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A Problem by David Aldous

e Forr>2andn > 3, let G(n,r) be a random graph
selected uniformly at random from the set of all
r-regular graphs on n vertices.

e Conjecture of Aldous [2003] :
Let [,, be a maximum independent set then
E [|1n]]

mn
where k > 0 is a constant which may depend on r.

— K aAS n — 00,

e In combinatorics for a finite graph G the size of a
maximum independent set is known as the indepen-
dence number of G.



An Approach Towards Resolving the
Conjecture

We will consider a probability model on the set of
all independent sets of the random graph G such
that

Py (I) o< A1,
where [ is an independent set of G (n,r).

It is easy to see that given G (n,r) the probability
measures P, concentrate on the maximum indepen-
dent sets as A — oo.

So perhaps studying this model Py, on random graphs
may help to resolve Aldous’ conjecture.

We will see what we can do ... !



Hard-Core Model on a Finite Graph

Setup :

o Let G:= (V,F) be a finite graph.

e We say a subset I C V is an independent set of
G, if for any two vertices u,v € I there is no edge
between u and v.

o Let 75 be the set of all independent sets of G.

e \We would like to define a measure on Zg.



Description 1 :

e Fix A\ > 0.

e Hard-core model on G with activity X is a probability
distribution on Z4 such that

P§ (1) x Al T e Zg.

e [ hus
1]

B =" Gy

I €la

where Z, (G) := Y Ml is the proportionality con-
IEIG
stant, known as the partition function.

Observations :

e If A\ = 1 then we get the uniform distribution on Zg
and Z,(G) is the size of Zg.

e AIlso we have already noticed, A — co the measures
Pf concentrate on maximal size independent sets.



Description 2 :

e Fix A>0 and let p:= 35 € (0,1).

Suppose (Cy),cy are i.i.d. Bernoulli(p).
o Let ]  ={veV|C,=1}

e The measure P (-|I € Zg) on Zg is same as P§.

Remark :

e T his gives a way to get exact samples from Pf.



Hard-Core Model on an Infinite Graph

Problems with the Two Previous Descriptions :

e For Description 1, we note that Z¢g is infinite and
hence the partition function Z,(G) = oo !

e For Description 2, we end up with the (same type
of) problem that the event [I € Zs] has zero prob-
ability under the i.i.d. coin tossing measure.

An Observation on Finite Graph :

Fix any vertex v € V and let o be an independent set
for the graph with vertex set V' \ {v} then

2 ifou{v}l ez
B (weI|I\{o}=o)={ "

0 otherwise

where I € 1.



Statistical Physics Definition :

Definition 1 Given a finite or countably infinite, but
locally finite graph G = (V, E) and A > 0, a probability
measure P§ on {0,1}", is said to be a Gibbs measure for
the hard-core model on G with activity X, if it admits
conditional probabilities such that for all v € V and for
any o € {0,1}"\"),

1—jM ifoVv1l, €ZIa
G

PY(I(v) =1|I(V\{v}) =0) =
0] otherwise

where I is a {0,1}"-valued random variable with distri-
bution P§ .

Remarks :

e T his is what is known as Dobrushin-Lanford-Ruelle
(DLR) definition of infinite-volume Gibbs measure.

e Similar definitions are used for defining Ising model
and g-Potts model on infinite graphs.



Existence and Uniqueness

e In general a Gibbs measure exists by compactness
argument.

e If (G is finite then uniqueness holds trivially.

e It is not necessary that the uniqueness will hold
when G is infinite.

Definition 2 For a fixed graph G we say that a phase
transition occurs for hard-core model with activity A > O,
ifGthere are more than one Gibbs measures of the form
PY.

Note : There is no phase transition if G is finite.



What are Known ?

e First introduced by Dobrushin (1968) on Z% for
model of lattice gas.

e Phase transition is well studied for Z%.

» No phase transition for d = 1.

» For d > 2 no phase transition for small A, but
phase transition occurs for large .

Not Known : Is phase transition monotone ? In
other words is there a critical value in A 7?

e Arguably the most well studied case is the model
on regular trees, T, for r > 2. [Kelly, 1985]

» For a r-regular tree T,, there exists a critical
value A\.(r) such that, no phase transition when
A < A.(r) and phase transition occurs when X >

Ae(T).

- ) =G

e It is also known that there are infinite trees for
which phase transition is not monotone ! [Brightwell,
Haggstrom, Winkler, 1998]



Hard-Core Model on Random Graphs

Setup :

G be a set of graphs which are finite or countably
infinite and are locally finite.

e Suppose P is a probability on gG.

o Let G ~P. We will write G(w) for a realization of
the random graph G.

e Given G(w) a hard-core model with activity A > 0
on G(w) will be denoted by PY.

e We will denote the joint measure as P,.

