Hard-Core Model on Random Graphs

Antar Bandyopadhyay

Theoretical Statistics and Mathematics Unit Seminar

Theoretical Statistics and Mathematics Unit Indian Statistical Institute, New Delhi Centre New Delhi, India

http://www.isid.ac.in/~antar

October 4, 2006

A Problem by David Aldous

 For r ≥ 2 and n ≥ 3, let G (n, r) be a random graph selected uniformly at random from the set of all r-regular graphs on n vertices.

• Conjecture of Aldous [2003] :

Let I_n be a maximum independent set then

$$rac{\mathrm{E}\left[\left| I_{n}
ight|
ight]}{n}
ightarrow \kappa \quad ext{as} \quad n
ightarrow \infty,$$

where $\kappa > 0$ is a constant which may depend on r.

• In combinatorics for a finite graph G the size of a maximum independent set is known as the *independence number* of G.

An Approach Towards Resolving the Conjecture

 \bullet We will consider a probability model on the set of all independent sets of the random graph G such that

$$\mathbb{P}_{\lambda}\left(I
ight) \propto \lambda^{\left|I
ight|},$$

where I is an independent set of G(n,r).

- It is easy to see that given G(n,r) the probability measures \mathbb{P}_{λ} concentrate on the *maximum* independent sets as $\lambda \to \infty$.
- So perhaps studying this model \mathbb{P}_{λ} on random graphs may help to resolve Aldous' conjecture.
- We will see what we can do ... !

Hard-Core Model on a Finite Graph

Setup :

- Let G := (V, E) be a finite graph.
- We say a subset $I \subseteq V$ is an *independent set* of G, if for any two vertices $u, v \in I$ there is no edge between u and v.
- Let \mathcal{I}_G be the set of all independent sets of G.
- We would like to define a measure on \mathcal{I}_G .

Description 1 :

- Fix $\lambda > 0$.
- Hard-core model on G with activity λ is a probability distribution on \mathcal{I}_G such that

$$\mathbb{P}^G_\lambda(I) \propto \lambda^{|I|}, \ \ I \in \mathcal{I}_G.$$

• Thus

$$\mathbb{P}_{\lambda}^{G}(I) = \frac{\lambda^{|I|}}{Z_{\lambda}(G)}, \quad I \in \mathcal{I}_{G}$$

where $Z_{\lambda}(G) := \sum_{I \in \mathcal{I}_{G}} \lambda^{|I|}$ is the proportionality constant, known as the *partition function*.

Observations :

- If $\lambda = 1$ then we get the uniform distribution on \mathcal{I}_G and $Z_{\lambda}(G)$ is the size of \mathcal{I}_G .
- Also we have already noticed, $\lambda \to \infty$ the measures \mathbb{P}^G_{λ} concentrate on maximal size independent sets.

Description 2 :

- Fix $\lambda > 0$ and let $p := \frac{\lambda}{1+\lambda} \in (0, 1)$.
- Suppose $(C_v)_{v \in V}$ are i.i.d. Bernoulli (p).
- Let $I := \{v \in V \mid C_v = 1\}.$
- The measure $\mathbf{P}(\cdot | I \in \mathcal{I}_G)$ on \mathcal{I}_G is same as \mathbb{P}^G_{λ} .

Remark :

• This gives a way to get exact samples from \mathbb{P}^G_{λ} .

Hard-Core Model on an Infinite Graph

Problems with the Two Previous Descriptions :

- For Description 1, we note that \mathcal{I}_G is infinite and hence the partition function $Z_{\lambda}(G) = \infty$!
- For Description 2, we end up with the (same type of) problem that the event $[I \in \mathcal{I}_G]$ has zero probability under the i.i.d. coin tossing measure.

