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Hard-Core Model on a Finite Graph� Let G := (V;E) be a �nite graph.� We say a subset I � V is an independent set of G,if for any two u; v 2 I there is no edge between uand v.� Let IG be the set of all independent sets of G.� Fix 0 < p < 1 and let � = p1�p.� Suppose (Cv)v2V be i.i.d. Bernoulli (p).� De�ne I := fv 2 V jCv = 1g.� The measure P (� j I 2 IG) on IG is 
alled the hard-
ore model or random independent set model witha
tivity �. We will denote it by P.� It is easy to see that P is the probability on IG whi
hputs mass proportional to �jIj for I 2 IG.
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Sparse Random Graphs� Two types of sparse random graphs :I G �n; �n� : A random graph with n verti
es andea
h edge is present with probability �n indepen-dently, where � > 0. [Erd�os & R�enyi 1959 -1968℄I G (n; r+1) : Pi
k a graph uniformly at randomfrom the set of all (r+1)-regular graphs with nverti
es.� Given a parti
ular realization G! of a sparse ran-dom graph, we will 
onsider the hard-
ore modelwith a
tivity � > 0 on that �nite graph as des
ribedbefore.� Note there are two stages of randomness and thereare two parameters,I � > 0 dealing with the randomness of the graph
on�guration.I � > 0 dealing with the randomness of the hard-
ore model given a 
on�guration.
2



Motivations� Interesting from Statisti
al Physi
s point of view,well studied for non-random graphs. [Kelley 1985,van den Berg & Steif 1994, Brightwell, H�aggstr�om& Winkler 1998, Brightwell & Winkler 1999℄� Has appli
ations in engineering �elds, like in multi-
ast networking problems. [Ramanan et al 2002℄� Conje
ture of Aldous [2003℄ :For a sparse random graph if In be the maximalindependent set thenE [jInj℄n ! 
 as n!1;where 
 is a 
onstant whi
h depends on the modelfor the sparse random graph.Remark : For a hard-
ore model on a �nite graph if wetake � ! 1 limit then it 
on
entrate on the maximalindependent set(s).
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Sparse Random Graphs and GW-Trees� Known : If Gn be a model for sparse random graphthen for \large" enough n \lo
ally it looks like" a(possibly random) rooted tree.I For G �n; �n� it is rooted Galton-Watson tree withPoisson (�) o�spring distribution.I For G (n; r+1) it is rooted (r+1)-regular tree.� Con
lusion : So for 
omputing \large" n limit ofhard-
ore model on these kind graphs we need to
onsider the similar model on respe
tive GW-trees.� Problem : The trees we get may be in�nite withpositive probability.� Solution : In that 
ase we need to 
onsider Gibbsmeasure with a
tivity � > 0 whi
h has appropriate
onditional laws (\DLR 
ondition").� Warning : It is then no longer true that thereis only one su
h measure and we will say that aphase transition o

urs if there are multiple Gibbsmeasures for a given a
tivity � > 0.
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Key Re
ursion on a Finite Tree� Suppose T be a �nite rooted tree and we 
onsiderthe hard-
ore model on it with a
tivity � > 0.� Suppose ; be the root and it has n (;) many 
hildrenwhi
h are denoted by 1;2; : : : ; n (;).� Let I be a random independent set distributed a
-
ording to the hard-
ore model with a
tivity � > 0.Then we de�ne �;T := P (; 2 I).� For a 
hild j, let T j be the sub-tree rooted at jobtained by removing ;. Suppose �jT j be de�nedsimilarly of �;T .� The following key re
ursion holds
�;T = � n(;)Qj=1 �1� �jT j�1+ � n(;)Qj=1 �1� �jT j�
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Related RDE
� d= � NQj=1 �1� �j�1+ � NQj=1 �1� �j� on [0;1℄;

where (�j) are i.i.d. 
opies of � and are independent ofN .Properties : Let T be the asso
iated operator andS = T 2 then� T (Æ0) = Æ�=(1+�).� Æ0 4 T (m) 4 Æ�=(1+�), for any probability m on [0;1℄.� T is anti-monotone ) S is monotone.� So there exist m� 4 m� two �xed points of S su
hthat Sn (Æ0) " m� and Sn �Æ�=(1+�)� # m�.� T (m�) = m�.� S has unique �xed point if and only if m� = m�.6



Uniqueness DomainDe�nition 1 We will say that we are in uniqueness do-main if m� = m�.
Results� Theorem 1 For a GW-Tree with progeny distri-bution N and for a
tivity � > 0 we are in unique-ness domain if and only if, there is a unique Gibbsmeasure with a
tivity � a.s. with respe
t to therandomness in the 
on�guration of the tree.Note : The phase transition is 
hara
terize by theuniqueness of solution of a RDE.� Theorem 2 For G �n; �n� suppose we are in the unique-ness domain for � > 0 and with N � Poisson (�) andlet In be a random independent set with hard-
oredistribution with a
tivity �, thenE [jInj℄n ! E [�℄where � � m� = m�.� Theorem 3 A similar statement for G (n; r+1).7



When Uniqueness Domain Holds ?� Small � : If � � 1 then the graphi
al stru
ture is inthe (sub)-
riti
al domain and hen
e it will be �niteand so uniqueness domain holds for any � > 0. Thisis not the interesting 
ase !� Small � : If �� � < 1 then T is a 
ontra
tion andhen
e uniqueness domain holds. Thus for any � > 0for a
tivity � < 1� we are in the uniqueness domain.
Remarks :� I believe (do not have 
omplete proofs yet) thatuniqueness domain will not hold for large � or large� (and � > 1).� So it seems that we may not be able to resolveAldous' 
onje
ture by this method. But perhapswe 
an ... that is yet another story !� At least we do get a ni
e example of phase transi-tion phenomenon whi
h is 
hara
terize by unique-ness of solution of a RDE. 8


