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A Problem by David Aldous

• For r ≥ 2 and n ≥ 3, let G (n, r) be a random graph
selected uniformly at random from the set of all
r-regular graphs on n vertices.

• Conjecture of Aldous [2003] :

Let In be a maximum independent set then

E [|In|]

n
→ κ as n → ∞,

where κ > 0 is a constant which may depend on r.

• In combinatorics for a finite graph G the size of a
maximum independent set is known as the indepen-
dence number of G.
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An Approach Towards Resolving the

Conjecture

• We will consider a probability model on the set of
all independent sets of the random graph G such
that

Pλ (I) ∝ λ|I| ,

where I is an independent set of G (n, r).

• It is easy to see that given G (n, r) the probability
measures Pλ concentrate on the maximum indepen-
dent sets as λ → ∞.

• So perhaps studying this model Pλ on random graphs
may help to resolve Aldous’ conjecture.

• We will see what we can do ... !
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Hard-Core Model on a Finite Graph

Setup :

• Let G := (V, E) be a finite graph.

• We say a subset I ⊆ V is an independent set of
G, if for any two vertices u, v ∈ I there is no edge
between u and v.

• Let IG be the set of all independent sets of G.

• We would like to define a measure on IG.
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Description 1 :

• Fix λ > 0.

• Hard-core model on G with activity λ is a probability
distribution on IG such that

P
G
λ (I) ∝ λ|I|, I ∈ IG.

• Thus

P
G
λ (I) =

λ|I|

Zλ (G)
, I ∈ IG

where Zλ (G) :=
∑

I∈IG

λ|I| is the proportionality con-

stant, known as the partition function.

Observations :

• If λ = 1 then we get the uniform distribution on IG

and Zλ(G) is the size of IG.

• Also we have already noticed, λ → ∞ the measures
P

G
λ concentrate on maximal size independent sets.

4



Description 2 :

• Fix λ > 0 and let p := λ
1+λ

∈ (0,1).

• Suppose (Cv)v∈V are i.i.d. Bernoulli (p).

• Let I := {v ∈ V |Cv = 1}.

• The measure P (· | I ∈ IG) on IG is same as P
G
λ .

Remark :

• This gives a way to get exact samples from P
G
λ .
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Hard-Core Model on an Infinite Graph

Problems with the Two Previous Descriptions :

• For Description 1, we note that IG is infinite and
hence the partition function Zλ(G) = ∞ !

• For Description 2, we end up with the (same type
of) problem that the event [I ∈ IG] has zero prob-
ability under the i.i.d. coin tossing measure.

An Observation on Finite Graph :

Fix any vertex v ∈ V and let σ be an independent set
for the graph with vertex set V \ {v} then

P
G
λ (v ∈ I | I \ {v} = σ) =







λ
1+λ

if σ ∪ {v} ∈ IG

0 otherwise

where I ∈ IG.
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Statistical Physics Definition :

Definition 1 Given a finite or countably infinite, but
locally finite graph G = (V, E) and λ > 0, a probability

measure P
G
λ on {0,1}V , is said to be a Gibbs measure for

the hard-core model on G with activity λ, if it admits
conditional probabilities such that for all v ∈ V and for
any σ ∈ {0,1}V \{v},

P
G
λ (I(v) = 1 | I(V \ {v}) = σ) =







λ
1+λ

if σ ∨ 1v ∈ IG

0 otherwise

where I is a {0,1}V -valued random variable with distri-

bution P
G
λ .

Remarks :

• This is what is known as Dobrushin-Lanford-Ruelle
(DLR) definition of infinite-volume Gibbs measure.

• Similar definitions are used for defining Ising model
and q-Potts model on infinite graphs.

7



Existence and Uniqueness

• In general a Gibbs measure exists by compactness
argument.

• If G is finite then uniqueness holds trivially.

• It is not necessary that the uniqueness will hold
when G is infinite.

Definition 2 For a fixed graph G we say that a phase
transition occurs for hard-core model with activity λ > 0,
if there are more than one Gibbs measures of the form
P

G
λ .

Note : There is no phase transition if G is finite.
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What are Known ?

• First introduced by Dobrushin (1968) on Z
d for

model of lattice gas.

