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Recursive Distributional

Equations



Three More Examples

Examples 1: Consider a (sub)-critical Galton-Watson
branching process with the progeny distribution N , so
E [N ] ≤ 1; we assume P (N = 1) < 1.
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Height of the Tree: Let H := 1+ height of the G-W
tree, then H <∞ a.s. and

H
d
= 1 + max (H1, H2, . . . , HN) on N,

where (Hj)j≥1 are i.i.d. with same law as of H and are

independent of N .
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Examples 2: Consider the same (sub)-critical Galton-
Watson branching process.
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Size of the Tree: Let S := total size of the tree. Once
again S < ∞ a.s. since the process is (sub)-critical.
Further

S
d
= 1 + (S1 + S2 + · · ·SN) on N,

where (Sj)j≥1 are i.i.d. with same law as of S and are

independent of N .

We will call such equations Recursive Distributional Equa-
tions (RDE).

2



Example 3 (Quicksort Algorithm/Distribution):

• Select the first number from a pile of n numbers
and divide the other (n−1) numbers into two piles,
according to less than or bigger than the first num-
ber.

• Recursively sort the two piles (which are now smaller
in size).

• X(n) := # comparisons needed to sort n numbers
starting from a uniform random permutation of [n].
Then

X(n)
d
= X1(Un) + X2(n− 1− Un) + (n− 1),

where X1(·) and X2(·) are i.i.d. with same law as
of X(·) and are independent of Un which is uniform
on {0,1,2, . . . , n− 1}.

• Rösler (1990) showed E [X(n)] ∼ 2n logn and more-
over

X(n)− 2n logn

n

d
−→ Y,

where distribution of Y satisfies the RDE

Y
d
= UY1 + (1− U)Y2 + C(U) on R,

where Y1 and Y2 are i.i.d. with same law as of
Y and are independent of U ∼ Uniform[0,1], and
c(u) := 1 + 2u logu + 2(1− u) log(1− u).
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Typical features of RDEs

Ex. 1: X
d
= 1 + max ( X1, X2, . . . , XN ) on N

Ex. 2: X
d
= 1 + (X1 + X2 + · · ·+ XN) on N

Ex. 3: X
d
= UX1 + (1− U)X2 + C(U) on R

• Unknown Quantity: Distribution of X.

• Known Quantities:

– N ≤ ∞ which may or may not be random (e.g.
N ≡ 2 in Ex. 3).

– Possibly some more randomness whose distribu-
tion is known (e.g. U in the Ex. 3).

– How we combine the known and unknown ran-
domness (e.g. “1 + max” operation in Ex. 1).

• What is the RDE doing ? To find a distribution
µ such that when we take i.i.d. samples (Xj)j≥1

from it and only use N many of them (where N is
independent of the samples) and do the manipula-
tion then we end up with another sample X ∼ µ.

Remark: In the case N = 1 a.s. it reduces to the
question of finding a stationary distribution of a discrete
time Markov chain.
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Two main uses of RDEs

• Direct use: The RDE is used directly to define a
distribution. Examples include,

◮ The height (and also the size) of a (sub)-critical
Galton-Watson tree (the first two examples).

◮ The Quicksort distribution (Example 3).

◮ Discounted tree sums / inhomogeneous perco-
lation on trees. [Aldous and B. 2005]

◮ . . . and many others.

• Indirect use: The RDE is used to define some aux-
iliary variables which help in defining/characterizing
some other quantity of interest. Among others the
following two type of applications are of special in-
terest

◮ 540◦ argument ! (we have seen one).

◮ Determining critical points and scaling laws (will
not give an example).
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General Setup

• Let (S, S) be a measurable space, and P be the
collection of all probabilities on (S, S).

• Let (ξ, N) be a pair of random variables such that
N takes values in {0,1,2, . . . ;∞}.

• Let (Xj)j≥1 be i.i.d S-valued random variables, which

are independent of (ξ, N).

• g (·) is a S-valued measurable function with appro-
priate domain.
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Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P

is called a Recursive Distributional Equation (RDE)

X
d
= g

(

ξ;
(

Xj,1 ≤ j≤∗N
))

on S,

where (Xj)j≥1 are independent copies of X and are in-

dependent of (ξ, N).

Remark: A more conventional (analysis) way of writing
the equation would be

µ = T (µ)

where T is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair (ξ, N), and µ is the (unknown) law
of X.
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i.i.d
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XΦ
ξ Φ NΦ,( )

g

21 3

Φ

X1 X2 X3
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ξ N,( )1 1 ξ N,( )2 2 ξ N,( )3 3

g

11 12 13 21 22 23 31 32 33
X11 X12 X13 X21 X22 X23 X31 X32 X33



Recursive Tree Framework (RTF)

ξ Φ NΦ,( )

ξ N,( )1 1 ξ N,( )2 2 ξ N,( )3 3

21 3

11 12 13 21 22 23 31 32 33

Φ

g

g

• Skeleton: T := (V, E) is the canonical infinite tree

with vertex set V :=
{

i

∣

∣

∣
i ∈ N

d, d ≥ 1
}

∪ {∅}, and

edge set E :=
{

e = (i, ij)
∣

∣

∣
i ∈ V, j ∈ N

}

, and root ∅.

• Innovations: Collection of i.i.d pairs
{

(ξi, Ni)
∣

∣

∣
i ∈ V

}

.

• Function: The function g (·).
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Recursive Tree Process (RTP)

XΦ

X1 X2 X3

X11 X12 X13 X21 X22 23X

ξ Φ NΦ,( )

ξ N,( )1 1 ξ N,( )2 2 ξ N,( )3 3

21 3

11 12 13 21 22 23 31 32 33

Φ

g

g

Consider a RTF and let µ be a solution of the associated RDE . A

collection of S-valued random variables (Xi)i∈V is called an invariant

Recursive Tree Process (RTP) with marginal µ if

• Xi ∼ µ ∀ i ∈ V.