Remark :

e Note that there are two stages of randomness and
there are two parameters :

» One is the probability distribution P on G gov-
erning the randomness of the underlying graph-
ical structure.

» [ he other is A which is governing the hard-core
model given the graph.
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Phase Transition

Definition 3 Given a random graph model (G,P), we
say that there is a phase transition for the hard-core

model with activity A > 0 on a random graph G ~ P if

P (3 multiple measures of the form ]P’f’) > 0.

Remark :

e If the random graph model is such that G is finite
a.s. then there will be no phase transition for any
activity A > 0.

e It is possible to construct an example of (G, P) such
that phase transition occurs for every A > 0.
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An Example

e Let G :={T,|r >2}and P begiven by P (T,) = .

e Recall that from Kelly's work (1985) it is known
that for hard-core model on r-regular tree T,, phase
transition occurs if an only if

(r—1)1

A > A(r) = T

e But \.(r) - 0 as r — <.

e So for every XA > O for large enough r we must have
Ae(r) < X and thus a phase transition would occur
for the random graph model (G, P).

Remark :

e It is important to note that for the model (G, P) we
can have realizations having arbitrarily large degree
with positive probability.

e It is known that for bounded degree (fixed) graphs
there should be no phase transition for small values
of A. [van den Berg and Steif, 1994]
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Random Graph Models

e GW-Tree : Galton-Watson branching process tree
with a given progeny distribution denoted by N.

» The parameter here is the distribution of NN.

e Sparse Random Graphs :

» Erdos and Rényi Random Graph : A ran-
dom graph on n > 1 vertices labeled by [n] :=
{1,2,...,n} where each pair of vertices are con-
nected by an edge independently with probabil-
ity % where ¢ > 0. This would be denoted by

Q(n 5).

‘n

» [ he parameter here is ¢ > 0.

» Random r-regular Graph : This is to select
one graph at random from the set of all r-regular
graphs with vertex set [n]. We will denote this
model by G, (n).

Note : In order for this model to make sense
we will always assume that nr is even.

» T he parameter here is r > 2.
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Motivations

e Aldous’ conjecture for the scaling of the indepen-
dent number of a sparse random graph.

e Interesting from Statistical Physics point of view,
well studied for non-random graphs. [Dobrushin
1970, Kelley 1985, van den Berg & Steif 1994,
Brightwell, Haggstrom & Winkler 1998, Brightwell
& Winkler 1999]

e Has applications in engineering fields, like in multi-
cast networking problems. [Ramanan et al, 2002]
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Sparse Random Graphs and GW-Trees

e Known : If G, be a model for sparse random graph

then for “large” enough n from the *‘view point”

of a fixed vertex “locally it looks like" a (possibly

random) rooted tree.

» For G(n,£) it is a rooted Galton-Watson tree
with Poisson (¢) offspring distribution.

» For G(n,r) it is a rooted r-regular tree.

e Conclusion : So for computing “large” n limit of
hard-core model on these kind of graphs we may
need to consider the similar model on respective

GW-trees.

e Note : For a r-regular tree, one slight annoyance
is that it is not really a GW-tree ! But by remov-
ing one vertex (the root) it can be viewed as a
collection of »r GW-trees with progeny distribution

N=r-—-1.
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Hard-Core Model on GW-Trees

Proposition 1 Fix A\ > 0 then the followings hold for a
GW-tree with progeny distribution N.

(a) If E[N] <1 then there is no phase transition.

(b) If E[N] > 1 then on the event of non-extinction
phase transition occurs with probability O or 1.

16



Proof of Proposition 1 :
e Nothing to prove for part (a).

e For part (b) notice that the property that a (fixed)
rooted tree 7 has no phase transition implies that
if v is a child of the root, and 7 (v) is the sub-tree
rooted at v consisting only of the descendants of v,
then 7 (v) also has no phase transition.

e Let 8 := P, ( no phase transition in 7) where 7 is
a GW-tree, and let {v1,va,...,un} be the children
of the root in 7. Then

m < Py ( no phase transition in 7(v;), V j)

= ZP(N:n)ﬂ'n:f(ﬂ')
n=0
where f is the generating function for N.

e Moreover 3 > g .= extinction probability, because
[extinction] C [no phase transition]

e Thus B € {q,1} and this completes the proof,

17



Key Recursion on a Finite Tree

Suppose 7 be a finite (fixed) rooted tree and we
consider the hard-core model on it with activity A >
0.