An Observation on Finite Graph :

Fix any vertex $v \in V$ and let σ be an independent set for the graph with vertex set $V \setminus \{v\}$ then

$$\mathbb{P}^{G}_{\lambda} \left(v \in I \,|\, I \setminus \{v\} = \sigma \right) = \begin{cases} \frac{\lambda}{1+\lambda} & \text{if } \sigma \cup \{v\} \in \mathcal{I}_{G} \\ 0 & \text{otherwise} \end{cases}$$

where $I \in \mathcal{I}_G$.

Statistical Physics Definition :

Definition 1 Given a finite or countably infinite, but locally finite graph G = (V, E) and $\lambda > 0$, a probability measure \mathbb{P}^G_{λ} on $\{0, 1\}^V$, is said to be a Gibbs measure for the hard-core model on G with activity λ , if it admits conditional probabilities such that for all $v \in V$ and for any $\sigma \in \{0, 1\}^{V \setminus \{v\}}$,

$$\mathbb{P}^{G}_{\lambda}\left(I(v)=1 \,|\, I(V \setminus \{v\})=\sigma\right) = \begin{cases} \frac{\lambda}{1+\lambda} & \text{if } \sigma \lor \mathbf{1}_{v} \in \mathcal{I}_{G} \\ 0 & \text{otherwise} \end{cases}$$

where *I* is a $\{0,1\}^V$ -valued random variable with distribution \mathbb{P}^G_{λ} .

Remarks :

- This is what is known as Dobrushin-Lanford-Ruelle (DLR) definition of infinite-volume Gibbs measure.
- Similar definitions are used for defining Ising model and *q*-Potts model on infinite graphs.

Existence and Uniqueness

- In general a Gibbs measure exists by compactness argument.
- If G is finite then uniqueness holds trivially.
- It is not necessary that the uniqueness will hold when G is infinite.

Definition 2 For a fixed graph G we say that a phase transition occurs for hard-core model with activity $\lambda > 0$, if there are more than one Gibbs measures of the form \mathbb{P}^G_{λ} .

Note : There is no phase transition if G is finite.

What are Known ?

- First introduced by Dobrushin (1968) on \mathbb{Z}^d for model of lattice gas.
- Phase transition is well studied for \mathbb{Z}^d .
 - ▶ No phase transition for d = 1.
 - For $d \ge 2$ no phase transition for small λ , but phase transition occurs for large λ .

Not Known : Is phase transition *monotone* ? In other words is there a critical value in λ ?

- Arguably the most well studied case is the model on regular trees, \mathbb{T}_r for $r \geq 2$. [Kelly, 1985]
 - For a *r*-regular tree \mathbb{T}_r , there exists a critical value $\lambda_c(r)$ such that, no phase transition when $\lambda \leq \lambda_c(r)$ and phase transition occurs when $\lambda > \lambda_c(r)$.
 - $\blacktriangleright \lambda_c(r) = \frac{(r-1)^{r-1}}{(r-2)^r}.$
- It is also known that there are infinite trees for which phase transition is not *monotone* ! [Brightwell, Häggström, Winkler, 1998]

Hard-Core Model on Random Graphs

Setup :

- *G* be a set of graphs which are finite or countably infinite and are locally finite.
- Suppose \mathbf{P} is a probability on \mathcal{G} .
- Let $\mathbf{G} \sim \mathbf{P}$. We will write $\mathbf{G}(\omega)$ for a realization of the random graph \mathbf{G} .
- Given $\mathbf{G}(\omega)$ a hard-core model with activity $\lambda > 0$ on $\mathbf{G}(\omega)$ will be denoted by $\mathbb{P}_{\lambda}^{\omega}$.
- We will denote the joint measure as \mathbf{P}_{λ} .

Remark :

- Note that there are two stages of randomness and there are two parameters :
 - ► One is the probability distribution P on G governing the randomness of the underlying graphical structure.
 - The other is λ which is governing the hard-core model given the graph.