• Fix d ≥ 0 then (Xi)|i|=d are independent.

• Xi = g
(

ξi;Xij,1 ≤ j≤∗Ni

)

a.s. ∀ i ∈ V.

• Xi is independent of
{

(ξi′, Ni′)

∣

∣

∣
|i′| < |i|

}

∀ i ∈ V.

Remark: Using Kolmogorov’s consistency, an invariant RTP with
marginal µ exists if and only if µ is a solution of the associated
RDE.
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A Fact for “essentially” finite RTF

Remark: Associated with a RTF there is a Galton-
Watson branching process tree rooted at ∅ defined only

through
{

Ni

∣

∣

∣
i ∈ V

}

, call it T . Essentially any associ-

ated invariant RTP lives on T .

Proposition 1 If T is almost surely finite (equivalently
E [N ] ≤ 1 and P (N = 1) < 1) then the associated RDE
has unique solution full domain of attaraction.

Remark:The RDEs in the first two examples have unique
solutions.
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Domain of the Function g

• The innovation ξ takes values in some measurable
space (Θ, F).

• Recall our sample space is S.

• The function g which takes values in S, is defined

on the space

Θ∗ := Θ× ∪
0≤d≤∞

Sd.

Here S∞ is the usual infinite product space and
S0 := {∆} where ∆ is some “known object” !
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Tree-Structured Coupling From the Past:

Proof of the Proposition 1

• Let I be the set of all finite rooted trees with vertex
weights.

• We define a function h : I→ S as follows

◮ Let T ∈ I with weights (wi).

◮ If a vertex i is a leaf then define

xi := g (wi;∆) .

◮ For an internal vertex i with ni ≥ 1 children
recursively define

xi := g
(

wi;
(

xij,1 ≤ j ≤ ni

))

◮ Take h (T) = x∅, where ∅ is the root of T.
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Continuing ...

• GW tree T with the node weights (ξi) is an element
of I, let X∅ be the h value of it.

• For a vertex i of T let Ti be the family tree generated
by i. Then Ti with the node weights is also an
element of I, let Xi be it’s h value.

• It follows from definition of h that (Xi) is a RTP
with some marginal. Thus the RDE has a solution.

• Finally if µ is a solution of the RDE, let (Yi) be
invariant RTP with marginal µ. From definition for
a leaf i we must have Yi = Xi a.s. Now since the
tree is a.s. finite so by recursion we get

Y∅ = X∅ a.s.

This proves the uniqueness.
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Hard-Core Model on

Random Graphs



A Problem by David Aldous

• For r ≥ 2 and n ≥ 3, let G (n, r) be a random graph
selected uniformly at random from the set of all
r-regular graphs on n vertices.

• Conjecture of Aldous [2003]:

Let In be a maximum independent set then

E [|In|]

n
→ κ as n→∞,

where κ > 0 is a constant which may depend on r.

• In combinatorics for a finite graph G the size of a
maximum independent set is known as the indepen-
dence number of G.
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An Approach Towards Resolving the

Conjecture

• We will consider a probability model on the set of
all independent sets of the random graph G such
that

Pλ (I) ∝ λ|I| ,

where I is an independent set of G (n, r).

• It is easy to see that given G (n, r) the probability
measures Pλ concentrate on the maximum indepen-
dent sets as λ→∞.

• So perhaps studying this model Pλ on random graphs
may help to resolve Aldous’ conjecture.

• We will see what we can do ... !
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Hard-Core Model on a Finite Graph

Setup:

• Let G := (V, E) be a finite graph.

• We say a subset I ⊆ V is an independent set of
G, if for any two vertices u, v ∈ I there is no edge
between u and v.

• Let IG be the set of all independent sets of G.

• We would like to define a measure on IG.
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Description 1:

• Fix λ > 0.

• Hard-core model on G with activity λ is a probability
distribution on IG such that

P
G
λ (I) ∝ λ|I|, I ∈ IG.

• Thus

P
G
λ (I) =

λ|I|

Zλ (G)
, I ∈ IG

where Zλ (G) :=
∑

I∈IG

λ|I| is the proportionality con-

stant, known as the partition function.

Observations:

• If λ = 1 then we get the uniform distribution on IG

and Zλ(G) is the size of IG.

• Also we have already noticed, λ→∞ the measures
P

G
λ concentrate on maximal size independent sets.
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Description 2:

• Fix λ > 0 and let p := λ
1+λ
∈ (0,1).

• Suppose (Cv)v∈V are i.i.d. Bernoulli (p).

• Let I :=
{

v ∈ V
∣

∣

∣
Cv = 1

}

.

• The measure P

(

·
∣

∣

∣
I ∈ IG

)

on IG is same as P
G
λ .

Remark: This gives a way to get exact samples from
P

G
λ .
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Hard-Core Model on an Infinite Graph

Problems with the Two Previous Descriptions:

• For Description 1, we note that IG is infinite and
hence the partition function Zλ(G) =∞ !

• For Description 2, we end up with the (same type
of) problem that the event [I ∈ IG] has zero prob-
ability under the i.i.d. coin tossing measure.

