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Three Examples

Examples 1 : Consider a (sub)-critical Galton-Watson
branching process with the progeny distribution N, so
E[N] <1; we assume P(N =1) < 1.

Height of the Tree : Let H := 14 height of the G-W
tree, then H < o0 a.s. and

H < 1+ max(Hi, Hs,...,Hy) on N,

where (Hj),,, are i.i.d. with same law as of H and are
independent of N.



Examples 2 : Consider the same (sub)-critical Galton-
Watson branching process.

Size of the Tree : Let S := total size of the tree. Once

again S < oo a.s. since the process is (sub)-critical.
Further

S L 14(S14+S+--+Sy) on N,

where (5j),5; are i.i.d. with same law as of S and are
independent of N.

We will call such equations Recursive Distributional Equa-
tions (RDE).



Example 3 : Fix 0 < ¢ < 1 and consider the following

process
X;=&+ X;41 (mod 2),

where (&;),~o are i.i.d. Bernoulli(g) and X,y is indepen-
dent of (&o,&1,...,&) for all i+ > 0.

Remarks :

e The process (X;);,o exists provided the following

RDE has a solution :
x < £+ X7 (mod 2) on {0,1},

where ¢ ~ Bernoulli(g) and is independent of X3
which has same distribution as of X.

e It is easy to see that the RDE has unique solution
given by X ~ Bernoulli (1).

e Note that (X;),., is nothing but a stationary Markov
chain when time is reversed.



Typical features of RDEs

Ex. 1: X = 14max(XiXo,...,Xy) on N
Ex. 2: X = 14+(X14+Xo+---+Xy) on N
Ex. 3: X = ¢+4X; (mod2) on {0,1}

e Unknown Quantity : Distribution of X.

¢ Known Quantities :

— N < oo which may or may not be random (e.g.
N =1 in Ex. 3).

— Possibly some more randomness whose distribu-
tion is known (e.g. £ in the Ex. 3).

— How we combine the known and unknown ran-
domness (e.g. “1 4+ max"’ operation in Ex. 1).

e What is the RDE doing ? To find a distribution
p such that when we take i.i.d. samples (Xj;)..,
from it and only use N many of them (where N is
independent of the samples) and do the manipula-
tion then we end up with another sample X ~ pu.

Remark : In the case N = 1 a.s. it reduces to the
question of finding a stationary distribution of a discrete
time Markov chain.
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Two main uses of RDEs

e Direct use : The RDE is used directly to define a
distribution. Examples include,

» The height (and also the size) of a (sub)-critical
Galton-Watson tree (the first two examples).

» The Quicksort distribution (not discussed here).

» Discounted tree sums / inhomogeneous perco-
lation on trees (not discussed here).

» ... and many others.

e Indirect use: The RDE is used to define some aux-
iliary variables which help in defining/characterizing
some other quantity of interest. Among others the
following two type of applications are of special in-
terest

» 540° argument ! (will give an example).

» Determining critical points and scaling laws (will
not give an example).



General Setup

Let (S,6) be a measurable space, and P be the
collection of all probabilities on (S, &).

Let (¢, N) be a pair of random variables such that
N takes values in {0,1,2,...;00}.

Let (X;),, bei.i.d S-valued random variables, which
are independent of (¢, N).

g (+) is a S-valued measurable function with appro-
priate domain.



Recursive Distributional Equation (RDE)

Definition 1 The following fixed-point equation on P
is called a Recursive Distributional Equation (RDE)

X £ g(&(X;,1<i<*N)) on 8,

where (X;),,, are independent copies of X and are in-
dependent of (¢,N).

Remark : A more conventional (analysis) way of writing
the equation would be

p="T(un)
where T' is the operator associated with the above equa-
tion, which depends on the function g and the joint dis-
tribution of the pair ({,N), and u is the (unknown) law
of X.
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Recursive Tree Framework (RTF)

e Skeleton : Ty = (V,€) is the canonical infinite
tree with vertex set V := {i|i € N%, d > 1 }u{0}, and
edge set £ :={e = (i,ij) |i € V,7 € N}, and root 0.

e Innovations : Collection of i.i.d pairs {(&;, V) |i € V}.

e Function : The function g (-).