• Phase transition is well studied for Z
d.

◮ No phase transition for d = 1.

◮ For d ≥ 2 no phase transition for small λ, but
phase transition occurs for large λ.

Not Known : Is phase transition monotone ? In
other words is there a critical value in λ ?

• Arguably the most well studied case is the model
on regular trees, Tr for r ≥ 2. [Kelly, 1985]

◮ For a r-regular tree Tr, there exists a critical
value λc(r) such that, no phase transition when
λ ≤ λc(r) and phase transition occurs when λ >
λc(r).

◮ λc(r) = (r−1)r−1

(r−2)r .

• It is also known that there are infinite trees for
which phase transition is not monotone ! [Brightwell,
Häggström, Winkler, 1998]
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Hard-Core Model on Random Graphs

Setup :

• G be a set of graphs which are finite or countably
infinite and are locally finite.

• Suppose P is a probability on G.

• Let G ∼ P. We will write G(ω) for a realization of
the random graph G.

• Given G(ω) a hard-core model with activity λ > 0
on G(ω) will be denoted by P

ω
λ.

• We will denote the joint measure as Pλ.

Remark :

• Note that there are two stages of randomness and
there are two parameters :

◮ One is the probability distribution P on G gov-
erning the randomness of the underlying graph-
ical structure.

◮ The other is λ which is governing the hard-core
model given the graph.
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Phase Transition

Definition 3 Given a random graph model (G,P), we

say that there is a phase transition for the hard-core

model with activity λ > 0 on a random graph G ∼ P if

P

(

∃ multiple measures of the form P
G
λ

)

> 0.

Remark :

• If the random graph model is such that G is finite
a.s. then there will be no phase transition for any
activity λ > 0.

• It is possible to construct an example of (G,P) such
that phase transition occurs for every λ > 0.
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An Example

• Let G := {Tr | r ≥ 2 } and P be given by P (Tr) = 1
2r−1.

• Recall that from Kelly’s work (1985) it is known
that for hard-core model on r-regular tree Tr, phase
transition occurs if an only if

λ > λc(r) =
(r − 1)r−1

(r − 2)r
.

• But λc(r) → 0 as r → ∞.

• So for every λ > 0 for large enough r we must have
λc(r) < λ and thus a phase transition would occur
for the random graph model (G,P).

Remark :

• It is important to note that for the model (G,P) we
can have realizations having arbitrarily large degree
with positive probability.

• It is known that for bounded degree (fixed) graphs
there should be no phase transition for small values
of λ. [van den Berg and Steif, 1994]
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Random Graph Models

• GW-Tree : Galton-Watson branching process tree
with a given progeny distribution denoted by N .

◮ The parameter here is the distribution of N .

• Sparse Random Graphs :

◮ Erdös and Rényi Random Graph : A ran-
dom graph on n ≥ 1 vertices labeled by [n] :=
{1,2, . . . , n} where each pair of vertices are con-
nected by an edge independently with probabil-
ity c

n
, where c > 0. This would be denoted by

G
(

n, c
n

)

.

◮ The parameter here is c > 0.

◮ Random r-regular Graph : This is to select
one graph at random from the set of all r-regular
graphs with vertex set [n]. We will denote this
model by Gr (n).

Note : In order for this model to make sense
we will always assume that nr is even.

◮ The parameter here is r ≥ 2.
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Motivations

• Aldous’ conjecture for the scaling of the indepen-
dent number of a sparse random graph.

• Interesting from Statistical Physics point of view,
well studied for non-random graphs. [Dobrushin
1970, Kelley 1985, van den Berg & Steif 1994,
Brightwell, Häggström & Winkler 1998, Brightwell
& Winkler 1999]

• Has applications in engineering fields, like in multi-
cast networking problems. [Ramanan et al, 2002]
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Sparse Random Graphs and GW-Trees

• Known : If Gn be a model for sparse random graph
then for “large” enough n from the “view point”
of a fixed vertex “locally it looks like” a (possibly
random) rooted tree.

◮ For G
(

n, c
n

)

it is a rooted Galton-Watson tree
with Poisson (c) offspring distribution.

◮ For G (n, r) it is a rooted r-regular tree.