An Observation on Finite Graph:

Fix any vertex v ∈ V and let σ be an independent set
for the graph with vertex set V \ {v} then

P
G
λ

(

v ∈ I
∣

∣

∣
I \ {v} = σ

)

=







λ
1+λ

if σ ∪ {v} ∈ IG

0 otherwise

where I ∈ IG.
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Statistical Physics Definition:

Definition 2 Given a finite or countably infinite, but
locally finite graph G = (V, E) and λ > 0, a probability

measure P
G
λ on {0,1}V , is said to be a Gibbs measure for

the hard-core model on G with activity λ, if it admits
conditional probabilities such that for all v ∈ V and for
any σ ∈ {0,1}V \{v},

P
G
λ

(

I(v) = 1
∣

∣

∣
I(V \ {v}) = σ

)

=







λ
1+λ

if σ ∨ 1v ∈ IG

0 otherwise

where I is a {0,1}V -valued random variable with distri-

bution P
G
λ .

Remarks:

• This is what is known as Dobrushin-Lanford-Ruelle
(DLR) definition of infinite-volume Gibbs measure.

• Similar definitions are used for defining Ising model
and q-Potts model on infinite graphs.
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Existence and Uniqueness

• In general a Gibbs measure exists by compactness
argument.

• If G is finite then uniqueness holds trivially.

• It is not necessary that the uniqueness will hold
when G is infinite.

Definition 3 For a fixed graph G we say that a phase
transition occurs for hard-core model with activity λ > 0,
if there are more than one Gibbs measures of the form
P

G
λ .

Note: There is no phase transition if G is finite.
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What are Known ?

• First introduced by Dobrushin (1968) on Z
d for

model of lattice gas.

• Phase transition is well studied for Z
d.

◮ No phase transition for d = 1.

◮ For d ≥ 2 no phase transition for small λ, but
phase transition occurs for large λ.

Not Known: Is phase transition monotone ? In
other words is there a critical value in λ ?

• Arguably the most well studied case is the model
on regular trees, Tr for r ≥ 2. [Kelly, 1985]

◮ For a r-regular tree Tr, there exists a critical
value λc(r) such that, no phase transition when
λ ≤ λc(r) and phase transition occurs when λ >
λc(r).

◮ λc(r) = (r−1)r−1

(r−2)r .

• It is also known that there are infinite trees for
which phase transition is not monotone ! [Brightwell,
Häggström, Winkler, 1998]
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Hard-Core Model on Random Graphs

Setup:

• G be a set of graphs which are finite or countably
infinite and are locally finite.

• Suppose P is a probability on G.

• Let G ∼ P. We will write G(ω) for a realization of
the random graph G.

• Given G(ω) a hard-core model with activity λ > 0
on G(ω) will be denoted by P

ω
λ.

• We will denote the joint measure as Pλ.

Remark: Note that there are two stages of randomness
and there are two parameters:

• One is the probability distribution P on G governing
the randomness of the underlying graphical struc-
ture.

• The other is λ which is governing the hard-core
model given the graph.
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Phase Transition

Definition 4 Given a random graph model (G,P), we

say that there is a phase transition for the hard-core

model with activity λ > 0 on a random graph G ∼ P if

P

(

∃ multiple measures of the form P
G
λ

)

> 0.

Remarks:

• If the random graph model is such that G is finite
a.s. then there will be no phase transition for any
activity λ > 0.

• It is possible to construct an example of (G,P) such
that phase transition occurs for every λ > 0.
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An Example

• Let G :=
{

Tr

∣

∣

∣
r ≥ 2

}

and P be given by P (Tr) =

1
2r−1.

• Recall that from Kelly’s work (1985) it is known
that for hard-core model on r-regular tree Tr, phase
transition occurs if an only if

λ > λc(r) =
(r − 1)r−1

(r − 2)r
.

• But λc(r)→ 0 as r →∞.

• So for every λ > 0 for large enough r we must have
λc(r) < λ and thus a phase transition would occur
for the random graph model (G,P).

Remarks:

• It is important to note that for the model (G,P) we
can have realizations having arbitrarily large degree
with positive probability.

• It is known that for bounded degree (fixed) graphs
there should be no phase transition for small values
of λ. [van den Berg and Steif, 1994]
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Random Graph Models

• GW-Tree: Galton-Watson branching process tree
with a given progeny distribution denoted by N .

◮ The parameter here is the distribution of N .

• Sparse Random Graphs:

◮ Erdös and Rényi Random Graph: A ran-
dom graph on n ≥ 1 vertices labeled by [n] :=
{1,2, . . . , n} where each pair of vertices are con-
nected by an edge independently with probabil-
ity c

n
, where c > 0. This would be denoted by

G
(

n, c
n

)

.

∗ The parameter here is c > 0.

◮ Random r-regular Graph: This is to select
one graph at random from the set of all r-regular
graphs with vertex set [n]. We will denote this
model by Gr (n).

Note: In order for this model to make sense we
will always assume that nr is even.

∗ The parameter here is r ≥ 2.
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Motivations

• Aldous’ conjecture for the scaling of the indepen-
dent number of a sparse random graph.

• Interesting from Statistical Physics point of view,
well studied for non-random graphs. [Dobrushin
1970, Kelley 1985, van den Berg & Steif 1994,
Brightwell, Häggström & Winkler 1998, Brightwell
& Winkler 1999]

• Has applications in engineering fields, like in multi-
cast networking problems. [Ramanan et al, 2002]
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Sparse Random Graphs and GW-Trees

• Known: If Gn be a model for sparse random graph
then for “large” enough n from the “view point”
of a fixed vertex “locally it looks like” a (possibly
random) rooted tree.

◮ For G
(

n, c
n

)

it is a rooted Galton-Watson tree
with Poisson (c) offspring distribution.

◮ For G (n, r) it is a rooted r-regular tree.

• Conclusion: So for computing “large” n limit of
hard-core model on these kind of graphs we may
need to consider the similar model on respective
GW-trees.

