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Hard-Core Model on a Finite GraphSetup :� Let G := (V;E) be a �nite graph.� We say a subset I � V is an independent set ofG, if for any two verties u; v 2 I there is no edgebetween u and v.� Let IG be the set of all independent sets of G.� We would like to de�ne a measure on IG.
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Desription 1 :� Fix � > 0.� Hard-ore model on G with ativity � is a probabilitydistribution on IG suh thatP� (I) / �jIj; I 2 IG:� Thus P� (I) = �jIjZ� (G); I 2 IGwhere Z� (G) := PI2IG �jIj is the proportionality on-stant, known as the partition funtion.Observations :� If � = 1 then we get the uniform distribution on IGand Z�(G) is the size of IG.� Also as � ! 1 the measures P� onentrate onmaximal size independent sets. 2



Desription 2 :� Fix � > 0 and let p := �1+� 2 (0;1).� Suppose (Cv)v2V are i.i.d. Bernoulli (p).� Let I := fv 2 V jCv = 1g.� The measure P (� j I 2 IG) on IG is same as P�.
Remark :� This gives a way of doing exat sampling from P�.
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Hard-Core Model on an In�nite GraphProblems with the Two Previous Desriptions :� For Desription 1, we note that IG is in�nite andhene the partition funtion Z�(G) =1 !� For Desription 2, we end up with the (same typeof) problem that the event [I 2 IG℄ has zero prob-ability under the i.i.d. oin toss measure.An Observation on Finite Graph :Fix any vertex v 2 V and let � be an independent setfor the graph with vertex set V n fvg then
P� (v 2 I j I n fvg = �) = 8<: �1+� if � [ fvg 2 IG0 otherwisewhere I 2 IG.
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Statistial Physis De�nition :De�nition 1 Given a �nite or ountably in�nite, loally�nite graph G = (V;E) and � > 0, a probability measureP� on f0;1gV , is said to be a Gibbs measure for the hard-ore model on G with ativity �, if it admits onditionalprobabilities suh that for all v 2 V and for any � 2f0;1gV nfvg,
P� (I(v) = 1 j I(V n fvg) = �) = 8<: �1+� if � _ 1v 2 IG0 otherwisewhere I is a f0;1gV -valued random variable with distri-bution P�.Remarks :� This is what is known as Dobrushin-Lanford-Ruelle(DLR) de�nition of in�nite-volume Gibbs measure.� Similar de�nitions are used for de�ning Ising modeland q-Potts model on in�nite graphs.
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Existene and Uniqueness� In general a Gibbs measure exists by ompatnessargument.� If G is �nite then uniqueness holds trivially.� It is not neessary though that uniqueness will holdwhen G is in�nite.
De�nition 2 For a �xed graph G we say that a phasetransition ours for hard-ore model with ativity � > 0,if there are more than one Gibbs measures of the formP�.Note : There is no phase transition if G is �nite.
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What are Known ?� First introdued by Dobrushin (1968) on Zd formodel of lattie gas.� Phase transition is well studied for Zd.I No phase transition for d = 1.I For d � 2 no phase transition for small �, butphase transition ours for large �.Not Known : Is phase transition monotone, inother words is there a ritial value in � ?� Arguably the most well studied ase is the modelon regular trees, Tr for r � 2. [Kelly, 1985℄I For a r-regular tree Tr, there exists a ritialvalue �(r) suh that, no phase transition when� � �(r) and phase transition ours when � >�(r).I �(r) = (r�1)r�1(r�2)r .� It is also known that there are in�nite trees forwhih phase transition is notmonotone ! [Brightwell,H�aggstr�om, Winkler, 1998℄ 7



Hard-Core Model on Random GraphsSetup :� G be a set of graphs whih are �nite or ountablyin�nite and are loally �nite.� Suppose P is a probability on G.� Let G � P. We will write G(!) for a realization ofthe random graph G.� Given G(!) a hard-ore model with ativity � > 0on G(!) will be denoted by P!�.� We will denote the joint measure as P�.Remark :� Note that there are two stages of randomness andthere are two parameters :I One is the probability distribution P on G gov-erning the randomness of the underlying graph-ial struture.I The other is � whih is governing the hard-oremodel given the graph. 8