• Conclusion : So for computing “large” n limit of
hard-core model on these kind of graphs we may
need to consider the similar model on respective
GW-trees.

• Note : For a r-regular tree, one slight annoyance
is that it is not really a GW-tree ! But by remov-
ing one vertex (the root) it can be viewed as a
collection of r GW-trees with progeny distribution
N ≡ r − 1.
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Hard-Core Model on GW-Trees

Proposition 1 Fix λ > 0 then the followings hold for a
GW-tree with progeny distribution N .

(a) If E [N ] ≤ 1 then there is no phase transition.

(b) If E [N ] > 1 then on the event of non-extinction

phase transition occurs with probability 0 or 1.
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Proof of Proposition 1 :

• Nothing to prove for part (a).

• For part (b) notice that the property that a (fixed)
rooted tree T has no phase transition implies that
if v is a child of the root, and T (v) is the sub-tree
rooted at v consisting only of the descendants of v,
then T (v) also has no phase transition.

• Let β := Pλ ( no phase transition in T ) where T is
a GW-tree, and let {v1, v2, . . . , vN} be the children
of the root in T . Then

π ≤ Pλ ( no phase transition in T (vj), ∀ j)

=

∞
∑

n=0

P (N = n)πn = f(π)

where f is the generating function for N .

• Moreover β ≥ q := extinction probability, because
[extinction] ⊆ [no phase transition]

• Thus β ∈ {q,1} and this completes the proof.
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Key Recursion on a Finite Tree

• Suppose T be a finite (fixed) rooted tree and we
consider the hard-core model on it with activity λ >
0.

• Suppose ∅ be the root and it has n (∅) many children
which are denoted by 1,2, . . . , n (∅).

• Let I be a random independent set distributed ac-
cording to the hard-core model with activity λ > 0.

We define ηT∅ := P
T
λ (∅ ∈ I).

• For a child j, let T j be the sub-tree rooted at j

obtained by removing ∅. Suppose η
T j

j be defined

similarly of ηT∅ .

• The following key recursion holds

ηT∅ =

λ
n(∅)
∏

j=1

(

1 − η
T j

j

)

1 + λ
n(∅)
∏

j=1

(

1 − η
T j

j

)
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“Superscript Dropping Principle”

Recursive Distributional Equation (RDE)

We consider the following distributional identity :

η
d
=

λ
N
∏

j=1

(

1 − ηj

)

1 + λ
N
∏

j=1

(

1 − ηj

)

on [0,1],

where (ηj) are i.i.d. copies of η and are independent of
N .

• We also define an operator T : P ([0,1]) → P ([0,1])

using the right-hand side of the above RDE, namely,

T (µ) := dist















λ
N
∏

j=1

(

1 − ηj

)

1 + λ
N
∏

j=1

(

1 − ηj

)















where (ηj) are i.i.d. with distribution µ on [0,1] and
are independent of N .

• We put S = T 2.
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RDE Continued ...

Properties of the RDE and the Operator T :

• T (δ0) = δλ/(1+λ).

• δ0 4 T (µ) 4 δλ/(1+λ), for any probability µ on [0,1].

• T is anti-monotone ⇒ S is monotone.

• T is continuous with respect to the weak conver-
gence topology on P ([0,1]).

• So there exist µ∗ 4 µ∗ two fixed points of S such
that Sn (δ0) ↑ µ∗ and Sn

(

δλ/(1+λ)

)

↓ µ∗.

• T (µ∗) = µ∗ and T (µ∗) = µ∗.

• S has unique fixed point if and only if µ∗ = µ∗.

• T is a strict contraction with respect to the Wasser-
stine metric when λE [N ] < 1.
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Uniqueness Domain

Definition 4 We will say that we are in the

uniqueness domain if µ∗ = µ∗.

Characterization of Phase Transition for

GW-Tree Model

Theorem 2 For GW-tree with progeny distri-

bution N , there is no phase transition for the

hard-core model with activity λ > 0, if and only

if, we are in uniqueness domain for the associ-

ated RDE.
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Specialization to r-regular Tree

• Notice that if Tr (∅) denote a rooted r-regular tree,
that is, a tree whose root ∅ has degree r−1 and all
other vertices have degree r, then it is a GW-tree
with progeny distribution N ≡ r − 1.

