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Hard-Core Model on a Finite Graph

Setup :

e Let G:= (V,FE) be a finite graph.

e We say a subset I C V is an independent set of
G, if for any two vertices u,v € I there is no edge
between v and w.

o Let 7o be the set of all independent sets of G.

e \We would like to define a measure on Zg.



Description 1 :

e Fix A > 0.

e Hard-core model on G with activity X is a probability
distribution on Z4 such that

Py (I) < M, T e Zg.

e [ hus

P
Z\(G)’

Py (I) = I e€lg

where Z, (G) := Y Al is the proportionality con-
IEIG
stant, known as the partition function.

Observations :

e If A =1 then we get the uniform distribution on Zg
and Z,(G) is the size of Zg.

e AlIso as A\ — oo the measures P, concentrate on
maximal size independent sets.



Description 2 :

Fix A >0 and let p := 25 € (0, 1).

Suppose (Cy),y are i.i.d. Bernoulli(p).
o Llet I:={veV|C,=1}.

e The measure P (-|I € Zg) on Zg is same as P,.

Remark :

e T his gives a way of doing exact sampling from P,.



Hard-Core Model on an Infinite Graph

Problems with the Two Previous Descriptions :

e For Description 1, we note that Zg is infinite and
hence the partition function Z,(G) = oo !

e For Description 2, we end up with the (same type
of) problem that the event [I € Z4] has zero prob-
ability under the i.i.d. coin toss measure.

An Observation on Finite Graph :

Fix any vertex v € V and let o be an independent set
for the graph with vertex set V \ {v} then

s fou{v} eZe
Px(velIlI\{v}=0)=

0 otherwise

where I € 1.



Statistical Physics Definition :

Definition 1 Given a finite or countably infinite, locally
finite graph G = (V, E) and X\ > 0, a probability measure
Py, on {0,1}", is said to be a Gibbs measure for the hard-
core model on G with activity A, if it admits conditional
probabilities such that for all v € V and for any o €
{0, 13"\,

FAA ifo V1, € Ta
Pyx(I(v) =1[I(V\{v}) =0) =

0 otherwise

where I is a {0,1}" -valued random variable with distri-
bution P,.

Remarks :

e T his is what is known as Dobrushin-Lanford-Ruelle
(DLR) definition of infinite-volume Gibbs measure.

e Similar definitions are used for defining Ising model
and g-Potts model on infinite graphs.



Existence and Uniqueness

e In general a Gibbs measure exists by compactness
argument.

e If G is finite then uniqueness holds trivially.

e It is not necessary though that uniqueness will hold
when G is infinite.

Definition 2 For a fixed graph G we say that a phase
transition occurs for hard-core model with activity X > 0O,
if there are more than one Gibbs measures of the form
Py.

Note : There is no phase transition if GG is finite.



What are Known ?

e First introduced by Dobrushin (1968) on Z¢ for
model of lattice gas.

e Phase transition is well studied for Z%.
» NO phase transition for d = 1.

» For d > 2 no phase transition for small A, but
phase transition occurs for large .

Not Known : Is phase transition monotone, in
other words is there a critical value in A\ 7

e Arguably the most well studied case is the model
on regular trees, T, for r > 2. [Kelly, 1985]

» For a r-regular tree T,, there exists a critical
value A.(r) such that, no phase transition when
A < Ae(r) and phase transition occurs when X\ >

Ae(7).

> o(r) = S

e It is also known that there are infinite trees for
which phase transition is not monotone ! [Brightwell,
Haggstrom, Winkler, 1998]



Hard-Core Model on Random Graphs

Setup :

g be a set of graphs which are finite or countably
infinite and are locally finite.

e Suppose P is a probability on G.

o Let G ~P. We will write G(w) for a realization of
the random graph G.

e Given G(w) a hard-core model with activity A > 0
on G(w) will be denoted by Py.

e \We will denote the joint measure as P,.

Remark :

e Note that there are two stages of randomness and
there are two parameters :

» One is the probability distribution P on G gov-
erning the randomness of the underlying graph-
ical structure.

» The other is A\ which is governing the hard-core
model given the graph.



Phase Transition

Definition 3 Given a random graph model (G,P), we
say that there is a phase transition for the hard-core

model with activity A > 0 on a random graph G ~ P if

P (3 multiple measures of the form IP’E’) > 0.