Phase Transition
De�nition 3 Given a random graph model (G;P), wesay that there is a phase transition for the hard-oremodel with ativity � > 0 on a random graph G � P ifP �9 multiple measures of the form PG� � > 0:
Remark :� If the random graph model is suh that G is �nitea.s. then there will be no phase transition for anyativity � > 0.� It is possible to onstrut an example of (G;P) suhthat phase transition ours for every � > 0.
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Example� Let G := fTr j r � 2 g and P be given by P (Tr) = 12r�1.� Reall that from Kelly's work (1985) it is knownthat for hard-ore model on r-regular tree Tr, phasetransition ours if an only if� > �(r) = (r � 1)r�1(r � 2)r :� But �(r)! 0 as r !1.� So for every � > 0 for large enough r we must have�(r) < � and thus a phase transition would ourfor the random graph model (G;P).
Remark :� It is important to note that for the model (G;P) wean have realizations having arbitrarily large degreewith positive probability.� It is known that for bounded degree (�xed) graphsthere should be no phase transition for small valuesof �. [van den Berg and Steif, 1994℄ 10



Random Graph Models� GW-Tree : Galton-Watson branhing proess treewith a given progeny distribution denoted by N .I The parameter here is the distribution of N .� Sparse Random Graphs :I Erd�os and R�enyi Random Graph : A ran-dom graph on n � 1 verties labeled by [n℄ :=f1;2; : : : ; ng where eah pair of verties are on-neted by an edge independently with probabil-ity n, where  > 0. This would be denoted byG �n; n�.I The parameter here is  > 0.I Random r-regular Graph : This is to seletone graph at random from the set of all r-regulargraphs with vertex set [n℄. We will denote thismodel by Gr (n).Note : In order for this model to make sensewe will always assume that n� r is even.I The parameter here is r � 2.
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Motivations� Interesting from Statistial Physis point of view,well studied for non-random graphs. [Dobrushin1970, Kelley 1985, van den Berg & Steif 1994,Brightwell, H�aggstr�om & Winkler 1998, Brightwell& Winkler 1999℄� Has appliations in engineering �elds, like in multi-ast networking problems. [Ramanan et al, 2002℄� Conjeture of Aldous [2003℄ :For a sparse random graph if In be the maximalindependent set thenE [jInj℄n ! � as n!1;where � > 0 is a onstant whih may depend on themodel for the sparse random graph.Note : For a hard-ore model on a �nite graphif we take � ! 1 limit then it onentrate on themaximal independent set(s). Thus perhaps study-ing the hard-ore model on sparse random graphsmay help in resolving Aldous' onjeture.
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Sparse Random Graphs and GW-Trees� Known : If Gn be a model for sparse random graphthen for \large" enough n from the \view point"of a �xed vertex \loally it looks like" a (possiblyrandom) rooted tree.I For G �n; n� it is a rooted Galton-Watson treewith Poisson () o�spring distribution.I For G (n; r) it is a rooted r-regular tree.� Conlusion : So for omputing \large" n limit ofhard-ore model on these kind of graphs we mayneed to onsider the similar model on respetiveGW-trees.� Note : For a r-regular tree, one slight annoyaneis that it is not really a GW-tree ! But by remov-ing one vertex (the root) it an be viewed as aolletion of r GW-trees with progeny distributionN � r � 1.
13



Hard-Core Model on GW-TreesProposition 4 Fix � > 0 then the followings hold for aGW-tree with progeny distribution N .(a) If E [N ℄ � 1 then there is no phase transition.(b) If E [N ℄ > 1 then on the event of non-extintionphase transition ours with probability 0 or 1.

14



Proof of Proposition 4 :� Nothing to prove for part (a).� For part (b) notie that the property that a (�xed)rooted tree T has no phase transition implies thatif v is a hild of the root, and T (v) is the sub-treerooted at v onsisting only of the desendents of v,then T (v) also has no phase transition.� Let � := P� ( no phase transition in T ) where T isa GW-tree, and let fv1; v2; : : : ; vNg be the hildrenof the root in T . Then� � P� ( no phase transition in T (vj); 8 j)= 1Xn=0P (N = n)�n = f(�)where f is the generating funtion for N .� Moreover � � q := extintion probability, beause[extintion℄ � [no phase transition℄� Thus � 2 fq;1g and this ompletes the proof.
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Key Reursion on a Finite Tree� Suppose T be a �nite (�xed) rooted tree and weonsider the hard-ore model on it with ativity � >0.� Suppose ; be the root and it has n (;) many hildrenwhih are denoted by 1;2; : : : ; n (;).� Let I be a random independent set distributed a-ording to the hard-ore model with ativity � > 0.We de�ne �T; := P� (; 2 I).� For a hild j, let T j be the sub-tree rooted at jobtained by removing ;. Suppose �T jj be de�nedsimilarly of �T; .� The following key reursion holds
�T; = � n(;)Qj=1 �1� �T jj �

1+ � n(;)Qj=1 �1� �T jj �
16



The Reursive Distributional Equation(RDE)
� d= � NQj=1 �1� �j�1+ � NQj=1 �1� �j� on [0;1℄;

where (�j) are i.i.d. opies of � and are independent ofN .Let T be the assoiated operator and S = T 2.Properties :� T (Æ0) = Æ�=(1+�).� Æ0 4 T (�) 4 Æ�=(1+�), for any probability � on [0;1℄.� T is anti-monotone ) S is monotone.� So there exist �� 4 �� two �xed points of S suhthat Sn (Æ0) " �� and Sn �Æ�=(1+�)� # ��.� T (��) = ��.� S has unique �xed point if and only if �� = ��.17



Uniqueness Domain
De�nition 5 We will say that we are in theuniqueness domain if �� = ��.
Charaterization of Phase Transition forGW-Tree Model
Theorem 6 For GW-tree with progeny distri-bution N , there is no phase transition for thehard-ore model with ativity � > 0, if and onlyif, we are in uniqueness domain for the assoi-ated RDE.
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Speialization to r-regular Tree� Notie that if Tr (;) denote a rooted r-regular tree,that is, a tree whose root ; has degree r�1 and allother verties have degree r, then it is a GW-treewith progeny distribution N � r � 1.� So for this model N is non random, that is theoperator T has no random part.� This then implies both �� and �� are degeneratemeasures.� So basially we need to onsider �xed point of adeterministi funtion s = t2 where t: [0;1℄ ! [0;1℄given by t(p) = � (1� p)r�11+ � (1� p)r�1 ; p 2 [0;1℄:� This is exatly what Kelly did in his 1985 paper andthis leads to the ritial value �(r).
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When Does Uniqueness Domain Hold ?Corollary 7 For a GW-tree with progeny distributionN , there is no phase transition for the hard-ore modelwith ativity � > 0 if(a) E [N ℄ � 1 or,(b) �� E [N ℄ < 1.Remarks :� In partiular it shows that for any GW-tree (withE [N ℄ < 1) at least for suÆiently small � there isno phase transition. Suh result is expeted. Butnote that we do not assume that the progeny dis-tribution is bounded.� Part (b) uses the fat that T is a ontration understandard Wasserstine distane when �� E [N ℄ < 1.
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Main Results for hard-Core Model onSparse Random GraphsTheorem 8 Suppose X!� (n; ) be the size of a randomindependent set distributed aording to the hard-oremodel with ativity � > 0 on a Erd�os-R�enyi randomgraph G �n; n�. If the GW-tree with Poisson() progenydistribution has no phase transition thenlimn!1 E� �X!� (n; )�n = � ()where � () := E [�℄ and � is the unique solution of theRDE.
Theorem 9 Suppose X!� (n; r) be the size of a randomindependent set distributed aording to the hard-oremodel with ativity � > 0 on a random regular graphGr (n). If the r-regular tree has no phase transition,that is, if � < �(r) = (r � 1)(r�1)=(r � 2)r, thenlimn!1 E� �X!� (n; r)�n = �� (r)where �� (r) = w=(1 + 2w) with w being the uniquepositive solution of the equation � = w(1 + w)r�1.21



Bak to Aldous' ConjetureConjeture [Aldous, 2003℄ : For a sparse randomgraph if In is a maximal independent set thenlimn!1 E [jInj℄n = �for some onstant � > 0 (expliitly omputable ?).� Our method fails ! This is beause it seems (for thegeneral GW-tree ase) that the uniqueness domaindoes not hold for large �.� For example it is the ase with r-regular trees andhene for the sparse random graph model Gr (n).� In fat for Gr (n) model it has been postulated (provedusing non-rigorous methods) in physis literaturethat suh asymptoti limit exists and has the sameanswer as Theorem 9 when � is smaller than theso alled \extremality threshold" (whih is biggerthan the \uniqueness threshold").� Our Theorems 8 and 9 provides rigorous argumentwhen � is in the uniqueness domain (that is, underthe uniqueness threshold for the Gr (n) model).22



