## Annealed and Quenched IP for Random Walk in Dynamic Markovian Environment

Antar Bandyopadhyay

(Joint work with Ofer Zeitouni)

Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi Centre http://www.isid.ac.in/~antar

First Indo-Brazilian Symposium in Mathematics IMPA – Instituto Nacional de Matemática Pura e Aplicada July 31, 2008

- 4 周 ト 4 戸 ト 4 戸 ト

#### Outline



- 2 Model Description
- 3 Assumptions and the Results
- 4 History and Achievements
- 5 Main Ideas in the Proofs
  - To Get a Renewal Structure
  - Construction of a "Regeneration Time"

A >

- Redefining the Processes
- Quenched IP

#### The Basic Setup

 Graph: Interger lattice in *d*-dimension Z<sup>d</sup>, *d* ≥ 1, with nearest neighbor links.

< A >

ヨート

#### The Basic Setup

- Graph: Interger lattice in *d*-dimension Z<sup>d</sup>, *d* ≥ 1, with nearest neighbor links.
- Two Stages of Randomness:
  - **The Environment:** It is the transition laws which will tell us *how to take the next step* from the current position.
    - Note: These laws can be random!

#### The Basic Setup

- Graph: Interger lattice in *d*-dimension Z<sup>d</sup>, *d* ≥ 1, with nearest neighbor links.
- Two Stages of Randomness:
  - **The Environment:** It is the transition laws which will tell us *how to take the next step* from the current position.

Note: These laws can be random!

• The Walk: Given the environment we have an *walker* who moves on the lattice  $\mathbb{Z}^d$  starting from **0** according to the transition laws.

Note: The walker provides second stage of randomness.

#### Classical RWRE (Static Environment)

The Environment: At the beginning of time, at every location x ∈ Z<sup>d</sup>, we choose the random transition kernels according to some probability distribution, and keep them fixed through out the time evolution.

### Classical RWRE (Static Environment)

- **The Environment:** At the beginning of time, at every location **x** ∈  $\mathbb{Z}^d$ , we choose the random transition kernels according to some probability distribution, and keep them fixed through out the time evolution.
- **The Walk:** Given the transition laws the walker then moves according to a *time homogeneous* Markov chain, starting from **0**.

• • • • • • • • • • • •

#### A Classical Example of a Statics RWRE: Sinai Walk

Suppose there are two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

▲□► ▲ □► ▲

### A Classical Example of a Statics RWRE: Sinai Walk

Suppose there are two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

 Before the walk starts at every site in Z the unbiased coin is tossed independently and put → or ← according to the outcome being head or tail respectively.

### A Classical Example of a Statics RWRE: Sinai Walk

Suppose there are two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

- Before the walk starts at every site in Z the unbiased coin is tossed independently and put → or ← according to the outcome being head or tail respectively.
- The walker starts at **0** and moves using the biased coin giving positive bias towards the direction of the arrow at his current location.

(日) (同) (三) (三)

### A Classical Example of a Statics RWRE: Sinai Walk

Suppose there are two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

- Before the walk starts at every site in Z the unbiased coin is tossed independently and put → or ← according to the outcome being head or tail respectively.
- The walker starts at **0** and moves using the biased coin giving positive bias towards the direction of the arrow at his current location.

(日) (同) (三) (三)

• Note that the average increment at each step is 0.

### A Classical Example of a Statics RWRE: Sinai Walk

In this case, there are "large traps"! For example, the following configuration of arrows appear with probability one.

A (1) > A (2) > A

### A Classical Example of a Statics RWRE: Sinai Walk

In this case, there are "large traps"! For example, the following configuration of arrows appear with probability one.

### A Classical Example of a Statics RWRE: Sinai Walk

In this case, there are "large traps"! For example, the following configuration of arrows appear with probability one.

• With high probability the walker will spend a "lot of time" in such a "trap", this will then "slows down" the walk.

## A Classical Example of a Statics RWRE: Sinai Walk

In this case, there are "large traps"! For example, the following configuration of arrows appear with probability one.

- With high probability the walker will spend a "lot of time" in such a "trap", this will then "slows down" the walk.
- In fact Sinai [1982] showed that in this case given a typical static environment with high probability the walker will be at  $c (\log n)^2$  distance from the origin at time *n*.

イロト イポト イヨト イヨト

# Random Walk in Dynamic Random Environment (RWDRE)

• **The Environment:** At every location the random transition laws evolve over time as stochastic processes.

A (1) > 4

きょうきょう

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

# Random Walk in Dynamic Random Environment (RWDRE)

- **The Environment:** At every location the random transition laws evolve over time as stochastic processes.
- **The Walk:** Given (all) the transition kernels, the walker moves according to a (possibly) *time inhomogeneous* Markov chain, starting from **0**.

イロト イポト イラト イラト

#### An Example of a RWDRE

Again say we have two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

• • • • • • • • • • • • •

#### An Example of a RWDRE

Again say we have two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

• • • • • • • • • • • • •

• Consider again the integer line  $\mathbb{Z}$ .

#### An Example of a RWDRE

Again say we have two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

(日) (同) (三) (三)

- Consider again the integer line  $\mathbb{Z}$ .
- The walker starts at **0** and carries both the coins.

#### An Example of a RWDRE

Again say we have two coins, one is unbiased (1/2, 1/2) and one is biased (3/4, 1/4).