• Note: For a r-regular tree, one slight annoyance
is that it is not really a GW-tree ! But by remov-
ing one vertex (the root) it can be viewed as a
collection of r GW-trees with progeny distribution
N ≡ r − 1.
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Hard-Core Model on GW-Trees

Proposition 2 Fix λ > 0 then the followings hold for a
GW-tree with progeny distribution N .

(a) If E [N ] ≤ 1 then there is no phase transition.

(b) If E [N ] > 1 then on the event of non-extinction
phase transition occurs with probability 0 or 1.
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Proof of Proposition 2:

• Nothing to prove for part (a).

• For part (b) notice that the property that a (fixed)
rooted tree T has no phase transition implies that
if v is a child of the root, and T (v) is the sub-tree
rooted at v consisting only of the descendants of v,
then T (v) also has no phase transition.

• Let β := Pλ ( no phase transition in T ) where T is
a GW-tree, and let {v1, v2, . . . , vN} be the children
of the root in T . Then

π ≤ Pλ ( no phase transition in T (vj), ∀ j)

=

∞
∑

n=0

P (N = n)πn = f(π)

where f is the generating function for N .

• Moreover β ≥ q := extinction probability, because
[extinction] ⊆ [no phase transition]

• Thus β ∈ {q,1} and this completes the proof.
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Key Recursion on a Finite Tree

• Suppose T be a finite (fixed) rooted tree and we
consider the hard-core model on it with activity λ >
0.

• Suppose ∅ be the root and it has n (∅) many children
which are denoted by 1,2, . . . , n (∅).

• Let I be a random independent set distributed ac-
cording to the hard-core model with activity λ > 0.

We define ηT∅ := P
T
λ (∅ ∈ I).

• For a child j, let T j be the sub-tree rooted at j

obtained by removing ∅. Suppose η
T j

j be defined

similarly of ηT∅ .

• The following key recursion holds

ηT∅ =

λ
n(∅)
∏

j=1

(

1− η
T j

j

)

1 + λ
n(∅)
∏

j=1

(

1− η
T j

j

)
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“Superscript Dropping Principle”

Recursive Distributional Equation (RDE)

We consider the following distributional identity:

η
d
=

λ
N
∏

j=1

(

1− ηj

)

1 + λ
N
∏

j=1

(

1− ηj

)

on [0,1],

where (ηj) are i.i.d. copies of η and are independent of
N .

• We also define an operator T : P ([0,1])→ P ([0,1])

using the right-hand side of the above RDE, namely,

T (µ) := dist















λ
N
∏

j=1

(

1− ηj

)

1 + λ
N
∏

j=1

(

1− ηj

)















where (ηj) are i.i.d. with distribution µ on [0,1] and
are independent of N .

• We put S = T 2.
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RDE Continued ...

Properties of the RDE and the Operator T :

• T (δ0) = δλ/(1+λ).

• δ0 4 T (µ) 4 δλ/(1+λ), for any probability µ on [0,1].

• T is anti-monotone ⇒ S is monotone.

• T is continuous with respect to the weak conver-
gence topology on P ([0,1]).

• So there exist µ∗ 4 µ∗ two fixed points of S such
that Sn (δ0) ↑ µ∗ and Sn

(

δλ/(1+λ)

)

↓ µ∗.

• T (µ∗) = µ∗ and T (µ∗) = µ∗.

• S has unique fixed point if and only if µ∗ = µ∗.

• T is a strict contraction with respect to the Wasser-
stine metric when λE [N ] < 1.
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Uniqueness Domain

Definition 5 We will say that we are in the uniqueness
domain if µ∗ = µ∗.

Characterization of Phase Transition for GW-Tree
Model

Theorem 3 For GW-tree with progeny distribution N ,
there is no phase transition for the hard-core model with
activity λ > 0, if and only if, we are in uniqueness domain
for the associated RDE.
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Specialization to r-regular Tree

• Notice that if Tr (∅) denote a rooted r-regular tree,
that is, a tree whose root ∅ has degree r−1 and all
other vertices have degree r, then it is a GW-tree
with progeny distribution N ≡ r − 1.

• So for this model N is non random, that is the
operator T has no random part in its definition.

• This then implies both µ∗ and µ∗ are degenerate
measures.

• So basically we need to consider fixed point of a
deterministic function s = t2 where t : [0,1]→ [0,1]
given by

t(p) =
λ (1− p)r−1

1 + λ (1− p)r−1
, p ∈ [0,1].

• This is exactly what Kelly did in his 1985 paper and
this leads to the critical value λc(r).
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When Does Uniqueness Domain Hold ?

Corollary 4 For a GW-tree with progeny distribution
N , there is no phase transition for the hard-core model
with activity λ > 0 if

(a) E [N ] ≤ 1 or,

(b) λE [N ] < 1.

Remarks:

• In particular it shows that for any GW-tree (with
E [N ] < ∞) at least for sufficiently small λ there is
no phase transition. Such result is expected. But
note that we do not assume that the progeny dis-
tribution is bounded.

• In fact a better bound holds using Van den Berg-
Steif inequality, namely λ (E [N ]− 1) < 1.

37



Main Results for hard-Core Model on

Sparse Random Graphs

Theorem 5 Suppose Xω
λ (n, c) be the size of a random

independent set distributed according to the hard-core
model with activity λ > 0 on a Erdös-Rényi random
graph G

(

n, c
n

)

. If the GW-tree with Poisson(c) progeny
distribution has no phase transition then

lim
n→∞

Eλ

[

Xω
λ (n, c)

]

n
= γλ (c)

where γλ (c) := E [η] and η is the unique solution of the
RDE.