Remark :

e If the random graph model is such that G is finite
a.s. then there will be no phase transition for any
activity A > 0.

e It is possible to construct an example of (G, P) such
that phase transition occurs for every X > 0.



Example

1
<.

e LetG:={T,|r>2} and P begiven by P (T,) = 5~

e Recall that from Kelly's work (1985) it is known
that for hard-core model on r-regular tree T,, phase
transition occurs if an only if

(r — 1)1

(r—2)

A> A(r) =

e But \.(r) - 0 as r — co.

e So for every X > O for large enough » we must have
Ae(r) < XA and thus a phase transition would occur
for the random graph model (G, P).

Remark :

e It is important to note that for the model (G,P) we
can have realizations having arbitrarily large degree
with positive probability.

e It is known that for bounded degree (fixed) graphs
there should be no phase transition for small values
of A. [van den Berg and Steif, 1994]
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Random Graph Models

e GW-Tree : Galton-Watson branching process tree
with a given progeny distribution denoted by N.

» [T he parameter here is the distribution of N.

e Sparse Random Graphs :

» Erdos and Rényi Random Graph : A ran-
dom graph on n > 1 vertices labeled by [n] :=
{1,2,...,n} where each pair of vertices are con-
nected by an edge independently with probabil-
ity % where ¢ > 0. This would be denoted by

Q(n 9).

‘n

» T he parameter here is ¢ > 0.

» Random r-regular Graph : This is to select
one graph at random from the set of all r-regular
graphs with vertex set [n]. We will denote this
model by G, (n).

Note : In order for this model to make sense
we will always assume that n x r is even.

» The parameter here is r > 2.

11



Motivations

e Interesting from Statistical Physics point of view,
well studied for non-random graphs. [Dobrushin
1970, Kelley 1985, van den Berg & Steif 1994,
Brightwell, Haggstrom & Winkler 1998, Brightwell
& Winkler 1999]

e Has applications in engineering fields, like in multi-
cast networking problems. [Ramanan et al, 2002]

e Conjecture of Aldous [2003] :

For a sparse random graph if I, be the maximal
independent set then
E [|15]]
n

where k > 0 is a constant which may depend on the
model for the sparse random graph.

— K aS n — oo,

Note : For a hard-core model on a finite graph
if we take A — oo limit then it concentrate on the
maximal independent set(s). Thus perhaps study-
ing the hard-core model on sparse random dgraphs
may help in resolving Aldous’ conjecture.

12



Sparse Random Graphs and GW-Trees

e Known : If G, be a model for sparse random graph

then for “large” enough n from the *“view point”

of a fixed vertex “locally it looks like” a (possibly

random) rooted tree.

» For G(n,<) it is a rooted Galton-Watson tree
with Poisson (¢) offspring distribution.

» For G(n,r) it is a rooted r-regular tree.

e Conclusion : So for computing “large” n limit of
hard-core model on these kind of graphs we may
need to consider the similar model on respective

GW-trees.

e Note : For a r-regular tree, one slight annoyance
is that it is not really a GW-tree ! But by remov-
ing one vertex (the root) it can be viewed as a
collection of r GW-trees with progeny distribution

N=r-—-1.

13



Hard-Core Model on GW-Trees

Proposition 4 Fix A > 0 then the followings hold for a
GW-tree with progeny distribution N.

(a) If E[N] <1 then there is no phase transition.

(b) If E[N] > 1 then on the event of non-extinction
phase transition occurs with probability O or 1.

14



Proof of Proposition 4 :
e Nothing to prove for part (a).

e For part (b) notice that the property that a (fixed)
rooted tree 7 has no phase transition implies that
if v is a child of the root, and 7 (v) is the sub-tree
rooted at v consisting only of the descendents of v,
then 7 (v) also has no phase transition.

e Let m := P, ( no phase transition in 7) where T is
a GW-tree, and let {v1,v2,...,uny} be the children
of the root in 7. Then

m < P, ( no phase transition in T (v;), V j)

= ) PWN=mn)r"= f(m)
n=0
where f is the generating function for N.

e Moreover m > g .= extinction probability, because
[extinction] C [nO phase transition]

e Thus w € {q,1} and this completes the proof.