Phase Transition

Definition 3 Given a random graph model $(\mathcal{G}, \mathbf{P})$, we say that there is a phase transition for the hard-core model with activity $\lambda > 0$ on a random graph $\mathbf{G} \sim \mathbf{P}$ if

 $P\left(\exists \text{ multiple measures of the form } \mathbb{P}^G_{\lambda}\right) > 0.$

Remark :

- If the random graph model is such that G is finite a.s. then there will be no phase transition for any activity $\lambda > 0$.
- It is possible to construct an example of $(\mathcal{G}, \mathbf{P})$ such that phase transition occurs for every $\lambda > 0$.

An Example

- Let $\mathcal{G} := \{\mathbb{T}_r | r \ge 2\}$ and P be given by $P(\mathbb{T}_r) = \frac{1}{2^{r-1}}$.
- Recall that from Kelly's work (1985) it is known that for hard-core model on *r*-regular tree \mathbb{T}_r , phase transition occurs if an only if

$$\lambda > \lambda_c(r) = \frac{(r-1)^{r-1}}{(r-2)^r}.$$

- But $\lambda_c(r) \to 0$ as $r \to \infty$.
- So for every λ > 0 for large enough r we must have λ_c(r) < λ and thus a phase transition would occur for the random graph model (G, P).

Remark :

- It is important to note that for the model (G, P) we can have realizations having arbitrarily large degree with positive probability.
- It is known that for bounded degree (fixed) graphs there should be no phase transition for *small* values of λ . [van den Berg and Steif, 1994]

Random Graph Models

- **GW-Tree**: Galton-Watson branching process tree with a given progeny distribution denoted by *N*.
 - ▶ The parameter here is the distribution of N.
- Sparse Random Graphs :
 - ▶ Erdös and Rényi Random Graph : A random graph on $n \ge 1$ vertices labeled by [n] := $\{1, 2, ..., n\}$ where each pair of vertices are connected by an edge independently with probability $\frac{c}{n}$, where c > 0. This would be denoted by $\mathcal{G}(n, \frac{c}{n})$.
 - The parameter here is c > 0.
 - ▶ Random *r*-regular Graph : This is to select one graph at random from the set of all *r*-regular graphs with vertex set [n]. We will denote this model by $\mathcal{G}_r(n)$.

Note : In order for this model to make sense we will always assume that nr is even.

• The parameter here is $r \geq 2$.

Motivations

- Aldous' conjecture for the scaling of the independent number of a sparse random graph.
- Interesting from Statistical Physics point of view, well studied for non-random graphs. [Dobrushin 1970, Kelley 1985, van den Berg & Steif 1994, Brightwell, Häggström & Winkler 1998, Brightwell & Winkler 1999]
- Has applications in engineering fields, like in *multi-cast networking* problems. [Ramanan et al, 2002]

Sparse Random Graphs and GW-Trees

- Known : If \mathcal{G}_n be a model for sparse random graph then for "large" enough n from the "view point" of a fixed vertex "locally it looks like" a (possibly random) rooted tree.
 - ► For $\mathcal{G}\left(n, \frac{c}{n}\right)$ it is a rooted Galton-Watson tree with Poisson (c) offspring distribution.
 - ▶ For $\mathcal{G}(n,r)$ it is a rooted *r*-regular tree.
- **Conclusion :** So for computing "large" *n* limit of hard-core model on these kind of graphs we may need to consider the similar model on respective GW-trees.
- Note : For a *r*-regular tree, one slight annoyance is that it is not really a GW-tree ! But by removing one vertex (the root) it can be viewed as a collection of *r* GW-trees with progeny distribution $N \equiv r - 1$.

Hard-Core Model on GW-Trees

Proposition 1 Fix $\lambda > 0$ then the followings hold for a GW-tree with progeny distribution N.

- (a) If $E[N] \leq 1$ then there is no phase transition.
- (b) If E[N] > 1 then on the event of non-extinction phase transition occurs with probability 0 or 1.