Theorem 6 Suppose Xω
λ (n, r) be the size of a random

independent set distributed according to the hard-core
model with activity λ > 0 on a random regular graph
Gr (n). If the r-regular tree has no phase transition,
that is, if λ < λc(r) = (r − 1)(r−1)/(r − 2)r, then

lim
n→∞

Eλ

[

Xω
λ (n, r)

]

n
= αλ (r)

where αλ (r) = w/(1+2w) with w is the unique positive
solution of the equation λ = w(1 + w)r−1.
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Back to Aldous’ Conjecture

Conjecture [Aldous, 2003]: For a sparse random graph
if In is a maximum independent set then

lim
n→∞

E [|In|]

n
= κ

for some constant κ > 0 (explicitly computable ?).

• Our method fails ! This is because it seems (for the
general GW-tree case) that the uniqueness domain
does not hold for large λ.

• For example it is the case with r-regular trees and
hence for the sparse random graph model Gr (n).

• In fact for Gr (n) model it has been postulated (proved
using non-rigorous methods) in physics literature
that such asymptotic limit exists and has the same
answer as Theorem 6 when λ is smaller than the
so called “extremality threshold” (which is bigger
than the “uniqueness threshold”).

• Our Theorems 5 and 6 provides rigorous argument
when λ is in the uniqueness domain (that is, under
the uniqueness threshold for the Gr (n) model).
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Towards Proving Theorem 3

Long Range Independence Property

• Fix d ≥ 0.

• Write xd for a vector (xi)|i|=d where each xi ∈ [0,1].

• Let T be the realization of the GW-tree rooted at
∅ obtained from the realizations of (Ni)i∈V .

• Let
(

η(d)
i

(xd)
)

|i|≤d
be the d-depth RTP with values

at level d given by xd.

Lemma 7 (Long range independence) Suppose we are
in the uniqueness domain, that is µ∗ = µ∗, then

lim
d→∞

sup
xd

∣

∣

∣
η(d)
∅ (xd)− η∅

∣

∣

∣
= 0 a.s.

Remark: The proof of Theorem 3 follows from this
Lemma.
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Proof of Lemma 7:

• For the vector xd if all the components are same as
c the we will write the vector itself as c.

• η
(2d)
∅ (0) ↑ η∅, a.s. and also η

(2d+1)
∅ (0) ↓ η∅ a.s.

• η(d)
∅

(

λ
1+λ

)

= η(d+1)
∅ (0), so η(d)

∅

(

λ
1+λ

)

→ η∅ a.s.

• If 0 ≤ xi ≤
λ

1+λ
for all i ∈ V then

η
(2d)
∅ (0) ≤ η

(2d)
∅ (x2d) ≤ η

(2d)
∅

(

λ
1+λ

)

, and

η
(2d+1)
∅

(

λ
1+λ

)

≤ η
(2d+1)
∅ (x2d+1) ≤ η

(2d+1)
∅ (0) .

So η(d)
∅ (xd)→ η∅ a.s. as d→∞.

• Now notice that η(d)
∅ (1) = η(d−1)

∅ (xd−1) where each

xi ∈ {0, λ/ (1 + λ)}. So η(d)
∅ (1)→ η∅ a.s.

• Finally, if 0 ≤ xi ≤ 1 for all i ∈ V then

η(2d)
∅ (0) ≤ η(2d)

∅ (x2d) ≤ η(2d)
∅ (1) , and

η(2d+1)
∅ (1) ≤ η(2d+1)

∅ (x2d+1) ≤ η(2d+1)
∅ (0) .

So η(d)
∅ (xd) → η∅ uniformly a.s. as d → ∞, proving

the lemma.
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Remarks on the Proofs of Theorem 5

and Theorem 6

• First thing to note is

1
n
Eλ [Xω

λ ] = Pλ (v0 ∈ Iω
λ ) ,

where Iω
λ is the random independent set selected

according to the (random) distribution P
ω
λ, and v0

is a fixed vertex.

• For any fixed d > 0 the distribution of the d-depth
neighborhood of v0 converges to the distribution of
a d-depth Poisson(c) GW-tree for G

(

n, c
n

)

model,
and to a d-depth r-regular tree for Gr (n) model.

• We can then apply the local weak convergence tech-
nique of Aldous and Steele (2004) using the (strong)
long range independence property which holds un-
der the uniqueness domain. These will give the
stated results after a little more careful probability
computations !
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Open Problems/Questions

• We know that for r-regular tree the phase transition
is a monotone property in λ, and the critical value
λc(r) is explicitly know.

Is phase transition monotone (in λ) for a general
GW-tree ?

Comment: Most possibly not ! But is it at least
the case for GW-tree with Poisson progeny distri-
bution ?

• For GW-tree with Poisson(c) progeny distribution is
phase transition monotone in c ? That is for every
fixed λ > 0 if c > c′ and we have no phase transition
for Poisson(c) GW-tree then can we say that we
have no phase transition for Poisson(c′) GW-tree ?

Comment: We know this is true if λ× c < 1.

• If the answer to above question is yes (which is
most possibly the case) can we also get the critical
value for c ? (explicitly or bounds ?)
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Counting without

Sampling: Asymptotics

of the log-Partition

Function



Two Counting Problems

Definition 6 (Independent Set) Suppose G := (V, E)
be a finite graph. We will say a subset I ⊆ V is an
independent set of G, if for any two vertices u, v ∈ I
there is no edge between u and v.

We will denote by IG, the set of all independent sets of
G.

Problem 1: Given a finite graph G, count the number
of independent sets of G.

Definition 7 (Proper q-Coloring) Fix q ≥ 2 an inte-
ger, and suppose G := (V, E) be a finite graph. A map
C : V → {1,2, . . . , q} is called a proper q-coloring of G, if
no two vertices of same color share an edge.

We will denote by CG (q), the set of all proper q-colorings
of G.

Problem 2: Given a finite graph G, and q ≥ 2 an inte-
ger, count the number of proper q-colorings of G.
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Exact/Approximate Counting

Q: Can we do exact counting ?