15



Key Recursion on a Finite Tree

Suppose T be a finite (fixed) rooted tree and we
consider the hard-core model on it with activity A >
0.

Suppose @) be the root and it has n (#) many children
which are denoted by 1,2,...,n(0).

Let I be a random independent set distributed ac-
cording to the hard-core model with activity A > 0.

We define nT =P, (0 eI).

For a child j, let 7; be the sub-tree rooted at j
obtained by removing (. Suppose anf be defined

similarly of n] .

The following key recursion holds

n(0)
T _ Ajl;ll <1 - anj)

T = n(0) |
1+ 11 (1-4]")

16



The Recursive Distributional Equation
(RDE)

where (n;) are i.i.d. copies of n and are independent of
N.

Let T be the associated operator and S = T2.

Properties :
e T (00) = dr/(142)-
® 00 <X T (1) < dx/(14), for any probability u on [0, 1].
e T is anti-monotone = § is monotone.

e SO there exist u, < pu* two fixed points of S such
that S" (50) T A and S" (5/\/(1+/\)) J, /J,*

o T (ps) = p*.
e S has unique fixed point if and only if u. = u*.

17



Uniqueness Domain

Definition 5 We will say that we are in the
uniqueness domain if pus = u*.

Characterization of Phase Transition for
GW-Tree Model

Theorem 6 For GW-tree with progeny distri-
bution N, there is no phase transition for the
hard-core model with activity A\ > 0O, if and only

if, we are in uniqueness domain for the associ-
ated RDE.

18



Specialization to r-regular Tree

Notice that if T, () denote a rooted r-regular tree,
that is, a tree whose root () has degree » —1 and all
other vertices have degree r, then it is a GW-tree
with progeny distribution N =r — 1.

So for this model N is non random, that is the
operator T' has no random part.

This then implies both u, and u* are degenerate
measures.

So basically we need to consider fixed point of a
deterministic function s = t> where ¢:[0,1] — [0, 1]
given by

A(l—p)
14+2(1—p) Y

t(p) = p € [0, 1].

This is exactly what Kelly did in his 1985 paper and
this leads to the critical value A.(r).

19



When Does Uniqueness Domain Hold ?

Corollary 7 For a GW-tree with progeny distribution
N, there is no phase transition for the hard-core model
with activity X > 0 if

(a) E[N] <1 or,

(b) A x E[N] < 1.

Remarks :

e In particular it shows that for any GW-tree (with
E[N] < oco) at least for sufficiently small A\ there is
no phase transition. Such result is expected. But
note that we do not assume that the progeny dis-
tribution is bounded.

e Part (b) uses the fact that T is a contraction under
standard Wasserstine distance when A x E[N] < 1.

20



Main Results for hard-Core Model on
Sparse Random Graphs

Theorem 8 Suppose X{ (n,c) be the size of a random
independent set distributed according to the hard-core
model with activity A\ > 0 on a Erdbs-Rényi random
graph G (n,%) If the GW-tree with Poisson(c) progeny
distribution has no phase transition then

i E, [X;\" (n,c)]

n— 00

= 7 (c)

where v, (c¢) := E[n] and n is the unique solution of the
RDE.

Theorem 9 Suppose X{ (n,r) be the size of a random
independent set distributed according to the hard-core
model with activity A\ > 0 on a random regular graph
Gr(n). If the r-regular tree has no phase transition,
that is, if A < Ae(r) = (r — 1)1 /(r — 2)7, then

i E, [X;\" (n,r)]

n— 00

= ax(r)

where a) (r) = w/(1 + 2w) with w being the unique
positive solution of the equation A = w(1 + w) !,

21



Back to Aldous’ Conjecture

Conjecture [Aldous, 2003] : For a sparse random
graph if I, is @ maximal independent set then

im 2

n— 00 n

for some constant k > 0 (explicitly computable ?).

e Our method fails ! This is because it seems (for the
general GW-tree case) that the uniqueness domain
does not hold for large .

e For example it is the case with r-regular trees and
hence for the sparse random graph model G, (n).

e In fact for G, (n) model it has been postulated (proved
using non-rigorous methods) in physics literature
that such asymptotic limit exists and has the same
answer as Theorem 9 when )\ is smaller than the
so called “extremality threshold” (which is bigger
than the “wuniqueness threshold™).

e Our Theorems 8 and 9 provides rigorous argument
when X is in the uniqueness domain (that is, under
the uniqueness threshold for the G, (n) model).
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Background : Recursive Tree Process
(RTP)

Consider the RDE

N
A (1 —n))
< = on [0, 1],

n N
L+ ] (- m)
J:

where (n;) are i.i.d. copies of n and are independent of
N.