Proof of Proposition 1 :

- Nothing to prove for part (a).
- For part (b) notice that the property that a (fixed) rooted tree T has no phase transition implies that if v is a child of the root, and T(v) is the sub-tree rooted at v consisting only of the descendants of v, then T(v) also has no phase transition.
- Let $\beta := \mathbf{P}_{\lambda}$ (no phase transition in \mathcal{T}) where \mathcal{T} is a GW-tree, and let $\{v_1, v_2, \ldots, v_N\}$ be the children of the root in \mathcal{T} . Then

$$\pi \leq \mathbf{P}_{\lambda} (\text{ no phase transition in } \mathcal{T}(v_j), \forall j)$$
$$= \sum_{n=0}^{\infty} \mathbf{P} (N = n) \pi^n = f(\pi)$$

where f is the generating function for N.

- Moreover $\beta \ge q$:= extinction probability, because [extinction] \subseteq [no phase transition]
- Thus $\beta \in \{q, 1\}$ and this completes the proof.

Key Recursion on a Finite Tree

- Suppose T be a finite (fixed) rooted tree and we consider the hard-core model on it with activity λ > 0.
- Suppose Ø be the root and it has n (Ø) many children which are denoted by 1, 2, ..., n (Ø).
- Let I be a random independent set distributed according to the hard-core model with activity $\lambda > 0$. We define $\eta_{\emptyset}^{\mathcal{T}} := \mathbb{P}_{\lambda}^{\mathcal{T}} \ (\emptyset \in I)$.
- For a child j, let \mathcal{T}_j be the sub-tree rooted at j obtained by removing \emptyset . Suppose $\eta_j^{\mathcal{T}_j}$ be defined similarly of $\eta_{\emptyset}^{\mathcal{T}}$.
- The following key recursion holds

$$\eta_{\emptyset}^{\mathcal{T}} = \frac{\lambda \prod_{j=1}^{n(\emptyset)} \left(1 - \eta_{j}^{\mathcal{T}_{j}}\right)}{1 + \lambda \prod_{j=1}^{n(\emptyset)} \left(1 - \eta_{j}^{\mathcal{T}_{j}}\right)}$$

"Superscript Dropping Principle" Recursive Distributional Equation (RDE)

We consider the following distributional identity :

$$\eta \stackrel{d}{=} \frac{\lambda \prod_{j=1}^{N} \left(1 - \eta_{j}\right)}{1 + \lambda \prod_{j=1}^{N} \left(1 - \eta_{j}\right)} \quad \text{on } [0, 1],$$

where (η_j) are i.i.d. copies of η and are independent of N.

 We also define an operator T : P ([0,1]) → P ([0,1]) using the right-hand side of the above RDE, namely,

$$T(\mu) := \operatorname{dist} \left(\frac{\lambda \prod_{j=1}^{N} \left(1 - \eta_{j} \right)}{1 + \lambda \prod_{j=1}^{N} \left(1 - \eta_{j} \right)} \right)$$

where (η_j) are i.i.d. with distribution μ on [0, 1] and are independent of N.

• We put $S = T^2$.

19

RDE Continued ...

Properties of the RDE and the Operator \boldsymbol{T} :

•
$$T(\delta_0) = \delta_{\lambda/(1+\lambda)}$$
.

- $\delta_0 \preccurlyeq T(\mu) \preccurlyeq \delta_{\lambda/(1+\lambda)}$, for any probability μ on [0, 1].
- T is anti-monotone \Rightarrow S is monotone.
- T is continuous with respect to the weak convergence topology on $\mathcal{P}([0,1])$.
- So there exist $\mu_* \preccurlyeq \mu^*$ two fixed points of S such that $S^n(\delta_0) \uparrow \mu_*$ and $S^n(\delta_{\lambda/(1+\lambda)}) \downarrow \mu^*$.
- $T(\mu_*) = \mu^*$ and $T(\mu^*) = \mu_*$.
- S has unique fixed point if and only if $\mu_* = \mu^*$.
- T is a strict contraction with respect to the Wasserstine metric when $\lambda \mathbf{E}[N] < 1$.