- Consider again the integer line  $\mathbb{Z}$ .
- The walker starts at **0** and carries both the coins.
- Before a move he first tosses the unbiased coin independently of the past, and then the biased coin again independently of the past. If the unbiased turns up a head, then he gives the bias to the right, else he gives the bias to the left of his current position.

(日) (同) (三) (三)

#### An Example of a RWDRE

Question: What happens in this walk ?

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

B 🖌 🖌 B 🛌 - B

#### An Example of a RWDRE

Question: What happens in this walk ?

• Clearly if we just consider the walk (marginally) then it is a *simple symmetric random walk*, so we have SLLN, CLT etc.

A 1

#### An Example of a RWDRE

Question: What happens in this walk ?

- Clearly if we just consider the walk (marginally) then it is a *simple symmetric random walk*, so we have SLLN, CLT etc.
- But what if we fix a "typical" realization of the environment at every site and every time ? Then it is not very clear what is its asymptotic behavior!

A (1) > A (2) > A

#### An Example of a RWDRE

Question: What happens in this walk ?

- Clearly if we just consider the walk (marginally) then it is a *simple symmetric random walk*, so we have SLLN, CLT etc.
- But what if we fix a "typical" realization of the environment at every site and every time ? Then it is not very clear what is its asymptotic behavior!

4 **A b b b b b** 

Question: Do the "traps" disappear in this case ?

### An Example of a RWDRE

Question: What happens in this walk ?

- Clearly if we just consider the walk (marginally) then it is a *simple symmetric random walk*, so we have SLLN, CLT etc.
- But what if we fix a "typical" realization of the environment at every site and every time ? Then it is not very clear what is its asymptotic behavior!

Question: Do the "traps" disappear in this case ?

• Conceivably yes! One expects that if the environment has a dynamics which is "fast mixing" then the "traps" will disapper "quickly" and will not be able to "slow down the walk".

(日) (同) (三) (三)

## An Example of a RWDRE

Question: What happens in this walk ?

- Clearly if we just consider the walk (marginally) then it is a *simple symmetric random walk*, so we have SLLN, CLT etc.
- But what if we fix a "typical" realization of the environment at every site and every time ? Then it is not very clear what is its asymptotic behavior!

Question: Do the "traps" disappear in this case ?

- Conceivably yes! One expects that if the environment has a dynamics which is "fast mixing" then the "traps" will disapper "quickly" and will not be able to "slow down the walk".
- In this case hopefully here we will have a CLT.

#### Some Notations

 The Environment: At a site x ∈ Z<sup>d</sup> and at time t ≥ 0 "environment" is a transition law, it will be denoted by ω<sub>t</sub> (x, ·).

Image: A math a math

ヨート

#### Some Notations

- The Environment: At a site x ∈ Z<sup>d</sup> and at time t ≥ 0 "environment" is a transition law, it will be denoted by ω<sub>t</sub> (x, ·).
- **The Walk:** The position of the walker at time *t* will be denoted by *X*<sub>t</sub>.

#### Quenched and Annealed Laws

• **Quenched:** The conditional law of the walk given realization of the environment.

(日) (同) (三) (三)

э

#### Quenched and Annealed Laws

• **Quenched:** The conditional law of the walk given realization of the environment.

**Note:** The walk is a (possibly) time inhomogeneous Markov chain under this law.

#### Quenched and Annealed Laws

• **Quenched:** The conditional law of the walk given realization of the environment.

**Note:** The walk is a (possibly) time inhomogeneous Markov chain under this law.

(人間) とうき くうき

• **Annealed:** The marginal distribution of the walk, that is, integrating out the *quenched* law with respect to the environment distribution.

#### Quenched and Annealed Laws

• **Quenched:** The conditional law of the walk given realization of the environment.

**Note:** The walk is a (possibly) time inhomogeneous Markov chain under this law.

• **Annealed:** The marginal distribution of the walk, that is, integrating out the *quenched* law with respect to the environment distribution.

**Note:** The walk may not be a Markov chain under the annealed law.

- 4 同 6 4 日 6 4 日 6

#### Quenched Law

#### Definition of the Quenched Law

Given the entire environment

$$\omega := \left\{ \left( \omega_t \left( \mathbf{x}, \cdot \right) \right)_{t \ge 0} \, \middle| \, \mathbf{x} \in \mathbb{Z}^d \right\},\,$$

the quenched law of  $(X_t)_{t\geq 0}$  starting from **x** denoted by  $\mathbf{P}^{\mathbf{x}}_{\omega}$ , is the distribution of the time inhomogeneous Markov chain  $(X_t)_{t\geq 0}$  on  $\mathbb{Z}^d$ , such that for every  $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$ 

$$\mathbf{P}_{\omega}^{\mathbf{x}}\left(X_{t+1}=\mathbf{y}\,\middle|\,X_{t}=\mathbf{x}\right)=\omega_{t}\left(\mathbf{x},\mathbf{y}\right),$$

and

$$\mathbf{P}^{\mathbf{x}}_{\omega}\left(X_{0}=\mathbf{x}\right)=1.$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

#### Annealed Law

#### Definition of the Annealed Law

The annealed law of  $(X_t)_{t\geq 0}$  starting from **x** denoted by  $\mathbb{P}^{\mathbf{x}}$ , is defined by

$$\mathbb{P}^{\mathsf{x}}(\cdot) := \int \mathsf{P}_{\omega}^{\mathsf{x}}(\cdot) \mathsf{P}(d\omega),$$

where  $\omega \sim \mathbf{P}$ .