A: ◮ Perhaps not !
◮ The sets are typically exponentially large.
◮ No polynomial time algorithm [Valiant 1979].

Q: So what do we do ?

A: We can try “approximate” counting.

Q: ◮ How do we approximate ?
◮ What kind of approximation ?

A: ◮ Typical approach is to use a Markov chain Monte
Carlo (MCMC) sampling scheme.
◮ One need to prove rapid mixing for the chain.
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Some Success Stories for Problems

Similar to Ours

(using MCMC techniques)

• Computing the permanent:

◮ Jerrum and Sinclair (1989, 1997).

◮ Jerrum, Sinclair and Vigoda (2004).

• Computing the volume of a convex body:

◮ Dyer, Frieze and Kannan (1991).

◮ Kannan, Lovasz and Simonovits (1997).

◮ Lovasz and Vempala (2003).

• Counting independent set:

◮ Luby and Vigoda (1997).

Remark: Such MCMC techniques typically provide a
randomized ε-approximation to the counting problem,
such that the running time is a polynomial in the size of
the problem (e.g. the size of V ), and also in the error
ε.

46



What Do We Propose to Do ?

• We will give deterministic approximation schemes,
which will not use sampling.

• But we will provide ε-approximation to log |IG| and
log |CG (q) |. (Unfortunately, this is obviously less
efficient !)

• Moreover, we will need restrictions on our graphs !
For example, we will need low degree graphs, and
a “large girth” assumption (will be more specific
later).
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What is the use !!!!

We are obviously doing less than what is

known !
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Then why did we work on this ?

• Well well ... I like this work !

• But there are more reasons than just that !
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Motivation and Achievements

• Our motivation comes from statistical physics.

• Computation of log |IG| or log |CG (q) | are interest-
ing, because they correspond to the free energy for
certain models in statistical physics (the models will
be given later).

• We can achieve (new) explicit results for regular
graphs, which are not possible to derive using the
MCMC methods. To give some example:

◮ We can show that for every 4-regular graph of
n vertices and large girth, the number of inde-
pendent sets is approximately (1.494 . . .)n.

◮ We can also show that if q ≥ r+1 then for every
r-regular graph with large girth, the number of
proper q-coloring is approximately

[

q
(

1− 1
q

)

r
2

]n

.

• We can drop the “large girth” assumption and work
with random regular graphs to get concentration
results.
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Two Statistical Physics Models

(1) Hard-Core Model: Given a finite graph G and
a real number λ > 0, consider a (discrete) probability
distribution on IG given by

P (I) ∝ λ|I| ⇔ P (I) =
λ|I|

Z (λ, G)
, I ∈ IG ,

where

Z (λ, G) :=
∑

I∈IG

λ|I| .

Remarks:

• P is called the Gibbs distribution on IG.

• Z (λ, G) is called the partition function.

• λ is called the activity parameter.

• Observe Z (λ, G) = |IG| when λ = 1, then we are
back to the original counting problem.
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(2) Model on Proper q-Colorings: Given q ≥ 2 an
integer, and a finite graph G, let λk > 0, for 1 ≤ k ≤ q.
Consider a (discrete) probability distribution on CG (q)
given by

P (C) =

∏

1≤k≤q

λ
|C−1({k})|
k

Z (λ, q, G)
, C ∈ CG (q)

where

Z (λ, q, G) :=
∑

C∈CG(q)

∏

1≤k≤q

λ
|C−1({k})|
k .

Remarks:

• P is called the Gibbs distribution on CG (q).

• Z (λ, q, G) is the partition function and λk’s are called
the activity parameters.

• If all the λk’s are equal then Z (λ, q, G) = |CG (q) |
and we are back to the original counting problem.
For this case we will denote the partition function
by Z (q, G).
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Some Families of Graphs

• Large girth: An infinite family of graphs G is de-
fined to have large girth, if there exists an increasing
function f : N→ N with lims→∞ f(s) =∞, such that
for every G ∈ G with n vertices, we have

girth (G) ≥ f(n) .

Recall: girth (G) := size of the smallest cycle in

G.

• [Low degree]: Let G (n, r, g) be the family of graphs
on n vertices, such that the maximum degree of any
vertex is bounded by r and each graph has girth at
least g.

• Regular: Let Greg (n, r, g) be the family of r-regular
graphs on n vertices, such that each graph has girth
at least g.
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The Main Results

Algorithm Result:

Theorem 8 (Independent Sets) For every family of
graphs G with maximum degree at most 4 and large
girth, there is an algorithm A, such that for any ε > 0
and G ∈ G, A produces a quantity Z in time polynomial
in n := |V |, such that

(1− ε)
log |IG|

n
≤ Z ≤ (1 + ε)

log |IG|

n
.

Theorem 9 (Colorings) Fix q ≥ r + 1 be two integers
then

lim
g→∞

sup
G∈G(n,r,g)

∣

∣

∣

∣

∣

∣

log |CG (q) |

n
− 1

n

∑

1≤k≤n

log

[

q

(

1−
1

q

)rGk−1
(vk)

]

∣

∣

∣

∣

∣

∣

= 0.

where V := {v1, v2, . . . , vn} and Gk := G \ {v1, v2, . . . , vk},
and by rG(v) we mean the degree of vertex v in graph
G.

In particular, we can get an algorithm result for counting
the number of proper q-colorings, which is similar to the
previous theorem.
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Results for the Regular Graphs with Large Girth:

Theorem 10 (Independent Sets) Suppose λ < λc (r)
where λc (r) := (r − 1)r−1/(r − 2)r, then

lim
g→∞

sup
G∈Greg(n,r,g)

∣

∣

∣

∣

logZ(λ, G)

n
− log

(

x−
r

2 (2− x)−
r−2

2

)

∣

∣

∣

∣

= 0 ,

where x is the unique positive solution of

x = 1/(1 + λxr−1) .