Uniqueness Domain

Definition 4 We will say that we are in the uniqueness domain if $\mu_* = \mu^*$.

Characterization of Phase Transition for GW-Tree Model

Theorem 2 For GW-tree with progeny distribution N, there is no phase transition for the hard-core model with activity $\lambda > 0$, if and only if, we are in uniqueness domain for the associated RDE.

Specialization to *r***-regular Tree**

- Notice that if $\mathbb{T}_r(\emptyset)$ denote a rooted *r*-regular tree, that is, a tree whose root \emptyset has degree r-1 and all other vertices have degree *r*, then it is a GW-tree with progeny distribution $N \equiv r-1$.
- So for this model N is non random, that is the operator T has no random part in its definition.
- This then implies both μ_* and μ^* are degenerate measures.
- So basically we need to consider fixed point of a deterministic function $s = t^2$ where $t: [0, 1] \rightarrow [0, 1]$ given by

$$t(p) = rac{\lambda (1-p)^{r-1}}{1+\lambda (1-p)^{r-1}}, \ p \in [0,1].$$

• This is exactly what Kelly did in his 1985 paper and this leads to the critical value $\lambda_c(r)$.

When Does Uniqueness Domain Hold ?

Corollary 3 For a GW-tree with progeny distribution N, there is no phase transition for the hard-core model with activity $\lambda > 0$ if

(a) $E[N] \le 1$ or,

(b) $\lambda E[N] < 1.$

Remarks :

- In particular it shows that for any GW-tree (with $E[N] < \infty$) at least for sufficiently small λ there is no phase transition. Such result is expected. But note that we do not assume that the progeny distribution is bounded.
- In fact a better bound holds using Van den Berg-Steif inequality, namely λ (E[N] - 1) < 1.

Main Results for hard-Core Model on Sparse Random Graphs

Theorem 4 Suppose $X_{\lambda}^{\omega}(n,c)$ be the size of a random independent set distributed according to the hard-core model with activity $\lambda > 0$ on a Erdös-Rényi random graph $\mathcal{G}\left(n,\frac{c}{n}\right)$. If the GW-tree with Poisson(c) progeny distribution has no phase transition then

$$\lim_{n \to \infty} \frac{\mathbf{E}_{\lambda} \left[X_{\lambda}^{\omega} \left(n, c \right) \right]}{n} = \gamma_{\lambda} \left(c \right)$$

where $\gamma_{\lambda}(c) := \mathbf{E}[\eta]$ and η is the unique solution of the RDE.

Theorem 5 Suppose $X_{\lambda}^{\omega}(n,r)$ be the size of a random independent set distributed according to the hard-core model with activity $\lambda > 0$ on a random regular graph $\mathcal{G}_r(n)$. If the *r*-regular tree has no phase transition, that is, if $\lambda < \lambda_c(r) = (r-1)^{(r-1)}/(r-2)^r$, then

$$\lim_{n \to \infty} \frac{\mathbf{E}_{\lambda} \left[X_{\lambda}^{\omega} \left(n, r \right) \right]}{n} = \alpha_{\lambda} \left(r \right)$$

where $\alpha_{\lambda}(r) = w/(1+2w)$ with w is the unique positive solution of the equation $\lambda = w(1+w)^{r-1}$.

Back to Aldous' Conjecture

Conjecture [Aldous, 2003] : For a sparse random graph if I_n is a maximum independent set then

$$\lim_{n \to \infty} \frac{\mathbf{E}\left[|I_n|\right]}{n} = \kappa$$

for some constant $\kappa > 0$ (explicitly computable ?).

- Our method fails ! This is because it seems (for the general GW-tree case) that the uniqueness domain does not hold for *large* λ .
- For example it is the case with *r*-regular trees and hence for the sparse random graph model $\mathcal{G}_r(n)$.
- In fact for $\mathcal{G}_r(n)$ model it has been postulated (proved using non-rigorous methods) in physics literature that such asymptotic limit exists and has the same answer as Theorem 5 when λ is smaller than the so called "extremality threshold" (which is bigger than the "uniqueness threshold").
- Our Theorems 4 and 5 provides rigorous argument when λ is in the uniqueness domain (that is, under the *uniqueness threshold* for the $\mathcal{G}_r(n)$ model).