Bakground : Reursive Tree Proess(RTP)Consider the RDE
� d= � NQj=1 (1� �j)1 + � NQj=1 (1� �j) on [0;1℄;

where (�j) are i.i.d. opies of � and are independent ofN .Notations :� Let � be a solution of the RDE.� Let T1 = (V; E) be the anonial in�nite tree withvertex set V := �i j i 2 N d; d � 1	 [ f;g. We willonsider it as rooted at ;.� Suppose (Ni)i2V be i.i.d. opies of the progeny dis-tribution N .
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Reursive Tree Proess (RTP)A olletion of [0;1℄-valued random variables (�i)i2V isalled an invariant Reursive Tree Proess (RTP) withmarginal � if� �i � � 8 i 2 V.� Fix d � 0 then (�i)jij=d are independent.
� �i = � NiQj=1(1��ij)1+� NiQj=1(1��ij) a.s. 8 i 2 V.
� �i is independent of fNi0 j ji0j < jij g 8 i 2 V.Remark : Using Kolmogorov's onsisteny, an invariantRTP with marginal � exists if and only if � is a solutionof the RDE.
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Reursive Tree Proess (RTP)

η 2

g

g

N3N2N1

NΦ

21 3

11 12 13 21 22 23 31 32 33

Φ

η 1 η 3

η11 η12 η13

ηΦ

25



Towards Proving Theorem 6Long Range Independene Property� Fix d � 0.� Write xd for a vetor (xi)jij=d where eah xi 2 [0;1℄.� Let T be the realization of the GW-tree rooted at; obtained from the realizations of (Ni)i2V .� Let ��(d)i (xd)�jij�d be the d-depth RTP with valuesat level d given by xd.
Lemma 10 (Long range independene) Suppose weare in the uniqueness domain, that is �� = ��, thenlimd!1 supxd j�(d); (xd)� �;j= 0 a.s.
Remark :� The proof of Theorem 6 follows from this Lemma.26



Proof of Lemma 10 :� For the vetor xd if all the omponents are same as the we will write the vetor itself as .� �(2d); (0) " �;, a.s. and also �(2d+1); (0) # �; a.s.� �(d); � �1+�� = �(d+1); (0), so �(d); � �1+��! �; a.s.� If 0 � xi � �1+� for all i 2 V then�(2d); (0) � �(2d); (x2d) � �(2d); � �1+�� ; and�(2d+1); � �1+�� � �(2d+1); (x2d+1) � �(2d+1); (0) :So �(d); (xd)! �; a.s. as d!1.� Now notie that �(d); (1) = �(d�1); (xd�1) where eahxi 2 f0; �= (1 + �)g. So �(d); (1)! �; a.s.� Finally, if 0 � xi � 1 for all i 2 V then�(2d); (0) � �(2d); (x2d) � �(2d); (1) ; and�(2d+1); (1) � �(2d+1); (x2d+1) � �(2d+1); (0) :So �(d); (xd) ! �; uniformly a.s. as d ! 1, provingthe lemma. 27



Remarks on the Proofs of Theorem 8and Theorem 9� First thing to note is1n E� �X!� � = P� �v0 2 I!� � ;where I!� is the random independent set seletedaording to the (random) distribution P!�, and v0is a �xed vertex.� For any �xed d > 0 the distribution of the d-depthneighborhood of v0 onverges to the distribution ofa d-depth Poisson() GW-tree for G �n; n� model,and to a d-depth r-regular tree for Gr (n) model.� We an then apply the loal weak onvergene teh-nique of Aldous and Steele (2004) using the (strong)long range independene property whih holds un-der the uniqueness domain. These will give thestated results after a little more areful probabilityomputations !
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Open Problems/Questions� We know that for r-regular tree the phase transitionis a monotone property in �, and the ritial value�(r) is expliitly know.Is phase transition monotone (in �) for a generalGW-tree ?Comment : Most possibly not ! But is it at leastthe ase for GW-tree with Poisson progeny distri-bution ?� For GW-tree with Poisson() progeny distribution isphase transition monotone in  ? That is for every�xed � > 0 if  > 0 and we have no phase transitionfor Poisson() GW-tree then an we say that wehave no phase transition for Poisson(0) GW-tree ?Comment : We know this is true if ��  < 1.� If the answer to above question is yes (whih ismost possibly the ase) an we also get the ritialvalue for  ? (expliitly or bounds ?)
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