Notations :
e Let u be a solution of the RDE.
o Let T = (V,&) be the canonical infinite tree with
vertex set V = {ilie N, d>1}u{0}. We will

consider it as rooted at 0.

e Suppose (Ni)ieV be i.i.d. copies of the progeny dis-
tribution N.

23



Recursive Tree Process (RTP)

A collection of [0, 1]-valued random variables (n;),.) is
called an invariant Recursive Tree Process (RTP) with
marginal p if

e ni~pu Vie.

e Fix d > 0 then (7;)=, are independent.

NICED
= a.s. Vie V.

® N = 7
1A ] [ —ny)

=1

e 7; is independent of {N; ||i'| < |i|} Vie V.

Remark : Using Kolmogorov’s consistency, an invariant
RTP with marginal p exists if and only if u is a solution
of the RDE.

24



Recursive Tree Process (RTP)
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Towards Proving Theorem 6

Long Range Independence Property

e Fix d>DO0.
e Write x,; for a vector (:I;i)|i|=d where each z; € [0, 1].

e Let 7 be the realization of the GW-tree rooted at
0 obtained from the realizations of (V) .

o Let (ni(d) (xd)>|| be the d-depth RTP with values
il<d

at level d given by xg.

Lemma 10 (Long range independence) Suppose we
are in the uniqueness domain, that is u., = u*, then

lim sup |nq()d) (xq) —ng| =0 a.s.
d— oo X4
Remark :

e [ he proof of Theorem 6 follows from this Lemma.

26



Proof of Lemma 10 :

e For the vector x4 if all the components are same as
c the we will write the vector itself as c.

o nq()zd) (0) 1 nmp, a.s. and also nq()zd“) (0) L npy a.s.

d d+1 d
o 77(1())<ﬁ)=77é+)(0)v o) néﬂ(ﬁ)—ny@ a.s.

. Ifogmigﬁforalliel}then

d d d
0§ (0) <7 (a0) <0 () » and

2d+1 2d+1 2d+1
0 +)<ﬁ)<né ) (x2041) <> (0).

So néd) (x4) &> mp a.S. as d — oo.
e Now notice that néd) (1) = néd_l) (x4_1) where each
zi € {0,/ (1 4+ X)}. Son? (1) = ny a.s.
e Finally, if 0 <z; <1 for alli € V then
nézd) (0) < nézd) (x24) < nézd) (1), and
P (1) < 0P (xoa1) <Pt (0).

So n(,()d) (x4) — my uniformly a.s. as d — oo, proving
the lemma.

27



Remarks on the Proofs of Theorem 8
and Theorem 9

e First thing to note is
TE XS] =Pa(w € ),

where I} is the random independent set selected
according to the (random) distribution Py, and wvg
is a fixed vertex.

e For any fixed d > 0 the distribution of the d-depth
neighborhood of vg converges to the distribution of
a d-depth Poisson(c) GW-tree for g(n,g) model,
and to a d-depth r-regular tree for G, (n) model.

e We can then apply the local weak convergence tech-
nique of Aldous and Steele (2004) using the (strong)
long range independence property which holds un-
der the uniqueness domain. These will give the
stated results after a little more careful probability
computations |
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Open Problems/Questions

e \We know that for r-regular tree the phase transition
IS @ monotone property in A, and the critical value
Ae(r) is explicitly know.

Is phase transition monotone (in A) for a general
GW-tree 7

Comment : Most possibly not I But is it at least
the case for GW-tree with Poisson progeny distri-
bution 7

e For GW-tree with Poisson(c) progeny distribution is
phase transition monotone in ¢ 7?7 That is for every
fixed A > 0 if ¢ > ¢ and we have no phase transition
for Poisson(c) GW-tree then can we say that we
have no phase transition for Poisson(c’) GW-tree 7

Comment : We know this is true if A x e < 1.

e If the answer to above question is yes (which is
most possibly the case) can we also get the critical
value for ¢ ? (explicitly or bounds 7)
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