Background : Recursive Tree Process (RTP)

Consider the RDE

$$\eta \stackrel{d}{=} \frac{\lambda \prod_{j=1}^{N} (1 - \eta_j)}{1 + \lambda \prod_{j=1}^{N} (1 - \eta_j)} \quad \text{on } [0, 1],$$

where (η_j) are i.i.d. copies of η and are independent of N.

Notations :

- Let μ be a solution of the RDE.
- Let $\mathbb{T}_{\infty} = (\mathcal{V}, \mathcal{E})$ be the canonical infinite tree with vertex set $\mathcal{V} := \{\mathbf{i} | \mathbf{i} \in \mathbb{N}^d, d \ge 1\} \cup \{\emptyset\}$. We will consider it as rooted at \emptyset .
- Suppose $(N_i)_{i \in \mathcal{V}}$ be i.i.d. copies of the progeny distribution N.

Recursive Tree Process (RTP)

A collection of [0,1]-valued random variables $(\eta_i)_{i \in \mathcal{V}}$ is called an invariant *Recursive Tree Process (RTP)* with marginal μ if

- $\eta_{\mathbf{i}} \sim \mu \ \forall \ \mathbf{i} \in \mathcal{V}.$
- Fix $d \ge 0$ then $(\eta_i)_{|i|=d}$ are independent.

•
$$\eta_{\mathbf{i}} = \frac{\lambda \prod_{j=1}^{N_{\mathbf{i}}} (1-\eta_{\mathbf{i}j})}{1+\lambda \prod_{j=1}^{N_{\mathbf{i}}} (1-\eta_{\mathbf{i}j})}$$
 a.s. $\forall \mathbf{i} \in \mathcal{V}$.

• $\eta_{\mathbf{i}}$ is independent of $\{N_{\mathbf{i}'} | |\mathbf{i}'| < |\mathbf{i}|\} \quad \forall \mathbf{i} \in \mathcal{V}.$

Remark : Using *Kolmogorov's consistency*, an invariant RTP with marginal μ exists if and only if μ is a solution of the RDE.

28

Towards Proving Theorem 2

Long Range Independence Property

- Fix $d \ge 0$.
- Write \mathbf{x}_d for a vector $(x_i)_{|i|=d}$ where each $x_i \in [0, 1]$.
- Let \mathcal{T} be the realization of the GW-tree rooted at \emptyset obtained from the realizations of $(N_i)_{i \in \mathcal{V}}$.
- Let $\left(\eta_{\mathbf{i}}^{(d)}(\mathbf{x}_d)\right)_{|\mathbf{i}| \leq d}$ be the *d*-depth RTP with values at level *d* given by \mathbf{x}_d .

Lemma 6 (Long range independence) Suppose we are in the uniqueness domain, that is $\mu_* = \mu^*$, then

$$\lim_{d\to\infty}\sup_{\mathbf{x}_d} |\eta_{\emptyset}^{(d)}(\mathbf{x}_d) - \eta_{\emptyset}| = 0 \quad a.s.$$

Remark :

• The proof of Theorem 2 follows from this Lemma.

Proof of Lemma 6 :

- For the vector \mathbf{x}_d if all the components are same as c the we will write the vector itself as \mathbf{c} .
- $\eta_{\emptyset}^{(2d)}(\mathbf{0}) \uparrow \eta_{\emptyset}$, a.s. and also $\eta_{\emptyset}^{(2d+1)}(\mathbf{0}) \downarrow \eta_{\emptyset}$ a.s.

