Recursive Distributional Equations: Application to Hard-Core Model on Random Graphs

Antar Bandyopadhyay

Eighth North American New Researchers Conference Minneapolis, USA

Department of Mathematics Chalmers University of Technology Göteborg, Sweden

http://www.math.chalmers.se/~antar August 3, 2005

Two Examples

Examples 1: Consider a *(sub)-critical* Galton-Watson branching process with the progeny distribution N, so $\mathbf{E}[N] \leq 1$; we assume $\mathbf{P}(N=1) < 1$.

Height of the Tree : Let H:=1+ height of the G-W tree, then $H<\infty$ a.s. and

$$H \stackrel{d}{=} 1 + \max(H_1, H_2, \dots, H_N)$$
 on \mathbb{N} ,

where $(H_j)_{j\geq 1}$ are i.i.d. with same law as of H and are independent of N.

Example 2 (Perhaps the best known!): Consider the following fixed point equation

$$Z \stackrel{d}{=} \frac{Z_1 + Z_2}{\sqrt{2}}$$
 on \mathbb{R} ,

where (Z_1, Z_2) are i.i.d. copies of Z.

- The set of all solutions is given by the Normal $(0, \sigma^2)$, $\sigma^2 \ge 0$ family.
- This example also extends to give characterizations of stable laws.

We will call such an equation a recursive distributional equation (RDE).

Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on \mathcal{P} is called a Recursive Distributional Equation (RDE)

$$X \stackrel{d}{=} g\left(\xi; X_j, 1 \leq j \leq^* N\right), \quad \text{on } S$$

where $(X_j)_{j\geq 1}$ are independent copies of X and are independent of (ξ, N) .

Remark: A more conventional (analysis) way of writing the equation would be

$$\mu = T(\mu)$$

where T is the operator associated with the above equation, which depends on the function g and the joint distribution of the pair (ξ, N) , and μ is the (unknown) law of X.

Hard-Core Model

Setup:

- Let G := (V, E) be a graph.
- We say a subset $I \subseteq V$ is an *independent set* of G, if for any two vertices $u,v \in I$ there is no edge between u and v.
- Let \mathcal{I}_G be the set of all independent sets of G.
- ullet We would like to define a measure on \mathcal{I}_G .

For Finite Graphs:

- Fix $\lambda > 0$.
- Hard-core model on G with activity λ is a probability distribution on \mathcal{I}_G such that

$$\mathbb{P}_{\lambda}\left(I\right)\propto\lambda^{\left|I\right|},\ \ I\in\mathcal{I}_{G}.$$

• Thus

$$\mathbb{P}_{\lambda}\left(I\right) = \frac{\lambda^{|I|}}{Z_{\lambda}\left(G\right)}, \quad I \in \mathcal{I}_{G}$$

where $Z_{\lambda}(G):=\sum_{I\in\mathcal{I}_G}\lambda^{|I|}$ is the proportionality constant, known as the *partition function*.

For Infinite Graph:

- Use a Statistical Physics definition of *infinite volume Gibbs measure* on \mathcal{I}_G (similar to that of Ising model and q-Potts model).
- It always exists but may not be unique! If uniqueness fails then we will say that a phase transition occurs.

Random Graph Models

- **GW-Tree**: Galton-Watson branching process tree with a given progeny distribution denoted by N.
 - \blacktriangleright The parameter here is the distribution of N.
- Erdös and Rényi Random Graph: A random graph on $n \geq 1$ vertices labeled by $[n] := \{1, 2, \dots, n\}$ where each pair of vertices are connected by an edge independently with probability $\frac{c}{n}$, where c > 0. This would be denoted by $\mathcal{G}\left(n, \frac{c}{n}\right)$.
 - ▶ The parameter here is c > 0.
- Can also work with "Random r-regular Graph" model (this we will not discuss)!

The Recursive Distributional Equation (RDE)

$$\eta \stackrel{d}{=} rac{\lambda \prod\limits_{j=1}^{N} \left(1 - \eta_{j}
ight)}{1 + \lambda \prod\limits_{j=1}^{N} \left(1 - \eta_{j}
ight)} \quad ext{on [0, 1]},$$

where $\left(\eta_{j}\right)$ are i.i.d. copies of η and are independent of N.

Characterization of Phase Transition for GW-Tree Model

Theorem 1 For GW-tree with progeny distribution N, there is no phase transition for the hard-core model with activity $\lambda > 0$, if and only if, for the associated RDE, the operator T^2 has unique fixed-point.

Main Results for Hard-Core Model on Sparse Random Graphs

Theorem 2 Suppose $X_{\lambda}^{\omega}(n,c)$ be the size of a random independent set distributed according to the hard-core model with activity $\lambda>0$ on a Erdös-Rényi random graph $\mathcal{G}\left(n,\frac{c}{n}\right)$. If the GW-tree with Poisson(c) progeny distribution has no phase transition then

$$\lim_{n\to\infty}\frac{\mathrm{E}_{\lambda}\left[X_{\lambda}^{\omega}\left(n,c\right)\right]}{n}=\gamma_{\lambda}\left(c\right)$$

where $\gamma_{\lambda}(c) := \mathbf{E}[\eta]$ and η is the unique solution of the RDF.

Theorem 3 A similar statement for the random r-regular graph model.