Recursive Distributional
Equations and Recursive Tree
Processes

Antar Bandyopadhyay
(Some parts are joint work with David J. Aldous)

Statistics and Mathematics Colloquium

Theoretical Statistics and Mathematics Unit
Indian Statistical Institute
New Delhi, India

Department of Mathematics
Chalmers University of Technology
Goteborg, Sweden

<http://www.math.chalmers.se/~antar>

May 30, 2006



Brief Outline of the Talk

e Some examples of Recursive Distributional Equa-
tions (RDE).
e Indicate some basic general theory :

» A mathematically natural structure : Recursive
Tree Process (RTP).

» Discuss the possible influence of infinite bound-
ary.

» Define two mathematically natural notions : En-
dogeny and Tail-Triviality of a RTP.

» Discuss how to determine endogeny /tail-triviality
of a RTP : two equivalence theorems.

e Discuss some non-trivial application(s).



Three not so difficult Examples

Example 1 : Consider a (sub)-critical Galton-Watson
branching process with the progeny distribution N, so
E[N] <1; we assume P(N=1) < 1.

Height of the Tree : Let H := 14 height of the G-W
tree, then H < o0 a.s. and

H < 1+ max(Hi, Hs,...,Hy) on N,

where (Hj),,, are i.i.d. with same law as of H and are
independent of N.



Example 2 : Consider the same (sub)-critical Galton-
Watson branching process.

Size of the Tree : Let S := total size of the tree. Once

again S < oo a.s. since the process is (sub)-critical.
Further

S L 14(S14+S+--+Sy) on N,

where (5j),5; are i.i.d. with same law as of .S and are
independent of N.

We will call such equations Recursive Distributional Equa-
tions (RDE).



Example 3 : Fix 0 < ¢ < 1 and consider the following

process
X;=&+ X;41 (mod 2),

where (&;),~o are i.i.d. Bernoulli(g) and X,y is indepen-
dent of (&o,&1,...,&) for all i« > 0.

Remarks :

e The process (X;);,o exists provided the following

RDE has a solution :
X £ ¢4 Xx; (mod?2) on {0,1},

where & ~ Bernoulli(g) and is independent of X3
which has same distribution as of X.

e It is easy to see that the RDE has unique solution
given by X ~ Bernoulli (1).

e Note that (X;),., is nothing but a stationary Markov
chain when time is reversed.



Three non-trivial Examples

Example 4 (Quicksort RDE) :

Consider n numbers in a random order.

Divide the last (n — 1) numbers into two piles, ac-
cording to less than or greater than the first num-
ber.

Recursively sort the two piles (which are now smaller
in size).

X (n) := # of comparisons, then

d
X(n) = X1(U)+Xo(n—-1-U,)+ (n—-1),
where X;i(-) and X»s(-) are i.i.d. with same law as

of X(-) and are independent of U, which is uniform
on {0,1,2,...,n—1}.

Rosler (1990) showed E[X(n)] ~ 2nlogn. More-
over

X —2nlo
(n) nlogn i} Y,

n

with the distribution of Y satisfying the RDE
Y £ UYi+ (1 -U)Ya~+¢(U) on R,

where Y7 and Y, are i.i.d. with same law as of
Y and are independent of U ~ Uniform[O, 1], and

c(u) ' =14 2ulogu+2(1 —u)log(1l —u).



Example 5 (Logistic RDE) : Consider the following
RDE

X g >I]I’-] <£J—XJ> on R,

J

where (Xj;),,, are i.i.d. with same distribution as X and
are independent of ({;),,; which are points of a Poisson
point process of rate 1 on (0, 00).

e This RDE appears in the study of the asymptotic
limit of the mean-field random assignment problem.
[Aldous 2001]

e It is not so difficult (but not obvious either) to see
that this RDE has a unique solution, given by the
Logistic distribution,

1

P(Xgar;)zl_l_e_gC




Example 6 (Frozen Percolation RDE) : Consider the
following RDE

d

X = ®(X1AX2;U) on I:=|5,1|U{oo},

where (Xi1,X2) are independent copies of X and are
independent of U ~ Uniform[0, 1] and the function & is
given by

