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Hard-Core Model on a Finite Graph

Let G := (V, E) be a finite graph.

We say a subset I C V is an independent set of G,
if for any two u,v € I there is no edge between wu
and v.

Let Zs be the set of all independent sets of G.

Fix 0O<p<1and IetA:l%p.

Suppose (C,),cy be i.i.d. Bernoulli(p).
Define I :={veV|C, =1}.

The measure P (-|I € Zg) on Zg is called the hard-
core model or random independent set model with
activity A. We will denote it by P.

It is easy to see that P is the probability on Zs which
puts mass proportional to \!I for I € Z.



Sparse Random Graphs

e Two types of sparse random graphs

» G(n,2) : A random graph with n vertices and
each edge is present with probability % indepen-

dently, where u > 0. [Erdds & Rényi 1959 -
1968]

» G(n,r+ 1) : Pick a graph uniformly at random
from the set of all (r 4+ 1)-regular graphs with n
vertices.

e Given a particular realization G, of a sparse ran-
dom graph, we will consider the hard-core model
with activity A > 0 on that finite graph as described
before.

e Note there are two stages of randomness and there
are two parameters,

» 1 > 0 dealing with the randomness of the graph
configuration.

» A\ > 0 dealing with the randomness of the hard-
core model given a configuration.



Motivations

e Interesting from Statistical Physics point of view,
well studied for non-random graphs. [Kelley 1985,
van den Berg & Steif 1994, Brightwell, Haggstrom
& Winkler 1998, Brightwell & Winkler 1999]

e Has applications in engineering fields, like in multi-
cast networking problems. [Ramanan et al 2002]

e Conjecture of Aldous [2003] :

For a sparse random graph if I, be the maximal
independent set then
E [|1,]]
n

where ¢ is a constant which depends on the model
for the sparse random graph.

— ¢ as n — oo,

Remark : For a hard-core model on a finite graph if we
take A — oo limit then it concentrate on the maximal
independent set(s).



Sparse Random Graphs and GW-Trees

e Known : If G,, be a model for sparse random graph
then for “large” enough n “locally it looks like” a
(possibly random) rooted tree.

» For G (n,%) it is rooted Galton-Watson tree with

Poisson (u) offspring distribution.
» For G(n,r+ 1) it is rooted (r 4+ 1)-regular tree.

e Conclusion : So for computing “large” n limit of
hard-core model on these kind graphs we need to
consider the similar model on respective GW-trees.

e Problem : The trees we get may be infinite with
positive probability.

e Solution : In that case we need to consider Gibbs
measure with activity A > 0 which has appropriate
conditional laws (“DLR condition™).

e Warning : It is then no longer true that there
is only one such measure and we will say that a
phase transition occurs if there are multiple Gibbs
measures for a given activity A > 0.



Key Recursion on a Finite Tree

Suppose 7 be a finite rooted tree and we consider
the hard-core model on it with activity A > 0.

Suppose @) be the root and it has n (#) many children
which are denoted by 1,2,...,n(0).

Let I be a random independent set distributed ac-
cording to the hard-core model with activity A > 0.
Then we define 77%— =P eI).

For a child j, let 7; be the sub-tree rooted at j
obtained by removing . Suppose 7737.4 be defined

similarly of ”Qr'

The following key recursion holds

n(0) |
,_ G
= n(0) J
L+ 1T (1)



Related RDE

N
. E1<1_"3)
n = ]_N on [0,1],
1+Ajgl (1 n;)

where (n;) are i.i.d. copies of n and are independent of
N.

Properties : Let T be the associated operator and
S = T? then

e T (00) = dr/(142)-
® 00 X T (m) < dy/(14+x), for any probability m on [0, 1].
e 7' is anti-monotone = S is monotone.

e SO there exist m, < m*™ two fixed points of S such
that S™ (50) T ms and S™ (5)\/(1_'_)\)) J, m*.

o T (my) =m*.
e S has unique fixed point if and only if m, = m*.
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Uniqueness Domain

Definition 1 We will say that we are in uniqueness do-
main if ms = m*.

Results

e Theorem 1 For a GW-Tree with progeny distri-
bution N and for activity A\ > 0 we are in unique-
ness domain if and only if, there is a unique Gibbs
measure with activity A a.s. with respect to the
randomness in the configuration of the tree.

Note : The phase transition is characterize by the
uniqgueness of solution of a RDE.

e Theorem 2 Forg (n, %) suppose we are in the unique-
ness domain for A > 0 and with N ~ Poisson (u) and
let I,, be a random independent set with hard-core

distribution with activity X\, then
E[|In]]

— E [1]
where n ~ m, = m*.
e Theorem 3 A similar statement for G (n,r + 1).
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When Uniqueness Domain Holds ?

e Small ¢ : If 4 <1 then the graphical structure is in
the (sub)-critical domain and hence it will be finite
and so uniqgueness domain holds for any A > 0. This
is not the interesting case !

e Small \ : If A x u <1 then T is a contraction and
hence uniqueness domain holds. Thus for any u > 0
for activity \ < % we are in the uniqgueness domain.

Remarks :

e I believe (do not have complete proofs yet) that
unigueness domain will not hold for large u or large
A (and p > 1).

e SO it seems that we may not be able to resolve
Aldous’ conjecture by this method. But perhaps
we can ... that is yet another story !

e At least we do get a nice example of phase transi-
tion phenomenon which is characterize by unique-
ness of solution of a RDE.