Suppose () be the root and it has n (0) many children
which are denoted by 1,2,...,n(0).

Let I be a random independent set distributed ac-
cording to the hard-core model with activity A > O.

We define nf = ]P’z- Del).

For a child j, let 7, be the sub-tree rooted at j

obtained by removing . Suppose anj be defined

similarly of 77(?-

The following key recursion holds
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“Superscript Dropping Principle”
Recursive Distributional Equation (RDE)

We consider the following distributional identity :

o AL (1)
n = = ~ on [0, 1],
1+ATI (1—7m
I (1-)
where (n;) are i.i.d. copies of n and are independent of

N.

e We also define an operator T': P ([0,1]) — P ([0, 1])
using the right-hand side of the above RDE, namely,

(AT (1)

T (u) := dist

where (n;) are i.i.d. with distribution g on [0, 1] and
are independent of N.

e We put S =1T72,

19



RDE Continued ...

Properties of the RDE and the Operator T :
o T (60) = dr/(1+n)-
® 00 <X T (1) < dx/(14), for any probability u on [0, 1].
e 7' is anti-monotone = S is monotone.

e T is continuous with respect to the weak conver-
gence topology on P ([0,1]).

e SO there exist u. < p* two fixed points of S such
that S™ (50) T j and S™ (5>\/(1+>\)) lu*

o T'(ps) =p" and T'(p") = pa.
e S has unique fixed point if and only if u. = u*.

e T'is a strict contraction with respect to the Wasser-
stine metric when AE[N] < 1.

20



Uniqueness Domain

Definition 4 We will say that we are in the
unigueness domain if pus = p*.

Characterization of Phase Transition for
GW-Tree Model

Theorem 2 For GW-tree with progeny distri-
bution N, there is no phase transition for the
hard-core model with activity A\ > 0O, if and only

if, we are in uniqueness domain for the associ-
ated RDE.
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Specialization to r-regular Tree

Notice that if T, (0) denote a rooted r-regular tree,
that is, a tree whose root () has degree » —1 and all
other vertices have degree r, then it is a GW-tree
with progeny distribution N =r — 1.

So for this model N is non random, that is the
operator T has no random part in its definition.

This then implies both u, and p* are degenerate
measures.

So basically we need to consider fixed point of a
deterministic function s = t° where ¢:[0,1] — [0, 1]
given by

A(L—p) !

1 —I—)\(]_ _p)r—17 pE [O, 1].

t(p) =

This is exactly what Kelly did in his 1985 paper and
this leads to the critical value A.(7).
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When Does Uniqueness Domain Hold ?

Corollary 3 For a GW-tree with progeny distribution

N, there is no phase transition for the hard-core model
with activity A > 0 if

(a) E[N] <1 or,

(b) AE[N] < 1.

Remarks :

e In particular it shows that for any GW-tree (with
E[N] < o) at least for sufficiently small X there is
no phase transition. Such result is expected. But
note that we do not assume that the progeny dis-
tribution is bounded.

e In fact a better bound holds using Van den Berg-
Steif inequality, namely A (E[N]—-1) < 1.
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Main Results for hard-Core Model on
Sparse Random Graphs

Theorem 4 Suppose XY (n,c) be the size of a random
independent set distributed according to the hard-core
model with activity A\ > 0 on a Erdbds-Rényi random
graph G (n, %) If the GW-tree with Poisson(c) progeny
distribution has no phase transition then

im EA XS (n,0)]

n—aoo

= v (¢)

where v, (c¢) := E[n] and n is the unique solution of the
RDE.

Theorem 5 Suppose X (n,r) be the size of a random
independent set distributed according to the hard-core
model with activity A\ > 0 on a random regular graph
G- (n). If the r-regular tree has no phase transition,
that is, if A < Ae(r) = (r — 1)1 /(r — 2)", then

E, | XY (n,r
lim —2 X5 ()
where ay (r) = w/(1 4+ 2w) with w is the unique positive
solution of the equation A = w(1 + w) L.