. . xT ifc>u
P(ziu) 1= { 00 otherwise -

e T his RDE plays a central role in rigorous construc-
tion of a frozen percolation process on the infinite
3-regular tree. [Aldous 2000]

e Again it is not difficult (but not so obvious either)
to show that this RDE has a unique solution with
full support I, which is given by

dy
v(dy) = 2,2’ % <y<1, v({oo}) = %



Typical features of RDEs

Ex. 1: X = 1+ max( X1,X2,...,Xny) on N
Ex. 2: X = 1+4(X1+Xo+---+Xy) on N
Ex. 4: X 2 UX14+(1-U)Xo4+c(U) on R

e Unknown Quantity : Distribution of X.

e Known Quantities :

— N < oo which may or may not be random (e.qg.
N =2in Ex. 4).

— Possibly some more randomness whose distribu-
tion is known (e.g. U in the Ex. 4).

— How we combine the known and unknown ran-
domness (e.g. “1 4+ max"’ operation in Ex. 1).

e What is the RDE doing ? To find a distribution
p such that when we take i.i.d. samples (X;)..,

from it and only use N many of them (where N is
independent of the samples) and do the manipula-
tion then we end up with another sample X ~ pu.

Remark : When N =1 a.s. (e.g. Ex. 3) then solving
the RDE basically means finding a stationary distribu-
tion of a discrete time Markov chain.



General Setup

Let (S,6) be a measurable space, and P be the
collection of all probabilities on (S5, 5).

Let (¢, N) be a pair of random variables such that
N takes values in {0,1,2,...;00}.

Let (X;),, bei.i.d S-valued random variables, which
are independent of (¢, N).

g (+) is a S-valued measurable function with appro-
priate domain.



Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P
is called a Recursive Distributional Equation (RDE)

X £ g(&(X;,1<i<*N)) on S,

where (X;),,, are independent copies of X and are in-
dependent of (¢,N).

Remark : A more conventional (analysis) way of writing
the equation would be

p="T(pn)
where T' is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair ({,N), and u is the (unknown) law
of X.

(%) 8
i.d ? (&.N)

—
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Recursive Tree Framework (RTF)

e Skeleton : Ty = (V,€) is the canonical infinite
tree with vertex set V := {i|i € N% d > 1 }u{0}, and
edge set £ :={e = (i,ij) |i € V,7 € N}, and root 0.

e Innovations : Collection of i.i.d pairs {(&;, V) |i € V}.

e Function : The function g (-).
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Recursive Tree Process (RTP)

(€0, Np)

Consider a RTF and let u be a solution of the associated
RDE . A collection of S-valued random variables (X;);.y

is called an invariant Recursive Tree Process (RTP) with
marginal p if

o Xi~uViey.

e Fix d > 0 then (Xj);—, are independent.

Xi=g (& X, 1 <j<N;) ass. Yie.

Xj is independent of {(&, Ny) ||i'| < |i|]} Vie V.

Remark : Using Kolmogorov’s consistency, an invariant
RTP with marginal u exists if and only if u is a solution
of the associated RDE.
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Influence of Infinite Boundary at the Root

A Mathematically Natural Question : Is there a pos-
sible influence of the boundary at infinity on the root
value Xy of a RTP 7

Two Extreme Cases :

1. Recall the Example 1, the height of a (sub)-critical

Galton-Watson tree.
g < 1+ max(Hi,Hz,...,Hy) on N,

Observation : The RTP lives a.s. on a finite tree.

Intuition : There should not be any influence of
infinity at the root.

2. Now consider the following example

X X
XégonR.

V2

Observation : The solution set is the Normal (0, o?)
family. But the associated RTF has no random-
ness, because the innovation process is non-random.

Intuition : All the randomness must be coming
from infinity !
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Two Rigorous Notions

e Endogeny :

Idea : If the root value X, only depends on the
innovation process (the data), namely, (&, Ni);y-

Definition 2 Let G be the o-field generated by the
innovation process { (&, N;) |1 € V}. We will say an
invariant RTP is endogenous if X is almost surely
Gg-measurable.

e Tail-Triviality :
Idea : If the tail o-algebra of the RTP (Xj);.y is
trivial.
Definition 3 Let
Ho =0 ({Xilli[ 2n}),
then the tail o-algebra of the RTP is defined as
H= N Hnp.

n>0

An invariant RTP with marginal n is called tail-
trivial is the o-filed H is trivial.