•
$$\eta_{\emptyset}^{(d)}\left(\frac{\lambda}{1+\lambda}\right) = \eta_{\emptyset}^{(d+1)}(0)$$
, so $\eta_{\emptyset}^{(d)}\left(\frac{\lambda}{1+\lambda}\right) \to \eta_{\emptyset}$ a.s.

• If
$$0 \leq x_{i} \leq \frac{\lambda}{1+\lambda}$$
 for all $i \in \mathcal{V}$ then
 $\eta_{\emptyset}^{(2d)}(0) \leq \eta_{\emptyset}^{(2d)}(\mathbf{x}_{2d}) \leq \eta_{\emptyset}^{(2d)}\left(\frac{\lambda}{1+\lambda}\right)$, and
 $\eta_{\emptyset}^{(2d+1)}\left(\frac{\lambda}{1+\lambda}\right) \leq \eta_{\emptyset}^{(2d+1)}(\mathbf{x}_{2d+1}) \leq \eta_{\emptyset}^{(2d+1)}(0)$.
So $\eta_{\emptyset}^{(d)}(\mathbf{x}_{d}) \rightarrow \eta_{\emptyset}$ a.s. as $d \rightarrow \infty$.

- Now notice that $\eta_{\emptyset}^{(d)}(1) = \eta_{\emptyset}^{(d-1)}(\mathbf{x}_{d-1})$ where each $x_{\mathbf{i}} \in \{0, \lambda/(1+\lambda)\}$. So $\eta_{\emptyset}^{(d)}(1) \to \eta_{\emptyset}$ a.s.
- Finally, if $0 \leq x_i \leq 1$ for all $i \in \mathcal{V}$ then $\eta_{\emptyset}^{(2d)}(0) \leq \eta_{\emptyset}^{(2d)}(\mathbf{x}_{2d}) \leq \eta_{\emptyset}^{(2d)}(1)$, and $\eta_{\emptyset}^{(2d+1)}(1) \leq \eta_{\emptyset}^{(2d+1)}(\mathbf{x}_{2d+1}) \leq \eta_{\emptyset}^{(2d+1)}(0)$. So $\eta_{\emptyset}^{(d)}(\mathbf{x}_d) \to \eta_{\emptyset}$ uniformly a.s. as $d \to \infty$, proving the lemma.

Remarks on the Proofs of Theorem 4 and Theorem 5

• First thing to note is

$$\frac{1}{n}\mathbf{E}_{\lambda}\left[X_{\lambda}^{\omega}\right] = \mathbf{P}_{\lambda}\left(v_{0} \in I_{\lambda}^{\omega}\right),$$

where I_{λ}^{ω} is the random independent set selected according to the (random) distribution $\mathbb{P}_{\lambda}^{\omega}$, and v_0 is a fixed vertex.

- For any fixed d > 0 the distribution of the *d*-depth neighborhood of v_0 converges to the distribution of a *d*-depth Poisson(*c*) GW-tree for $\mathcal{G}(n, \frac{c}{n})$ model, and to a *d*-depth *r*-regular tree for $\mathcal{G}_r(n)$ model.
- We can then apply the *local weak convergence* technique of Aldous and Steele (2004) using the (strong) *long range independence* property which holds under the uniqueness domain. These will give the stated results after a little more careful probability computations !

Open Problems/Questions

• We know that for *r*-regular tree the phase transition is a *monotone* property in λ , and the critical value $\lambda_c(r)$ is explicitly know.

Is phase transition monotone (in $\lambda)$ for a general GW-tree ?

Comment : Most possibly not ! But is it at least the case for GW-tree with Poisson progeny distribution ?

• For GW-tree with Poisson(c) progeny distribution is phase transition monotone in c? That is for every fixed $\lambda > 0$ if c > c' and we have no phase transition for Poisson(c) GW-tree then can we say that we have no phase transition for Poisson(c') GW-tree ?

Comment : We know this is true if $\lambda \times c < 1$.

• If the answer to above question is yes (which is most possibly the case) can we also get the critical value for c? (explicitly or bounds?)