#### Dynamic Markovian Environment

• We will assume that for every  $\mathbf{x} \in \mathbb{Z}^d$  the environment chain at  $\mathbf{x}$ , given by

 $\left(\omega_{t}\left(\mathbf{x},\cdot\right)\right)_{t\geq0}$ 

- 4 回 5 - 4 戸 5 - 4 戸 5

is a stationary Markov chain with some state space S and transition kernel K.
## Dynamic Markovian Environment

• We will assume that for every  $\mathbf{x} \in \mathbb{Z}^d$  the environment chain at  $\mathbf{x},$  given by

 $\left(\omega_{t}\left(\mathbf{x},\cdot\right)\right)_{t\geq0}$ 

is a stationary Markov chain with some state space S and transition kernel K.

• Let  $\pi$  be the stationary distribution for the environemnt chain.

## Dynamic Markovian Environment

• We will assume that for every  $\mathbf{x} \in \mathbb{Z}^d$  the environment chain at  $\mathbf{x},$  given by

 $\left(\omega_{t}\left(\mathbf{x},\cdot\right)\right)_{t\geq0}$ 

is a stationary Markov chain with some state space S and transition kernel K.

- Let  $\pi$  be the stationary distribution for the environemnt chain.
- We will also assume that the chains  $(\omega_t(\mathbf{x}, \cdot))_{t \ge 0}$  are i.i.d. as **x** varies.

イロト イポト イラト イラト

## Dynamic Markovian Environment

• We will assume that for every  $\mathbf{x} \in \mathbb{Z}^d$  the environment chain at  $\mathbf{x},$  given by

 $\left(\omega_{t}\left(\mathbf{x},\cdot\right)\right)_{t\geq0}$ 

is a stationary Markov chain with some state space S and transition kernel K.

- Let  $\pi$  be the stationary distribution for the environemnt chain.
- We will also assume that the chains  $(\omega_t(\mathbf{x}, \cdot))_{t\geq 0}$  are i.i.d. as **x** varies.
- By P<sup>π</sup> we will denote the distribution of the entire environment ω.

### Remarks

• This particular model was first introduced by Boldrighini, Minlos and Pellegrinotti [2000].

• • • • • • • • • • • • •

## Remarks

- This particular model was first introduced by Boldrighini, Minlos and Pellegrinotti [2000].
- The example of RWDRE which we discussed earlier falls under this model where the environment chains are just *i.i.d.* chains.

### Assumptions

(A0) We have only nearest neighbor transitions.

(A1) There exists  $0 < \kappa \leq 1$  such that

$$K(w, \cdot) \geq \kappa \pi(\cdot), \quad \forall \ w \in \mathcal{S}.$$

(A2) There exist  $0 < \varepsilon \le 1$  and a fixed Markov kernel q with only nearest neighbor transition which is non-degenerate, such that

$$\omega_t(\mathbf{x},\mathbf{y}) \geq \varepsilon q(\mathbf{x},\mathbf{y})$$
 a.s.  $[\mathbf{P}^{\pi}]$ ,

for all  $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$ , and  $t \ge 0$ .

### Discussion on the Assumptions

Assumption (A0)

We have only nearest neighbor transitions.

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

• • • • • • • • • • • • •

### Discussion on the Assumptions

#### Assumption (A0)

We have only nearest neighbor transitions.

• This is only for simplicity. The arguments can be easily generalized to transitions with bounded increment.

A (1) > A (1) > A

Discussion on the Assumptions

#### Assumption (A1)

There exists  $0 < \kappa \leq 1$  such that

 $K(w, \cdot) \geq \kappa \pi(\cdot), \quad \forall \ w \in \mathcal{S}.$ 

イロン イボン イヨン イヨン

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

Discussion on the Assumptions

#### Assumption (A1)

There exists 0  $<\kappa\leq 1$  such that

 $K(w, \cdot) \geq \kappa \pi(\cdot), \quad \forall \ w \in \mathcal{S}.$ 

イロン イボン イヨン イヨン

• This condition provides a uniform "fast mixing" rate for the environment chains.

Discussion on the Assumptions

#### Assumption (A1)

There exists 0  $<\kappa\leq 1$  such that

 $K(w, \cdot) \geq \kappa \pi(\cdot), \quad \forall \ w \in \mathcal{S}.$ 

- This condition provides a uniform "fast mixing" rate for the environment chains.
- If the state space for the environment chains S is finite and K is irreducible and a periodic (assumption made by BMP [2000]), then assumption (A1) may fail, but it does hold if K is replaced by  $K^r$  for some fixed integer  $r \ge 1$ . A slight modification of our arguments applies to that case, too.

Discussion on the Assumptions

#### Assumption (A1)

There exists 0  $<\kappa\leq 1$  such that

 $K(w, \cdot) \geq \kappa \pi(\cdot), \quad \forall \ w \in \mathcal{S}.$ 

- This condition provides a uniform "fast mixing" rate for the environment chains.
- If the state space for the environment chains S is finite and K is irreducible and a periodic (assumption made by BMP [2000]), then assumption (A1) may fail, but it does hold if K is replaced by  $K^r$  for some fixed integer  $r \ge 1$ . A slight modification of our arguments applies to that case, too.
- If the environment chains are i.i.d. chains then (A1) holds trivially with κ = 1.