14



TWwoO not so difficult Facts

e Observation : Associated with a RTF there is a
Galton-Watson branching process tree rooted at ()
defined only through {N;|i€ V}, call it T. Essen-
tially any associated invariant RTP lives on 7.

Proposition 1 If T is almost surely finite (equiv-
alently E[N] <1 and P(N =1) < 1) then the as-
sociated RDE has unique solution and the RTP is
endogenous.

Remark : The RDEs in the first two examples have
unique solutions and are endogenous.

e Proposition 2 If an invariant RTP is endogenous
then it must also have a trivial tail.

Remark : Thus tail-triviality of an invariant RTP
is weaker than endogeny, but it can be useful to
prove non-endogeny.

15



What about the Converse of Proposition 2 ?

Answer : The converse is not true !

Counter Example :

e Recall the Example 3,
Xi=¢&+ X;41 (mod 2),

where (&),5o are i.i.d. Bernoulli(g), and X, is
independent of (&o,&1,...,&) for all ¢ > 0.

e It is easy to see that Xg which is the root variable is
independent of the innovation process (&;),.q- Thus
it is not endogenous. h

e On the other it is not difficult to show that it has
a trivial tail !
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One Possible Way to Determine Influence
of Infinity

Input at Infinity RTF Output

I ndependent
Inputs

Independent E

Inputs E
Independent E

Inputs E
Independent E

Inputs E

9(8;%,1<J<'N)
9(&; Y, 1< I <'N)
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Bivariate Uniqueness of the First Kind

Consider the following bivariate RDE,

X 9(& (Xj,1<j<*N))

Y 9 (Y;,1<j<"N))

where (X;,Y}), 5, are i.i.d and have the same joint law as
of (X,Y), and are independent of the innovation (£, N).

Definition 4 An invariant RTP with marginal u has bi-
variate uniqueness property of the first Kind if the
above bivariate RDE has unique solution as X =Y a.s
on the space of joint probabilities with both marginals

.
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The First Equivalence Theorem

Theorem 1 Suppose the S is a Polish space. Consider
an invariant RTP with marginal distribution .

(a) If the endogenous property holds then the bivariate
uniqueness property of the first kind holds.

(b) Conversely, (under some technical condition) if the
bivariate uniqueness property of the first kind holds then
the endogenous property holds.

(c) If T(?) pe the operator associated with the bivariate
RDE then endogenous property holds if and only if

T@" (peou) % u,

where n® p is the product measure, and " is the mea-
sure concentrated on the diagonal with both marginals

-

Remark : Recently Christophe Leuridan and Jean Brossard
communicated to us that the technical condition in part
(b) can be removed.
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Another Possible Way to Determine
Influence of Infinity

Input at Infinity

Same Input

| ndependent
| nnovations

Output

%XQJ

| ndependent
Qutput ?

—= Yy
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Bivariate Uniqueness of the Second Kind

Now consider the following bivariate RDE,

X 9(& (X;,1<j<*N))

Y g(n; (Y;,1 <5< M))

where (X;,Yj), 5, are i.i.d and have the same joint law as

of (X,Y), and are independent of the innovations (&, N)
and (n, M), which are i.i.d.

Definition 5 An invariant RTP with marginal u has bi-
variate uniqueness property of the second kind if the
above bivariate RDE has unique solution u ® u, on the
space of joint probabilities with both marginals .
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The Second Equivalence Theorem

Theorem 2 (B. (2006)) Suppose S is a Polish space.
Consider an invariant R TP with marginal distribution .

(a) If the RTP has a trivial tail then the bivariate unique-
ness property of the second kind holds.

(b) Conversely, (under some technical condition) if the
bivariate uniqueness property of the second kind holds
then the tail of the RTP is trivial.

