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Two Examples

Examples 1 : Consider a (sub)-critical Galton-Watson
branching process with the progeny distribution N, so
E[N] <1; we assume P(N =1) < 1.

Height of the Tree : Let H := 14 height of the G-W
tree, then H < o0 a.s. and

H < 1+ max(Hi, Hs,...,Hy) on N,

where (Hj),,, are i.i.d. with same law as of H and are
independent of N.



Example 2 (Perhaps the best known !) : Consider
the following fixed point equation

d 21+ 27
V2

where (Z1,Z>) are i.i.d. copies of Z.

Z on R,

e The set of all solutions is given by the Normal (0, 0?),
g2 > 0 family.

e This example also extends to give characterizations
of stable laws.

We will call such an equation a recursive distributional
equation (RDE).



Typical features of RDEs

Ex. 1: X = 14max(XiXo,...,Xy) on N
Ex. 2: X = (Z1+2)/v2 on R

e Unknown Quantity : Distribution of X.

e Known Quantities :

— N < oo which may or may not be random (e.g.
N =2 in Ex. 2).

— Possibly some more randomness whose distri-
bution is known (not present in both examples
above).

— How we combine the known and unknown ran-
domness (e.g. “1 4 max" operation in Ex. 1).

e What is the RDE doing ? To find a distribution
p such that when we take i.i.d. samples (X;)..,

from it and only use N many of them (where N is
independent of the samples) and do the manipula-
tion then we end up with another sample X ~ pu.

Remark : In the case N = 1 a.s. it reduces to the
question of finding a stationary distribution of a discrete
time Markov chain.



Two main uses of RDEs

e Direct use : The RDE is used directly to define a
distribution. Examples include,

» The height (and also the size) of a (sub)-critical
Galton-Watson tree (Example 1).

» The Quicksort distribution (from random algo-
rithm literature).

» Discounted tree sums / inhomogeneous perco-
lation on trees.

» ... and many others.

e Indirect use: The RDE is used to define some aux-
iliary variables which help in defining/characterizing
some other quantity of interest. Among others the
following two type of applications are of special in-
terest

» Characterizing phase transition or determining
critical points and scaling laws. (will see an
example.)

» 540° argument ' (will not give an example.)
[Aldous 2000, 2001 and Aldous & B. 2004]



General Setup

Let (S,6) be a measurable space, and P be the
collection of all probabilities on (S5, &).

Let (¢, N) be a pair of random variables such that
N takes values in {0,1,2,...;00}.

Let (X;),, bei.i.d S-valued random variables, which
are independent of (¢, N).

g (+) is a S-valued measurable function with appro-
priate domain.



Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P
is called a Recursive Distributional Equation (RDE)

x < g(6X;,1<j<*N), on s

where (X;),,, are independent copies of X and are in-
dependent of (¢,N).

Remark : A more conventional (analysis) way of writing
the equation would be

p="T(pn)
where T' is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair ({,N), and u is the (unknown) law
of X.
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Hard-Core Model on a Finite Graph

Let G := (V, FE) be a finite graph.

We say a subset I C V' is an independent set of G,
if for any two u,v € I there is no edge between u
and v.

Let Zgs be the set of all independent sets of G.

Fix 0O<p<1and IetA:lLip.

Suppose (Cy),y be i.i.d. Bernoulli(p).
Define I :={v e V|C, = 1}.
The measure P (-|I € Zg) on Zg is called the hard-

core model or random independent set model with
activity A. We will denote it by P.

It is easy to see that P is the probability on Zs which
puts mass proportional to Al for I € Z¢.



Sparse Random Graphs

e Two types of sparse random graphs :

» G(n,2) : A random graph with n vertices and
each edge is present with probability % indepen-

dently, where u > 0. [Erdds & Rényi 1959 -
1968]

» G(n,r+ 1) : Pick a graph uniformly at random
from the set of all (r 4+ 1)-regular graphs with n
vertices.

e Given a particular realization G, of a sparse ran-
dom graph, we will consider the hard-core model
with activity A > 0 on that finite graph as described
before.

e Note there are two stages of randomness and there
are two parameters,

» 1 > 0 dealing with the randomness of the graph
configuration.