Discussion on the Assumptions

#### Assumption (A2)

There exist  $0 < \varepsilon \le 1$  and a fixed Markov kernel q with only nearest neighbor transitions which is non-degenerate, such that

 $\omega_t\left(\mathbf{x},\mathbf{y}\right) \geq \varepsilon \, q\left(\mathbf{x},\mathbf{y}\right) \,\,$  a.s.  $\left[\mathbf{P}^{\pi}\right]$  .

• This condition essentially means that the random environment has a "deterministic" part *q*, which is non-degenerate. In fact under this assumption the environment is nothing but a (random) perturbation of *q*.

(日) (同) (三) (三)

Discussion on the Assumptions

#### Assumption (A2)

There exist  $0 < \varepsilon \le 1$  and a fixed Markov kernel q with only nearest neighbor transitions which is non-degenerate, such that

 $\omega_t\left(\mathbf{x},\mathbf{y}\right) \geq \varepsilon \, q\left(\mathbf{x},\mathbf{y}\right) \; \; \text{a.s.} \; \left[\mathbf{P}^{\pi}\right] \, .$ 

- This condition essentially means that the random environment has a "deterministic" part *q*, which is non-degenerate. In fact under this assumption the environment is nothing but a (random) perturbation of *q*.
- Comparing with classical (static) RWRE literature, this condition can be termed as an *ellipticity* condition on the environment.

(日) (同) (三) (三)

Discussion on the Assumptions

#### Assumption (A2)

There exist  $0 < \varepsilon \le 1$  and a fixed Markov kernel q with only nearest neighbor transitions which is non-degenerate, such that

 $\omega_t\left(\mathbf{x},\mathbf{y}\right) \geq \varepsilon \, q\left(\mathbf{x},\mathbf{y}\right) \; \; \text{a.s.} \; \left[\mathbf{P}^{\pi}\right] \, .$ 

- This condition essentially means that the random environment has a "deterministic" part *q*, which is non-degenerate. In fact under this assumption the environment is nothing but a (random) perturbation of *q*.
- Comparing with classical (static) RWRE literature, this condition can be termed as an *ellipticity* condition on the environment.
- This condition was also assumed in BMP [1997, 2000] and Stannat [2004].

### Annealed SLLN and Invariance Principle

#### Theorem 1 (Annealed SLLN)

Suppose assumptions (A0), (A1) and (A2) hold. Then there exists a constant vector  $\mathbf{v} \in \mathbb{R}^d$ , such that

$$\frac{X_n}{n} \longrightarrow \mathbf{v}$$
 a.s.  $\left[\mathbb{P}^{\mathbf{0}}\right]$ , as  $n \to \infty$ .

### Annealed SLLN and Invariance Principle

#### Theorem 1 (Annealed SLLN)

Suppose assumptions (A0), (A1) and (A2) hold. Then there exists a constant vector  $\mathbf{v} \in \mathbb{R}^d$ , such that

$$\frac{X_n}{n} \longrightarrow \mathbf{v} \quad \text{a.s.} \quad \left[\mathbb{P}^{\mathbf{0}}\right], \quad \text{as} \quad n \to \infty \,.$$

#### Theorem 2 (Annealed Invariance Principle)

Suppose assumptions (A0), (A1) and (A2) hold. Then there exists a  $(d \times d)$  (non-random) positive definite matrix  $\Sigma$ , s.t. under  $\mathbb{P}^{0}$ ,

$$\left(\frac{X_{\lfloor nt \rfloor} - nt \, \mathbf{v}}{\sqrt{n}}\right)_{t \ge 0} \xrightarrow{d} BM_d\left(\Sigma\right), \text{ as } n \to \infty.$$

### Quenched Invariance Principle

#### Theorem 3 (Quenched Invariance Principle)

Suppose assumptions (A0), (A1) and (A2) hold. Then for a.s. all  $\omega$  with respect to  $\mathbf{P}^{\pi}$ , under the *quenched law*  $\mathbf{P}^{\mathbf{0}}_{\omega}$  we have

$$\left(\frac{X_{\lfloor nt \rfloor} - nt \, \mathbf{v}}{\sqrt{n}}\right)_{t \ge 0} \stackrel{d}{\longrightarrow} BM_d\left(\Sigma\right), \text{ as } n \to \infty \, .$$

### Bit of History

If the environment chains are i.i.d. chains then *quenched CLT* was proved by

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

## Bit of History

If the environment chains are i.i.d. chains then *quenched CLT* was proved by

- Boldrighini, Minlos and Pellegrinotti [1997]
  - In this work they proved for  $d \ge 2$  which was extended to d = 1 in a later work [1998].
  - They used non-trivial analytic methods, including a specific type of *cluster expansion* technique.

- 4 同 6 4 日 6 4 日 6

## Bit of History

If the environment chains are i.i.d. chains then *quenched CLT* was proved by

- Boldrighini, Minlos and Pellegrinotti [1997]
  - In this work they proved for  $d \ge 2$  which was extended to d = 1 in a later work [1998].
  - They used non-trivial analytic methods, including a specific type of *cluster expansion* technique.
- Stannat [2004]
  - Gave a simpler but still analytic proof for any dimension  $d \ge 1$ .

(日) (同) (三) (三)

## Bit of History

If the environment chains are i.i.d. chains then *quenched CLT* was proved by

- Boldrighini, Minlos and Pellegrinotti [1997]
  - In this work they proved for  $d \ge 2$  which was extended to d = 1 in a later work [1998].
  - They used non-trivial analytic methods, including a specific type of *cluster expansion* technique.
- Stannat [2004]
  - Gave a simpler but still analytic proof for any dimension  $d \ge 1$ .
- Rassoul-Agha and Seppäläinen [2005]
  - Proved invariance principle using probabilistic techniques as a special case of a more general result.