(c) IFTQRT be the operator associated with the bivariate
RDE then the RTP has trivial tail if and only if

(TeT)" (v) L e,

where u” is the measure concentrated on the diagonal
with both marginals .
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Applications of Endogeny/Tail-Triviality

e Characterization : Some time the RDE may have
many solutions but only one of them (the funda-
mental solution) is endogenous.

» In case of the Quicksort RDE (Example 4) only
the limiting Quicksort distribution is endoge-
nous.

[We will not discuss any details of this example.]

e In proving limit theorems : In certain combinato-
rial optimization problem over random data, where
the limiting structure is a (random) tree, endogeny
is technically helpful in deriving limit results.

» Mean-field random assignment problem <« Lo-
gistic RDE (Example 5).

[We will briefly discuss this example.]

e TO prove measurability of a process : If a pro-
cess is constructed using the consistency theorem
then endogeny basically helps to resolve the mea-
surability question.

» Frozen percolation process on infinite regular
trees (Example 6).

[We will discuss this example and see what we
can achieve.]
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Application of Endogeny
Back to the Logistic RDE

d ,
X = m( -—X-) on R
AR ’
where (Xj)., are i.i.d. with same distribution as X and
are independent of ({;),,,; which are points of a Poisson

point process of rate 1 on (0, 00).

Remarks :

e [his RDE is the key to derive the asymptotic limit
for the mean-field random assignment problem.

e In fact the RTP associated with this RDE helps to
construct the limiting optimal solution.

e For this example we can successfully use the first
equivalence theorem.

Theorem 3 (B. (2002)) The bivariate uniqueness prop-
erty of the first kind holds for the Logistic RDE, thus
the associated invariant RTP is endogenous.
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Brief Digression to Frozen Percolation Process on
the Infinite 3-Regular Tree

The Setup :

o Let T3 = (V,E) be the infinite regular binary tree.

e Each edge e € E is equipped with independent edge
weight U, ~ Uniform[O0, 1].

e Think of time moving from O to 1.

Frozen Percolation Process (informal description):

e For an edge e € E at the time instance t = U, open
the edge e if each of its end vertex is in a finite
component; otherwise do not open e.

o Let (Ao be set process of open edges starting
from Ag = 0.
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A 540° Argument [Aldous, 2000]

e Stage 1 : Suppose that the process exists on Ts.

root

Xl X2

[\

» X := Time it takes for the root to join oco (will
write X = oo if it never joins).

» X, := Time it takes for the root to join to oo in
the jth sub-tree for 5 =1, 2.

» X7 and X> are independent copies of X.
» It is easy to see that

d X1 N\ Xo if X1ANXo>U
X = .
00 otherwise
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e Stage 2 :

» The RDE has only one solution with full support
given by

dy 1 1

AN 9 A < < 17 - =

22 3 < v({o0}) = 7

So using the general theory we can construct

the invariant RTP with marginal v.

v(dy) =

» Each edge e € E defines two directed edges, and
each directed edge @ defines one planted tree,
let X be the corresponding root value of the
RTP.

e Stage 3 : Using this external random variables
(X?) repeat the original computation to prove the
existence of a frozen percolation process on Ts. In
fact this gives an automorphism invariant version of
the process.

27



Remarks :

e T he construction of the process not only uses the
edge weights (U.) but also (possibly) external ran-
dom variables from the RTPs, namely (X?).

e Endogeny in this case will prove the measurability
of the frozen percolation process with respect to
the i.i.d. Uniform[0, 1] edge weights.

What we can do :

Theorem 4 (B. (2006)) The bivariate uniqueness prop-
erty of the second kind holds for the solution v of the
frozen percolation RDE, thus the associated invariant
RTP with marginal v has trivial tail.

What we have not been able to do :

e Above result does not resolve the question of en-
dogeny.

e The analysis seems to be too hard for resolving
the endogeny question using the first equivalence
theorem.

e Simulations strongly suggest non-endogeny !
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Some Related Future Directions

e Find some more “interesting” and/or “natural” ex-
amples where we have trivial tail for the RTP but
it is not endogenous.

e Can we characterize such RTPs ?

e How does the conditional distribution of Xy given G
look like for such a RTP 7
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