• So for this model N is non random, that is the
operator T has no random part in its definition.

• This then implies both µ∗ and µ∗ are degenerate
measures.

• So basically we need to consider fixed point of a
deterministic function s = t2 where t: [0,1] → [0,1]
given by

t(p) =
λ (1 − p)r−1

1 + λ (1 − p)r−1
, p ∈ [0,1].

• This is exactly what Kelly did in his 1985 paper and
this leads to the critical value λc(r).
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When Does Uniqueness Domain Hold ?

Corollary 3 For a GW-tree with progeny distribution
N , there is no phase transition for the hard-core model
with activity λ > 0 if

(a) E [N ] ≤ 1 or,

(b) λE [N ] < 1.

Remarks :

• In particular it shows that for any GW-tree (with
E [N ] < ∞) at least for sufficiently small λ there is
no phase transition. Such result is expected. But
note that we do not assume that the progeny dis-
tribution is bounded.

• In fact a better bound holds using Van den Berg-
Steif inequality, namely λ (E [N ] − 1) < 1.
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Main Results for hard-Core Model on

Sparse Random Graphs

Theorem 4 Suppose Xω
λ (n, c) be the size of a random

independent set distributed according to the hard-core
model with activity λ > 0 on a Erdös-Rényi random
graph G

(

n, c
n

)

. If the GW-tree with Poisson(c) progeny
distribution has no phase transition then

lim
n→∞

Eλ

[

Xω
λ (n, c)

]

n
= γλ (c)

where γλ (c) := E [η] and η is the unique solution of the
RDE.

Theorem 5 Suppose Xω
λ (n, r) be the size of a random

independent set distributed according to the hard-core
model with activity λ > 0 on a random regular graph
Gr (n). If the r-regular tree has no phase transition,
that is, if λ < λc(r) = (r − 1)(r−1)/(r − 2)r, then

lim
n→∞

Eλ

[

Xω
λ (n, r)

]

n
= αλ (r)

where αλ (r) = w/(1+2w) with w is the unique positive
solution of the equation λ = w(1 + w)r−1.
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Back to Aldous’ Conjecture

Conjecture [Aldous, 2003] : For a sparse random
graph if In is a maximum independent set then

lim
n→∞

E [|In|]

n
= κ

for some constant κ > 0 (explicitly computable ?).

• Our method fails ! This is because it seems (for the
general GW-tree case) that the uniqueness domain
does not hold for large λ.

• For example it is the case with r-regular trees and
hence for the sparse random graph model Gr (n).

• In fact for Gr (n) model it has been postulated (proved
using non-rigorous methods) in physics literature
that such asymptotic limit exists and has the same
answer as Theorem 5 when λ is smaller than the
so called “extremality threshold” (which is bigger
than the “uniqueness threshold”).

• Our Theorems 4 and 5 provides rigorous argument
when λ is in the uniqueness domain (that is, under
the uniqueness threshold for the Gr (n) model).
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Background : Recursive Tree Process

(RTP)

Consider the RDE

η
d
=

λ
N
∏

j=1

(1 − ηj)

1 + λ
N
∏

j=1

(1 − ηj)

on [0,1],

where (ηj) are i.i.d. copies of η and are independent of
N .

Notations :

• Let µ be a solution of the RDE.

• Let T∞ = (V, E) be the canonical infinite tree with

vertex set V :=
{

i | i ∈ N
d, d ≥ 1

}

∪ {∅}. We will
consider it as rooted at ∅.

• Suppose (Ni)i∈V be i.i.d. copies of the progeny dis-
tribution N .
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Recursive Tree Process (RTP)

A collection of [0,1]-valued random variables (ηi)i∈V is

called an invariant Recursive Tree Process (RTP) with
marginal µ if

• ηi ∼ µ ∀ i ∈ V.

• Fix d ≥ 0 then (ηi)|i|=d are independent.

• ηi =

λ

Ni
∏

j=1

(1−ηij)

1+λ

Ni
∏

j=1

(1−ηij)

a.s. ∀ i ∈ V.