(日) (同) (三) (三)

## History Continued ...

For dynamic Markovian environment model, exactly similar to ours, but with some more (technical) assumptions the *quenched* CLT was proved by

# History Continued ...

For dynamic Markovian environment model, exactly similar to ours, but with some more (technical) assumptions the *quenched CLT* was proved by

(日) (同) (三) (三)

- Boldrighini, Minlos and Pellegrinotti [2000]
  - For dimension  $d \ge 3$ .
  - Proofs are based on "hard" analytic techniques.

## Our Earlier Contribution

 In our earlier work B. and Zeitouni (2006) proved annealed and quenched IP for this model using probabilistic techniques, but under some further (*technical*) assumption(s).

A (10) > 4

3 A.

**B b** 

# Our Earlier Contribution

- In our earlier work B. and Zeitouni (2006) proved annealed and quenched IP for this model using probabilistic techniques, but under some further (*technical*) assumption(s).
- For the annealed results we had to assume

$$\kappa + \varepsilon^2 > 1 \, .$$

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

## Our Earlier Contribution

- In our earlier work B. and Zeitouni (2006) proved annealed and quenched IP for this model using probabilistic techniques, but under some further (*technical*) assumption(s).
- For the annealed results we had to assume

$$\kappa + \varepsilon^2 > 1.$$

• For the quenched IP we needed more assumptions, namely

$$\kappa + \varepsilon^6 > 1$$
 and  $d > 7$ .

### What is New in This Work ?

• Well, may not be much ... but still some of course!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

## What is New in This Work ?

- Well, may not be much ... but still some of course!
- Here we prove the results without any non-intuitive/technical assumptions.

(日) (同) (三) (三)

## What is New in This Work ?

- Well, may not be much ... but still some of course!
- Here we prove the results without any non-intuitive/technical assumptions.
- For dimensions d = 1 and d = 2 the results are new. In fact earlier BMP has raised doubt on existence of quenched IP in d = 1, based on some simulations. So this work completely clears the matter for this model.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

### Our Main Strategy

• We will show that on an appropriate probability space there is a version of this process and an increasing sequence of random times  $(\tau_n)_{n\geq 0}$  with  $\tau_0 = 0$  such that the pairs  $(\tau_n - \tau_{n-1}, X_{\tau_n} - X_{\tau_{n-1}})_{n\geq 1}$  form an *i.i.d.* sequence under  $\mathbb{P}^0$ 

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

- We will show that on an appropriate probability space there is a version of this process and an increasing sequence of random times  $(\tau_n)_{n\geq 0}$  with  $\tau_0 = 0$  such that the pairs  $(\tau_n - \tau_{n-1}, X_{\tau_n} - X_{\tau_{n-1}})_{n\geq 1}$  form an *i.i.d.* sequence under  $\mathbb{P}^0$
- These times will be called "regeneration times".

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

- We will show that on an appropriate probability space there is a version of this process and an increasing sequence of random times  $(\tau_n)_{n\geq 0}$  with  $\tau_0 = 0$  such that the pairs  $(\tau_n \tau_{n-1}, X_{\tau_n} X_{\tau_{n-1}})_{n\geq 1}$  form an *i.i.d.* sequence under  $\mathbb{P}^0$
- These times will be called "regeneration times".
- Moreover we will show that under our assumptions  $\tau_1$  has exponential tail.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

- We will show that on an appropriate probability space there is a version of this process and an increasing sequence of random times  $(\tau_n)_{n\geq 0}$  with  $\tau_0 = 0$  such that the pairs  $(\tau_n \tau_{n-1}, X_{\tau_n} X_{\tau_{n-1}})_{n\geq 1}$  form an *i.i.d.* sequence under  $\mathbb{P}^0$
- These times will be called "regeneration times".
- Moreover we will show that under our assumptions  $\tau_1$  has exponential tail.
- Because of nearest neighbor walk this will imply annealed SLLN and IP.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

- We will show that on an appropriate probability space there is a version of this process and an increasing sequence of random times  $(\tau_n)_{n\geq 0}$  with  $\tau_0 = 0$  such that the pairs  $(\tau_n \tau_{n-1}, X_{\tau_n} X_{\tau_{n-1}})_{n\geq 1}$  form an *i.i.d.* sequence under  $\mathbb{P}^0$
- These times will be called "regeneration times".
- Moreover we will show that under our assumptions  $\tau_1$  has exponential tail.
- Because of nearest neighbor walk this will imply annealed SLLN and IP.
- For quenched IP we need to do some more work!