» )\ > 0 dealing with the randomness of the hard-
core model given a configuration.



Motivations

e Interesting from Statistical Physics point of view,
well studied for non-random graphs. [Kelley 1985,
van den Berg & Steif 1994, Brightwell, Haggstrom
& Winkler 1998, Brightwell & Winkler 1999]

e Has applications in engineering fields, like in multi-
cast networking problems. [Ramanan et al 2002]

e Conjecture of Aldous [2003] :

For a sparse random graph if I,, be the maximal
independent set then
E [|In]]
n

where ¢ is a constant which depends on the model
for the sparse random graph.

— Cc dS n — 00,

Remark : For a hard-core model on a finite graph if we
take A — oo limit then it concentrate on the maximal
independent set(s).



Sparse Random Graphs and GW-Trees

e Known : If G,, be a model for sparse random graph
then for “large” enough n “locally it looks like” a
(possibly random) rooted tree.

» For G (n,L) it is rooted Galton-Watson tree with
Poisson () offspring distribution.

» For G(n,r+ 1) it is rooted (r 4+ 1)-regular tree.

e Conclusion : So for computing “large” n limit of
hard-core model on these kind graphs we need to
consider the similar model on respective GW-trees.

e Problem : The trees we get may be infinite with
positive probability.

e Solution : In that case we need to consider Gibbs
measure with activity A > 0 which has appropriate
conditional laws (“DLR condition™).

e Warning : It is then no longer true that there
is only one such measure and we will say that a
phase transition occurs if there are multiple Gibbs
measures for a given activity A > 0.
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Key Recursion on a Finite Tree

Suppose T be a finite rooted tree and we consider
the hard-core model on it with activity A > 0.

Suppose () be the root and it has n (f) many children
which are denoted by 1,2,...,n(0).

Let I be a random independent set distributed ac-
cording to the hard-core model with activity A > 0.
Then we define ?7%— =P el).

For a child j, let 7; be the sub-tree rooted at j
obtained by removing (0. Suppose 77J7—, be defined

similarly of ng-.

The following key recursion holds

n(0)
,_ G-
T = n(0) j
L+ 1T (1)
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Related RDE

N
;AL (1)
n = J_N on [0, 1],
1+>\j£[1 (1 —ny)

where (n;) are i.i.d. copies of n and are independent of

N.

Properties : Let T be the associated operator and

S =

T? then

T (80) = Ox/(142)-

do < T'(m) < 6x/(1+2), fOr any probability m on [0, 1].
T is anti-monotone = S is monotone.

So there exist my, < m* two fixed points of S such
that S (80) t m. and S™ (8y/1+x)) L m*.

T (my) = m*.
S has unique fixed point if and only if m, = m*.
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Uniqueness Domain

Definition 2 We will say that we are in unigueness do-
main if m, = m?*.

Results

e Theorem 1 For a GW-Tree with progeny distri-
bution N and for activity A\ > O we are in unique-
ness domain if and only if, there is a unique Gibbs
measure with activity A a.s. with respect to the
randomness in the configuration of the tree.

Note : The phase transition is characterize by the
uniqueness of solution of a RDE.

e Theorem 2 Forg (n, %) suppose we are in the unique-
ness domain for A > 0 and with N ~ Poisson (n) and
let I, be a random independent set with hard-core
distribution with activity A\, then

E[|1n]]

— E[n]
where n ~ m, = m*.
e Theorem 3 A similar statement for G (n,r + 1).

13



When Uniqueness Domain Holds ?

e Small i : If u <1 then the graphical structure is in
the (sub)-critical domain and hence it will be finite
and so uniqueness domain holds for any A > 0. This
is not the interesting case !

e Small A : If A x u <1 then T is a contraction and
hence uniqueness domain holds. Thus for any 4 > 0
for activity A < % we are in the uniqueness domain.

Remarks :

e I believe (do not have complete proofs yet) that
uniqgueness domain will not hold for large u or large
A(and p>1).

e SO it seems that we may not be able to resolve
Aldous’ conjecture by this method. But perhaps
we can ... that is yet another story !

e At least we do get a nice example of phase transi-
tion phenomenon which is characterize by unique-
ness of solution of a RDE.
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