• ηi is independent of {Ni′ | |i′| < |i| } ∀ i ∈ V.

Remark : Using Kolmogorov’s consistency, an invariant
RTP with marginal µ exists if and only if µ is a solution
of the RDE.
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Recursive Tree Process (RTP)

η 2

g

g

N3N2N1

NΦ

21 3

11 12 13 21 22 23 31 32 33

Φ

η 1 η 3

η11 η12 η13

ηΦ
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Towards Proving Theorem 2

Long Range Independence Property

• Fix d ≥ 0.

• Write xd for a vector (xi)|i|=d where each xi ∈ [0,1].

• Let T be the realization of the GW-tree rooted at
∅ obtained from the realizations of (Ni)i∈V .

• Let
(

η(d)
i

(xd)
)

|i|≤d
be the d-depth RTP with values

at level d given by xd.

Lemma 6 (Long range independence) Suppose we are
in the uniqueness domain, that is µ∗ = µ∗, then

lim
d→∞

sup
xd

|η(d)
∅ (xd) − η∅| = 0 a.s.

Remark :

• The proof of Theorem 2 follows from this Lemma.
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Proof of Lemma 6 :

• For the vector xd if all the components are same as
c the we will write the vector itself as c.

• η
(2d)
∅ (0) ↑ η∅, a.s. and also η

(2d+1)
∅ (0) ↓ η∅ a.s.

• η(d)
∅

(

λ
1+λ

)

= η(d+1)
∅ (0), so η(d)

∅

(

λ
1+λ

)

→ η∅ a.s.

• If 0 ≤ xi ≤
λ

1+λ
for all i ∈ V then

η
(2d)
∅ (0) ≤ η

(2d)
∅ (x2d) ≤ η

(2d)
∅

(

λ
1+λ

)

, and

η
(2d+1)
∅

(

λ
1+λ

)

≤ η
(2d+1)
∅ (x2d+1) ≤ η

(2d+1)
∅ (0) .

So η(d)
∅ (xd) → η∅ a.s. as d → ∞.

• Now notice that η(d)
∅ (1) = η(d−1)

∅ (xd−1) where each

xi ∈ {0, λ/ (1 + λ)}. So η(d)
∅ (1) → η∅ a.s.

• Finally, if 0 ≤ xi ≤ 1 for all i ∈ V then

η(2d)
∅ (0) ≤ η(2d)

∅ (x2d) ≤ η(2d)
∅ (1) , and

η(2d+1)
∅ (1) ≤ η(2d+1)

∅ (x2d+1) ≤ η(2d+1)
∅ (0) .

So η(d)
∅ (xd) → η∅ uniformly a.s. as d → ∞, proving

the lemma.
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Remarks on the Proofs of Theorem 4

and Theorem 5

• First thing to note is

1
n
Eλ

[

Xω
λ

]

= Pλ

(

v0 ∈ Iω
λ

)

,

where Iω
λ is the random independent set selected

according to the (random) distribution P
ω
λ, and v0

is a fixed vertex.

• For any fixed d > 0 the distribution of the d-depth
neighborhood of v0 converges to the distribution of
a d-depth Poisson(c) GW-tree for G

(

n, c
n

)

model,
and to a d-depth r-regular tree for Gr (n) model.

• We can then apply the local weak convergence tech-
nique of Aldous and Steele (2004) using the (strong)
long range independence property which holds un-
der the uniqueness domain. These will give the
stated results after a little more careful probability
computations !
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Open Problems/Questions

• We know that for r-regular tree the phase transition
is a monotone property in λ, and the critical value
λc(r) is explicitly know.

Is phase transition monotone (in λ) for a general
GW-tree ?

Comment : Most possibly not ! But is it at least
the case for GW-tree with Poisson progeny distri-
bution ?

• For GW-tree with Poisson(c) progeny distribution is
phase transition monotone in c ? That is for every
fixed λ > 0 if c > c′ and we have no phase transition
for Poisson(c) GW-tree then can we say that we
have no phase transition for Poisson(c′) GW-tree ?

Comment : We know this is true if λ × c < 1.

• If the answer to above question is yes (which is
most possibly the case) can we also get the critical
value for c ? (explicitly or bounds ?)
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