?

PWIT (Poisson Weighted Infinite Tree)

- It has the skeleton \mathbb{T}_{∞} rooted at \emptyset.
- For the edges ($\mathbf{i}, \mathbf{i} j)_{j \geq 1}$ coming out of the vertex \mathbf{i}, the weights are points of Poisson point process of rate 1 on $(0, \infty)$ written as $\left(\xi_{\mathrm{i} j}\right)_{j \geq 1}$. The processes are independent as \mathbf{i} varies.

Local Weak Limit

- Considered the rooted graph G_{n} with edge lengths, obtained from K_{n} with i.i.d. Exponential $\left(\frac{1}{n}\right)$ edge lengths and selecting a vertex uniformly at random as the root.
- Then G_{n} converges in the sense of local weak convergence to the PWIT . [Aldous (1992, 2001), Aldous and Steele (2003)]
- The main reason is the following simple observation

Suppose $\left(\xi_{(1)}^{n}<\xi_{(2)}^{n}<\cdots<\xi_{(n)}^{n}\right)$ is a ordered statistics from n i.i.d. Exponential random variables with mean n then

$$
\left(\xi_{(i)}^{n}\right)_{i=1}^{n} \xrightarrow{d} \text { Poisson Process (1). }
$$

Random Assignment Problem

Problem : Suppose n is even, on K_{n} find the complete matching which has minimum total length.

More preciously the objective function is defined as

$$
M_{n}:=\inf \{\text { length }(\mathcal{M}) \mid \mathcal{M} \text { is a matching }\}
$$

where length of a matching \mathcal{M} is the sum of the lengths of the edges in the matching.

Remark: Typically it is stated in the setting of bipartite graph but from asymptotic point of view they give same answer!

Theorem 2 (Aldous (2001)) For i.i.d. Exponential edge lengths with mean n

$$
\frac{2}{n} \mathbf{E}\left[M_{n}\right] \rightarrow \frac{\pi^{2}}{6}
$$

Remark : Mézard and Parisi "proved" this result in 1987 using non-rigorous statistical physics argument.

A Program

(How to Prove Such a Theorem ?)

- We know that the limiting structure is PWIT .
- Suppose we have a corresponding optimization problem on the infinite-size model.
- Suppose we can solve that optimization problem and can compute the optimal solution.
- Suppose we can prove convergence of the finite problem to the infinite problem.
- All this will give the result !!!

Optimal Matching Problem on PWIT

Problem : Find a complete matching on PWIT which is invariant and minimizes average edge length.

Remarks :

- Here invariant means, intuitively, that in defining the complete matching on the PWIT , the root \emptyset should not play any special role.
- Once a matching is invariant by average edge length we will mean the expected length of the edge which matches the root \emptyset with one of its children.

540° argument

- Step 1 : For each vertex \mathbf{i} of the PWIT, let T^{i} be the infinite tree rooted at i containing only its descendents. We define the quantities
- $W_{\mathrm{i}}:=$ Total weight of optimal matching on T^{i}.
- $\widetilde{W}_{\mathrm{i}}:=$ Total weight of optimal matching on $\mathrm{T}^{\mathbf{i}} \backslash\{\mathbf{i}\}$.
- $X_{\mathrm{i}}:=W_{\mathrm{i}}-\widetilde{W_{\mathrm{i}}}$. Note : $X_{\mathrm{i}}=\infty-\infty$!
- Step 2 : Assuming these quantities make sense one can write the following recursion

$$
X_{\emptyset}=\min _{j \geq 1}\left(\xi_{j}-X_{j}\right) \quad \text { on } \mathbb{R},
$$

where $\left(X_{j}\right)_{j \geq 1}$ are i.i.d. with same law as of X_{\emptyset}, and are independent of $\left(\xi_{j}\right)_{j \geq 1}$ which are points of a Poisson point process of rate 1 on $(0, \infty)$.

- Step 3 : One can show [Aldous, 2001]
- The RDE is well defined and has unique solution as the Logistic distribution. We will call this RDE the Logistic RDE.
- Now we can reconstruct (rigorously) the optimal matching on PWIT using the variables X_{i}. For example, match root \emptyset with $\arg \min \left(\xi_{j}-X_{j}\right)$.

$$
j \geq 1
$$

Role of Endogeny

- Endogeny will show that the optimal solution is a measurable function of the data (innovations), in the infinite-size problem. Since a measurable function is a.s. continuous, we can pull back to define almost-feasible solution of the finite size- n problem with almost equal cost.
- It will then remain to show that in the finite size-n problem one can patch an almost-feasible solution into a feasible solution for asymptotically negligible cost.

> Theorem 3 (B. (2002)) The unique solution of the Logistic RDE is endogenous.

Remark : Proof uses the equivalence theorem and involves analytic argument.

My Apology for Not Covering ...

- The linear RDEs which have been extensively studied by various authors, mainly in the context of probabilistic analysis of random algorithms.
- RDEs related to branching processes and branching random walks.
- Relation of certain max-type RDEs (appear in context of BRW) with linear RDEs.
- ... and many more some of which I may not even be aware of!

Thank You