In particular, if r = 2,3,4,5 and λ = 1, then the corre-

sponding limits for
log |IG|

n
are respectively, log 1.618 . . .,

log 1.545 . . ., log 1.494 . . . and log 1.453 . . ..

Theorem 11 (Colorings) For every q ≥ r+1, the num-
ber of q-colorings of graphs G ∈ Greg(n, r, g) satisfies

lim
g→∞

sup
G∈Greg(n,r,g)

∣

∣

∣

∣

∣

logZ(q, G)

n
− log

[

q

(

1−
1

q

) r

2

]∣

∣

∣

∣

∣

= 0 .
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Results for the Random Regular Graphs:

Theorem 12 (Independent Sets) For every r ≥ 2 and
every λ < λc (r), the (random) partition function Z(λ, Gr(n)),
of a random r-regular graph Gr(n) satisfies

logZ(λ, Gr(n))

n
→ log

[

x−
r

2 (2− x)−
r−2

2

]

,

with high probability (w.h.p.), as n→∞, where x is the
unique positive solution of x = 1/(1 + λxr−1).

Theorem 13 (Colorings) For every r ≥ 2 and q ≥
r + 1, the (random) partition function Z(q, Gr(n)) of
a random r-regular graph Gr(n) corresponding to the
uniform distribution on proper q-colorings satisfies

logZ(q, Gr(n))

n
→ log

[

q

(

1−
1

q

) r

2

]

.

w.h.p. as n→∞.

Remark: Theorem 13 was proved earlier by Achlioptas
and Moore (2004) using second moment method.
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Two Main Steps of the Algorithm

(Illustrated only for the Independent Sets)

STEP 1 (The Cavity Equation):

• In this step we relate the computation of the par-
tition function to the computation of the marginal
probabilities.

• This is done by creating a cavity in the original
graph.

• Let G1 be the original graph G with one vertex, say
v1, removed.

• By definition

Z (λ, G1) =
∑

I∈IG1

λ|I| =
∑

I∈IG

v1 /∈I

λ|I| .

• Cavity Equation:

Z (λ, G1)

Z (λ, G)
= PG (v1 /∈ I) .
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Cavity Equation Continued ...

Proposition 14 Let V := {v1, v2, . . . , vn}, and for 1 ≤
k ≤ (n − 1) we define Gk := G \ {v1, v2, . . . , vk} as the
graph obtained from G after creating k cavities. Put
G0 = G. Then the following relation holds

Z (λ, G1)

Z (λ, G0)
= PG0 (v1 /∈ I) ,

where I is a random independent set distributed accord-
ing the Gibbs measure P. As a result we get

Z (λ, G) =

n
∏

k=1

(PGk−1
(vk /∈ I))

−1 .

Remark: This proposition is well known in Physics liter-
ature and also in the Markov chain based approximation
algorithms for counting.
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STEP 2 (Computation on Trees):

• Note our large girth assumption makes our graphs
“locally” tree like !

• So in this step we only make computation for the
marginal probabilities when the graph is a finite
tree.

• This can be done easily by a recursive method, es-
sentially the same cavity trick works.
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Computation on Trees Continued ...

• T be a finite tree with root v0, and let {v1, v2, . . . , vk}
be the children of v0.

• By the cavity equation we get:

PT (v0 /∈ I) =
Z (λ, T \ {v0})

Z (λ, T)

=
1

1 +

∑

I∈IT ,v0∈I

λ|I |

Z(λ,T\{v0})

=
1

1 + λ

∑

I∈IT\{v0}, vj /∈I ∀ 1≤j≤k

λ|I |

Z(λ,T\{v0})

=
1

1 + λ
∏

1≤j≤k

PT (vj) (vj /∈ I)

where T(vj) is the tree rooted at the child vj.
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Computation on Trees Continued ...

Proposition 15 Suppose T be a finite rooted tree with
root v0, and let {v1, v2, . . . , vk} be k ≥ 0 children of v0.
For each 1 ≤ j ≤ k, let T(vj) denote the tree rooted at
vj consisting only the descendants of vj (if any). Then
the following recursion holds

PT (v0 /∈ I) =
1

1 + λ
∏

1≤j≤k

PT (vj) (vj /∈ I)
.
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The Algorithm

INPUT: A graph G with vertex set {v1, v2, . . . , vn}, and a number ε >
0.

BEGIN

1. Compute the girth g = g (G).

2. If (0.9)
g
2
−2 ≥ ε then find |IG| by enumeration and STOP.

If not then

3. Set Z ← 1, t← ⌊g/2⌋ and k← 1.

4. Find the t-depth neighborhood T (vk) of vk.

5. Compute the marginal probability p = PT(vk) (vk /∈ I) for the finite

tree T (vk).

6. Set Z ← Z/p, G← G \ {vk}, k ← k + 1.

7. If k ≤ n then goto Step 4, otherwise STOP.

END

OUTPUT: Z
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Why Does It Works ?

⋆ Strong Correlation Decay:

• We prove that under certain assumptions, for ex-
ample,

◮ λ < λc (r) = (r−1)r−1/(r−2)r (for the r-regular
case),

◮ or r ≤ 4 (for deriving the algorithm),

the influence on the root of the boundary at a dis-
tance d decreases exponentially fast as d increases.

• A statistical physics consequence of this is the Gibbs
measure on the “limiting infinite graph” (if any !)
is unique, that is there is no phase transition.

• For the infinite r-regular trees it was shown by Kelly
(1985), that there is no phase transition for the
hard-core model if and only if λ ≤ λc (r).