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

# Construction of $\varepsilon$ -Coins

**Recall the Assumption (A2):** There exist  $0 < \varepsilon \le 1$  and a fixed Markov kernel q with only nearest neighbor transition which is non-degenerate, such that

$$\omega_t\left(\mathbf{x},\mathbf{y}
ight)\geqarepsilon\,q\left(\mathbf{x},\mathbf{y}
ight)$$
 a.s.  $\left[\mathbf{P}^{\pi}
ight],$ 

for all  $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$ , and  $t \ge 0$ .
To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\varepsilon$ -Coins

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\varepsilon$ -Coins

• 
$$\mathbf{P}(\epsilon_t = 1) = \varepsilon$$
.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\varepsilon$ -Coins

- $\mathbf{P}(\epsilon_t = 1) = \varepsilon$ .
- $\{\epsilon_t\}_{t\geq 1}$  are independent of the environment chains.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\varepsilon$ -Coins

- $\mathbf{P}(\epsilon_t = 1) = \varepsilon.$
- $\{\epsilon_t\}_{t\geq 1}$  are independent of the environment chains.
- At a time t ≥ 0 before taking the step for time t + 1, the walker observes the outcome of the ε-coin ε<sub>t+1</sub>.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

## Construction of $\varepsilon$ -Coins

- $\mathbf{P}(\epsilon_t = 1) = \varepsilon.$
- $\{\epsilon_t\}_{t\geq 1}$  are independent of the environment chains.
- At a time t ≥ 0 before taking the step for time t + 1, the walker observes the outcome of the ε-coin ε<sub>t+1</sub>.
- If  $\varepsilon_{t+1} = 1$  then it takes a move according to the fixed transition kernel q.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

イロン 不同 とくほう イロン

# Construction of $\varepsilon$ -Coins

- $\mathbf{P}(\epsilon_t = 1) = \varepsilon.$
- $\{\epsilon_t\}_{t\geq 1}$  are independent of the environment chains.
- At a time t ≥ 0 before taking the step for time t + 1, the walker observes the outcome of the ε-coin ε<sub>t+1</sub>.
- If  $\varepsilon_{t+1} = 1$  then it takes a move according to the fixed transition kernel q.
- If  $\varepsilon_{t+1} = 0$  then it takes a move according to the random transition kernel

$$\frac{\omega_t\left(\cdot,\cdot\right)-\varepsilon q\left(\cdot,\cdot\right)}{1-\varepsilon}$$

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\varepsilon$ -Coins

#### Remarks:

 By taking a step when the ε-coin is 1 the walker does not collect any information about the environment.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\varepsilon$ -Coins

#### Remarks:

- By taking a step when the ε-coin is 1 the walker does not collect any information about the environment.
- We will say a step taken by the walker is a "proper step" if and only if, it was taken when the ε-coin was 0.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

# Construction of $\varepsilon$ -Coins

#### **Remarks:**

- By taking a step when the ε-coin is 1 the walker does not collect any information about the environment.
- We will say a step taken by the walker is a "proper step" if and only if, it was taken when the ε-coin was 0.
- Note that only by taking a "proper" step the walker learns about the environment.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

# A "Regeneration Time"

We would like to define a random time, say  $\tau$ , which will be the first time t such that,

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

- 4 同 6 4 日 6 4 日 6

# A "Regeneration Time"

We would like to define a random time, say  $\tau$ , which will be the first time t such that,

Just prior to this time the walker has taken a succession of *l* "improper" steps, where *l* > 0.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(人間) とうき くうき

# A "Regeneration Time"

We would like to define a random time, say  $\tau$ , which will be the first time t such that,

- Just prior to this time the walker has taken a succession of *l* "improper" steps, where *l* > 0.
- At this time point *t* the following event occurs:

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

# A "Regeneration Time"

We would like to define a random time, say  $\tau$ , which will be the first time t such that,

- Just prior to this time the walker has taken a succession of *l* "improper" steps, where *l* > 0.
- At this time point t the following event occurs: For every time duration s ≥ 0, for every site z which could possibly be reached from the current position of the walker and within time t + s, the environment chain at location z have gone through a *"regeneration"* in the time interval [t - l + 1, t + s].

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

# A "Regeneration Time"

We would like to define a random time, say  $\tau$ , which will be the first time t such that,

- Just prior to this time the walker has taken a succession of *l* "improper" steps, where *l* > 0.
- At this time point t the following event occurs: For every time duration s ≥ 0, for every site z which could possibly be reached from the current position of the walker and within time t + s, the environment chain at location z have gone through a *"regeneration"* in the time interval [t - l + 1, t + s].

**Note:** *"Regeneration"* of an environment chain means that it *"starts afresh"* from its stationary distribution.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

• • • • • • • • • • • • •

**B b** 

# A "Regeneration Time"

#### Remarks:

 If we can do this, then the random time τ will have the desired property that after this time wherever the walker goes, by the time it will reach a location it will have "no information" about its environment!

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

# A "Regeneration Time"

#### **Remarks:**

- If we can do this, then the random time τ will have the desired property that after this time wherever the walker goes, by the time it will reach a location it will have "no information" about its environment!
- Note that such a time \(\tau\) depends on the future of the environment chains at every location. So naturally it is NOT a stopping time. But also note it DOES NOT take into consideration any specifics of the future path of the walker.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

# Construction of $\kappa$ -Coins (an easy way to get environment *"regeneration"*)

#### **Recall the Assumption (A1):** There exists $0 < \kappa \leq 1$ such that

#### $K(w, \cdot) \geq \kappa \pi(\cdot), \quad \forall \ w \in \mathcal{S}.$

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

• • • • • • • • • • • • •

**B b** 

## Construction of $\kappa$ -Coins

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

• • • • • • • • • • • • •

**B b** 

## Construction of $\kappa$ -Coins

• 
$$\mathbf{P}(\alpha_t(\mathbf{x}) = 1) = \kappa.$$

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

• • • • • • • • • • • • •

**B b** 

## Construction of $\kappa$ -Coins

• 
$$\mathbf{P}(\alpha_t(\mathbf{x}) = 1) = \kappa$$
.