= ax (7)
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Back to Aldous’ Conjecture

Conjecture [Aldous, 2003] : For a sparse random
graph if I, is @ maximum independent set then

jim 2l

n— 00 n

for some constant s > 0 (explicitly computable ?).

e Our method fails ! This is because it seems (for the
general GW-tree case) that the uniqueness domain
does not hold for large .

e For example it is the case with r-regular trees and
hence for the sparse random graph model G, (n).

e In fact for G, (n) model it has been postulated (proved
using non-rigorous methods) in physics literature
that such asymptotic limit exists and has the same
answer as Theorem 5 when A\ is smaller than the
so called “extremality threshold” (which is bigger
than the “wuniqueness threshold™).

e Our Theorems 4 and 5 provides rigorous argument
when X is in the uniqueness domain (that is, under
the uniqueness threshold for the G, (n) model).
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Background : Recursive Tree Process
(RTP)

Consider the RDE

N
AL (=)
n = —I = on [0,1],
1+ A ]] (3 —n))
=1

J

where (n;) are i.i.d. copies of n and are independent of
N.

Notations :
e Let 1 be a solution of the RDE.
o Let Too = (V,€) be the canonical infinite tree with
vertex set V = {ilie N, d>1}uU{0}. We wil

consider it as rooted at 0.

e Suppose (Ni)ieV be i.i.d. copies of the progeny dis-
tribution N.

26



Recursive Tree Process (RTP)

A collection of [0, 1]-valued random variables (7;),.y is

called an invariant Recursive Tree Process (RTP) with
marginal p if

e ni~pu Vie.
e Fix d > 0 then (%)=, are independent.
AT[Ct=m)

° = —— as. VieV.
IEDY (e

j=1

e 7; is independent of {Ny

| < |i|} VieV.

Remark : Using Kolmogorov’s consistency, an invariant
RTP with marginal p exists if and only if u is a solution
of the RDE.

27



Recursive Tree Process (RTP)

28



Towards Proving Theorem 2

Long Range Independence Property

o Fixd>O0.
e Write x4 for a vector (z;)—, where each z; € [0, 1].

e Let 7 be the realization of the GW-tree rooted at
O obtained from the realizations of (i), p-

o Let (ni(d) (xd)>|| b the d-depth RTP with values
i<

at level d given by x4.

Lemma 6 (Long range independence) Suppose we are
in the uniqueness domain, that is u. = u*, then

lim sup |n(z()d) (xq) —myl =0 a.s.
d—>OO X4

Remark :

e T he proof of Theorem 2 follows from this Lemma.

29



Proof of Lemma 6 :

e For the vector xy4 if all the components are same as
c the we will write the vector itself as c.

° nq()Qd) (0) T ny, a.s. and also nq(fdﬂ) (0) | ny a.s.

d d d
o 7 (ﬁ) = 7" (0), so ns? (WAA) — 1ny a.s.

>\ .
° Ifogxigmfora”lel/then

> (0) < n*? (x2a) < ni*” (FAA) , and

2d+1 2d+1 2d+1
0 +)(ﬁ)<nq§ ) (x0041) < 0P (0).

So nq()d) (xq) — my A.S. as d — oo.
e Now notice that néd) (1) = néd_l) (x4—1) Where each
zi € {0,/ (1 +N)}. Son? (1) -y a.s.
o Finally, if 0 <x; <1 for all i eV then
05> (0) < n§*® (x24) < n§°" (1), and
77(g2d+1) (1) < néQd—l—l) (x2011) < néQd—l—l) (0).

So néd) (x4) — ny uniformly a.s. as d — oo, proving
the lemma.
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Remarks on the Proofs of Theorem 4
and Theorem 5

e First thing to note is
TEx[XY] =Py (w0 € Iy),

where I is the random independent set selected
according to the (random) distribution PY, and wvg
is a fixed vertex.

e For any fixed d > O the distribution of the d-depth
neighborhood of vg converges to the distribution of
a d-depth Poisson(c) GW-tree for G (n, %) model,
and to a d-depth r-regular tree for G, (n) model.

e \We can then apply the local weak convergence tech-
nique of Aldous and Steele (2004) using the (strong)
long range independence property which holds un-
der the uniqueness domain. These will give the
stated results after a little more careful probability
computations !
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Open Problems/Questions

e \We know that for r-regular tree the phase transition
IS @ monotone property in A, and the critical value
Ae(7) is explicitly know.

Is phase transition monotone (in \) for a general
GW-tree 7

Comment : Most possibly not | But is it at least
the case for GW-tree with Poisson progeny distri-
bution 7

e For GW-tree with Poisson(c) progeny distribution is
phase transition monotone in ¢ 7 That is for every
fixed A > 0 if ¢ > ¢’ and we have no phase transition
for Poisson(c) GW-tree then can we say that we
have no phase transition for Poisson(c¢’) GW-tree ?

Comment : We know this is true if A x e < 1.

e If the answer to above question is yes (which is
most possibly the case) can we also get the critical
value for ¢ ? (explicitly or bounds 7)
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