• For counting independent sets we extend this result
to the class of finite trees with maximum degree at
most 4, which is the most crucial result for our
algorithm to succeed.
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Strong Correlation Decay Continued ...

• Suppose T be a finite tree with large depth.

• If the maximum degree of T is at most 4, then for
any two boundary conditions b1 and b2 we show that

P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b1

)

≈ P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b2

)

.

• Moreover the error in approximation is exponentially
small in the depth of the tree.
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Strong Correlation Decay Continued ...

• Further, if T is a tree such that every vertex has
degree r except the root, which has degree (r − 1)
and the vertices at the last generation, which have
degree 1, then for λ < λc (r) it is know (Kelly, 1985)
that

PT

(

v0 /∈ I

∣

∣

∣
b
)

≈ x ,

for any boundary condition b, where x is the unique
solution of the deterministic fixed point equation

x = 1/(1 + λxr−1) .

• If T is a tree with all internal vertices having degree
r then under the same assumption

PT

(

v0 /∈ I

∣

∣

∣
b
)

≈
1

2− x
.
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Lemma 16 The following bounds holds for every rooted
tree T with depth t ≥ 2 and degree of any vertex at most
4

1

2
≤ P

λ=1
T

(

v0 /∈ I

∣

∣

∣
b
)

≤
8

9
,

and
∣

∣

∣
P

λ=1
T

(

v0 /∈ I

∣

∣

∣
b1

)

− P
λ=1
T

(

v0 /∈ I

∣

∣

∣
b2

) ∣

∣

∣
≤ (.9)t−2 ,

where b, b1, b2 are boundary conditions.

Moreover, when λ < λc (r) (r−1)r−1/(r−2)r, let x be the
unique non-negative solution of the fixed point equation
x = 1/(1 + λxr−1). Suppose all the nodes of T except
for leaves and the root have degree r, and suppose the
root has degree r− 1. Then for all boundary conditions
b

∣

∣

∣
PT

(

v0 /∈ I

∣

∣

∣
b
)

− x
∣

∣

∣
≤ αt,

for some constant α = α (λ) < 1. If on the other hand,
all the nodes except for leaves, have degree r (including
the root), then

∣

∣

∣

∣

PT

(

v0 /∈ I

∣

∣

∣
b
)

−
1

2− x

∣

∣

∣

∣

≤ αt,

with the same constant α < 1.
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Strong Correlation Decay Continued ...

Remarks:

• The proof involves only elementary math ! But
at some point we had to take help of computer
(MATLAB) [not me] !!

• The correlation decay for the counting of proper q-
colorings was proved by Jonasson (2002) for finite
depth r-regular tree, but his result extends to any
finite tree with bounded degree, which we use for
counting proper-q coloring problem.
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⋆ From the Tree to the Original Graph:

• In this step we show that the error we make by
taking a local tree around a vertex is small.

Note: The local tree comes from the large girth
assumption.

• This is again done by using the strong correlation
decay property and the (spacial) Markovian nature
of the Gibbs distribution.
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Special Tricks for the Regular Graphs

• For regular graphs creating a cavity destroy the
regularity !

• Instead we do the following which we call the rewiring.
Similar idea has been used in Physics literature [Mezard
and Parisi, 2005].

Note: v1 and v2 are not neighbors and their neighbors
are not neighbors !
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New “Cavity” Equation for Regular

Graphs

Proposition 17 Given an r-regular graph G, and λ > 0,
the graph Go obtained from G by rewiring on nodes
v1, v2 ∈ G, the following relation holds

Z(λ, Go)

Z(λ, G)
= PG(v1, v2 /∈ I)PG\{v1,v2}





⋂

1≤j≤r

[v1j /∈ I or v2j /∈ I]





where vij, j = 1, . . . , r are the neighbors of vi, i = 1,2 in
G.
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Strong Correlation Decay Result for

Regular Graphs

Lemma 18 Given r ≥ 3, λ < (r−1)r−1/(r−2)r and ǫ > 0,
there exists a sufficiently large constant g = g(r, ǫ, λ)
such that for every r-regular graph G with girth g(G) ≥ g,
and for every pair of nodes v1, v2 ∈ G at distance at least
2g + 1

∣

∣

∣

∣

PG(v1, v2 /∈ I)−
1

(2− x)2

∣

∣

∣

∣

< ǫ,

and
∣

∣

∣

∣

∣

∣

PG\{v1,v2}





⋂

1≤j≤r

[v1j /∈ I or v2j /∈ I]



− (2x− x2)r

∣

∣

∣

∣

∣

∣

< ǫ,

where vij, j = 1, . . . , r is the set of neighbors of vi in
G, i = 1,2, and x is the unique positive solution of
x = 1/(1 + λxr−1).
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A Technical Result needed for Regular

Graphs

Lemma 19 Given an n-node r-regular graph G, con-
sider any integer 4 ≤ g ≤ g(G). The rewiring operation
can be performed for at least (n/2)−(2g+1)r2g steps on
pairs of nodes which are at least 2g + 1 distance apart.
In every step the resulting graph is r-regular with girth
at least g.
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Some Final Remarks

• A recent work of Weitz (2006) provides a fully poly-
nomial approximation scheme for any finite graph
with low degree (maximum degree at most 5) for
the problem of counting the independent sets, but
it does not give explicit limit results such as ours
for the regular graphs.

• Gamarnik and Katz (2006) (personal communica-
tion) have extended the work of Weitz (2006) for
other counting problems, e.g. counting colorings,
and counting matchings on general finite graphs.

• It seems to me that each of this is a “success story”
for making a rigorous argument for a very power-
ful method of statistical physics, called the cavity
method ! But the full math picture is yet to be
discovered.
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Thank You