• 
$$\{\alpha(\mathbf{x})_t\}_{t>1}$$
 are independent as **x** varies.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\kappa$ -Coins

- $\mathbf{P}(\alpha_t(\mathbf{x}) = 1) = \kappa.$
- $\{\alpha(\mathbf{x})_t\}_{t>1}$  are independent as **x** varies.
- At a site x

   the environment chain moves from time t to time t + 1 in the following way:

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

## Construction of $\kappa$ -Coins

- $\mathbf{P}(\alpha_t(\mathbf{x}) = 1) = \kappa.$
- $\{\alpha(\mathbf{x})_t\}_{t>1}$  are independent as **x** varies.
- At a site x

   the environment chain moves from time t to time t + 1 in the following way:
  - if α<sub>t+1</sub> (x) = 1 then it moves to a state selected independently from the stationary distribution π, in other words, goes through a "regeneration";

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

## Construction of $\kappa$ -Coins

So at every site  $\mathbf{x} \in \mathbb{Z}^d$ , we can construct (by extending the probability space) a sequence of i.i.d. coin tosses, say  $\{\alpha_t(\mathbf{x})\}_{t\geq 1}$ , such that

• 
$$\mathbf{P}(\alpha_t(\mathbf{x}) = 1) = \kappa.$$

- $\{\alpha(\mathbf{x})_t\}_{t>1}$  are independent as **x** varies.
- At a site x

   the environment chain moves from time t to time t + 1 in the following way:
  - if α<sub>t+1</sub> (x) = 1 then it moves to a state selected independently from the stationary distribution π, in other words, goes through a "regeneration";
  - if  $\alpha_{t+1}(\mathbf{x}) = 0$  then it moves to a state according to the kernel

$$\frac{K\left(\omega_{t}\left(\mathbf{x},\cdot\right),\cdot\right)-\kappa\pi\left(\cdot\right)}{1-\kappa}.$$

No regeneration in this case!

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

イロン イボン イヨン イヨン

3

## Precise Definition of the "Regeneration Time"

• Fix 
$$t \geq 0$$
 and  $\mathbf{x} \in \mathbb{Z}^d$ .

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

Precise Definition of the "Regeneration Time"

• Fix 
$$t \ge 0$$
 and  $\mathbf{x} \in \mathbb{Z}^d$ .

• Let 
$$L_t := \sup \left\{ l > 0 \mid \varepsilon_{t-l} = 1 \right\}$$
 if  $\varepsilon_t = 0$ , otherwise put  $L_t = 0$ .

Thus  $L_t$  is the length of the "improper" steps before a "proper" step at time t.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

Precise Definition of the "Regeneration Time"

• Consider the following event:

$$\bigcup_{l=1}^{\infty} \left( [L_t = l] \bigcap \bigcap_{s=0}^{\infty} \bigcap_{\substack{\mathbf{z} \in \mathbb{Z} \\ |\mathbf{x}-\mathbf{z}| \leq s}} \bigcup_{u=t-l+1}^{t+s} [\alpha_u(\mathbf{x}) = 1] \right)$$

We denote it by  $S(t, \mathbf{x})$ .

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

Precise Definition of the "Regeneration Time"

• Consider the following event:

$$\bigcup_{l=1}^{\infty} \left( [L_t = l] \bigcap \bigcap_{s=0}^{\infty} \bigcap_{\substack{\mathbf{z} \in \mathbb{Z} \\ |\mathbf{x}-\mathbf{z}| \leq s}} \bigcup_{u=t-l+1}^{t+s} [\alpha_u(\mathbf{x}) = 1] \right)$$

We denote it by  $S(t, \mathbf{x})$ .

Now define

$$au := \inf \left\{ t \geq 1 \ \middle| \ ext{the event } \mathcal{S}\left(t, X_t
ight) \ ext{has occurred} 
ight\}$$

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

• • • • • • • • • • • • •

## Properties of $\tau_1$

#### Proposition 4

Let the assumptions (A0), (A1) and (A2) hold. Then for all  $t \ge 0$ 

$$\mathbb{P}^{\mathbf{0}}\left(\tau>t\right)\leq\mathsf{A}e^{-bt}\,,$$

for some constants  $A < \infty$  and b > 0.

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

## Properties of $\tau_1$

#### Proposition 4

Let the assumptions (A0), (A1) and (A2) hold. Then for all  $t \ge 0$ 

$$\mathbb{P}^{\mathbf{0}}\left( au > t
ight) \leq Ae^{-bt}$$
,

for some constants  $A < \infty$  and b > 0.

#### Remark

In particular this proposition proves that

```
\tau < \infty a.s..
```

Moreover it has all moments finite.

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

(日) (同) (三) (三)

#### A New Walk

• Let  $(\omega^{(i)}, \alpha^{(i)})_{i \ge 1}$  be i.i.d. copies of the environment driven by  $\kappa$  coins, as defined earlier.

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

- Let  $(\omega^{(i)}, \alpha^{(i)})_{i \ge 1}$  be i.i.d. copies of the environment driven by  $\kappa$  coins, as defined earlier.
- Let  $(\varepsilon^{(i)})_{i>1}$  be i.i.d. copies of a sequence of  $\varepsilon$ -coins.

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

- Let  $(\omega^{(i)}, \alpha^{(i)})_{i \ge 1}$  be i.i.d. copies of the environment driven by  $\kappa$  coins, as defined earlier.
- Let  $(\varepsilon^{(i)})_{i\geq 1}$  be i.i.d. copies of a sequence of  $\varepsilon$ -coins.
- Let  $\mathbf{X}^{(1)}$  be the position of the walker moving in the first environment  $(\omega^{(1)}, \alpha^{(1)})$  using  $\varepsilon^{(1)}$ .

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

- Let  $(\omega^{(i)}, \alpha^{(i)})_{i \ge 1}$  be i.i.d. copies of the environment driven by  $\kappa$  coins, as defined earlier.
- Let  $(\varepsilon^{(i)})_{i\geq 1}$  be i.i.d. copies of a sequence of  $\varepsilon$ -coins.
- Let  $\mathbf{X}^{(1)}$  be the position of the walker moving in the first environment  $(\omega^{(1)}, \alpha^{(1)})$  using  $\varepsilon^{(1)}$ .
- We the define

$$\tau_1 := \tau\left(\omega^{(1)}, \alpha^{(1)}; \mathbf{X}^{(1)}, \varepsilon^{(1)}\right)$$

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

(日) (同) (三) (三)

## A New Walk

Having defined { (**X**<sup>(i)</sup>, τ<sub>i</sub>) } for i = 1, 2, ..., (n - 1), let **X**<sup>(n)</sup> be the position of the walker in the n<sup>th</sup> environment (ω<sup>(n)</sup>, α<sup>(n)</sup>) starting from X<sup>(n-1)</sup><sub>τn-1</sub>.

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

(日) (同) (三) (三)

- Having defined { (**X**<sup>(i)</sup>, τ<sub>i</sub>) } for i = 1, 2, ..., (n 1), let **X**<sup>(n)</sup> be the position of the walker in the n<sup>th</sup> environment (ω<sup>(n)</sup>, α<sup>(n)</sup>) starting from X<sup>(n-1)</sup><sub>τn-1</sub>.
- Define  $\tau_n$  recursively as

$$\tau_{n} := \tau_{n-1} + \tau \left( \omega^{(n)}, \alpha^{(n)}; \mathbf{X}^{(n)}, \varepsilon^{(n)} \right)$$

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

(日) (同) (三) (三)

## A New Walk

- Having defined { (**X**<sup>(i)</sup>, τ<sub>i</sub>) } for i = 1, 2, ..., (n 1), let **X**<sup>(n)</sup> be the position of the walker in the n<sup>th</sup> environment (ω<sup>(n)</sup>, α<sup>(n)</sup>) starting from X<sup>(n-1)</sup><sub>τn-1</sub>.
- Define  $\tau_n$  recursively as

$$\tau_{n} := \tau_{n-1} + \tau\left(\omega^{(n)}, \alpha^{(n)}; \mathbf{X}^{(n)}, \varepsilon^{(n)}\right)$$

• Finally define a *new* walk  $(Y_t)_{t>0}$  by

$$Y_t := X_{t- au_{n-1}}^{(n)} \ ext{ if } \ au_{n-1} \leq t < au_n \, .$$
To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

### Properties of this New Walk

#### Proposition 5

Let  $(\tau_n)_{n\geq 1}$  and  $(Y_t)_{t\geq 0}$  be as defined before, then  $(\tau_n - \tau_{n-1}, Y_{\tau_n} - Y_{\tau_{n-1}})_{n\geq 1}$  is an i.i.d. sequence, where  $\tau_0 = 0$ .

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

To Get a Renewal Structure Construction of a "Regeneration Time" **Redefining the Processes** Quenched IP

<ロ> <同> <同> < 回> < 回>

### Properties of this New Walk

#### Proposition 5

Let 
$$(\tau_n)_{n\geq 1}$$
 and  $(Y_t)_{t\geq 0}$  be as defined before, then  
 $(\tau_n - \tau_{n-1}, Y_{\tau_n} - Y_{\tau_{n-1}})_{n\geq 1}$  is an i.i.d. sequence, where  $\tau_0 = 0$ .

#### Theorem 6

The (annealed) law of  $(Y_t)_{t\geq 0}$  is same as that of  $(X_t)_{t\geq 0}$ .

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

## Brief Sketch of the Proof for the Quenched IP

- We use a technique introduced by Bolthausen and Sznitman [2002].
- Let  $B_t^n := (X_{\lfloor nt \rfloor} nt \mathbf{v}) / \sqrt{n}$ , and  $\mathcal{B}_t^n$  be the polygonal interpolation of  $(k/n) \mapsto B_{k/n}^n$ .
- Bolthausen and Sznitman technique says that if we have the annealed IP then the quenched IP will follow if we can show that for all T > 0,

$$\sum_{m=1}^{\infty} \operatorname{Var} \,_{\mathbf{P}^{\pi}} \left( \mathbf{E}_{\omega}^{\mathbf{0}} \left[ F\left( \mathcal{B}^{\lfloor b^{m} \rfloor} \right) \right] \right) < \infty,$$

for every Lipschitz function *F* on *C* ( $[0, T], \mathbb{R}^d$ ) and  $b \in (1, 2]$ .

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (同) (三) (三)

### Brief Sketch of the Proof for the Quenched IP

• To check that the above sum of variances is finite, we work with two walkers which are independent given the environment, along with a martingale trick which uses the time as one more *extra dimension* and helps in getting the proper estimates for "low dimensions" (i.e. when  $d \le 2$ ).

To Get a Renewal Structure Construction of a "Regeneration Time" Redefining the Processes Quenched IP

(日) (四) (三) (三) (三)

э

# **Thank You**

Antar Bandyopadhyay (Joint work with Ofer Zeitouni) IP for RWDRE