Recursive Tree Process (RTP)

(€0, Np)

Consider a RTF and let u be a solution of the associated
RDE . A collection of S-valued random variables (X;);.y

is called an invariant Recursive Tree Process (RTP) with
marginal p if

o Xi~uViey.

e Fix d > 0 then (Xj);—, are independent.

Xi=g (& X, 1 <j<FN;) ass. Vie.

Xj is independent of {(&, Ny) ||i'| < |i|} Vie V.

Remark : Using Kolmogorov’s consistency, an invariant
RTP with marginal u exists if and only if u is a solution
of the associated RDE.
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Influence of Infinite Boundary at the Root

Question : Is there a possible influence of the boundary
at infinity on the root value Xy of a RTP 7

Two Extreme Cases :

1. Recall the Example 1, the height of a (sub)-critical
Galton-Watson tree.
H £ 1+ max(H,Hs,...,Hy) on N,

Observation : The RTP lives a.s. on a finite tree.

Intuition : There should not be any influence of
infinity at the root.

2. Now consider the following example

X X
XégonR.

V2

Observation : The solution set is the Normal (0, 52)
family. But the associated RTF has no random-
ness, because the innovation process is non-random.

Intuition : All the randomness must be coming
from infinity !
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Two Rigorous Notions

e Endogeny :

Idea : If the root value X, only depends on the
innovation process (the data), namely, (&, Ni);)-

Definition 2 Let G be the o-field generated by the
innovation process { (&, N;) |1 € V}. We will say an
invariant RTP is endogenous if X is almost surely
Gg-measurable.

e Tail-Triviality :
Idea : If the tail o-algebra of the RTP (Xj);.y is
trivial.
Definition 3 Let
Ho =0 ({Xilfi[ Z2n}),
then the tail o-algebra of the RTP is defined as
H= N Hnp.

n>0

An invariant RTP with marginal n is called tail-
trivial is the o-filed H is trivial.
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Two “not so difficult” Facts

e Observation : Associated with a RTF there is a
Galton-Watson branching process tree rooted at (
defined only through {N;|i€ V}, call it T. Essen-
tially any associated invariant RTP lives on T.

Proposition 1 If 7 is almost surely finite (equiv-
alently E[N] <1 and P(N =1) < 1) then the as-
sociated RDE has unique solution and the RTP is
endogenous.

Remark : The RDEs in the first two examples have
unique solutions and are endogenous.

e Proposition 2 If an invariant RTP with marginal
w is endogenous then it must also have a trivial tail.
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What about the Converse of Proposition 2 7

Answer : The converse is not true !

Counter Example :

e Recall the Example 3,
Xi=¢&+ X;41 (mod 2),

where (&),>o are i.i.d. Bernoulli(g), and X, is
independent of (&o,&1,...,&) for all ¢ > 0.

e It is easy to see that Xg which is the root variable is
independent of the innovation process (&;),»q- Thus
it is not endogenous. h

e On the other it is not difficult to show that it has
a trivial tail !
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One Possible Way to Determine Influence
of Infinity

Input at Infinity RTF Output

I ndependent
Inputs

Independent E

Inputs E
Independent E

Inputs E
Independent E

Inputs E

9(8;%,1<J<'N)
9(&; Y, 1< I <'N)
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Bivariate Uniqueness of First Kind

Consider the following bivariate RDE,

X 9@ (X;,1<j<"N))

Y 9 (Y;,1<j<"N))

where (X;,Y;),,; are i.i.d and has the same law as of
(X,Y), and are independent of the innovation (&, N).

Definition 4 An invariant RTP with marginal u has bi-
variate uniqueness property of the first Kind if the
above bivariate RDE has unique solution as X =Y a.s
on the space of joint probabilities with both marginals

.

Theorem 1 (Aldous and B. (2005)) Suppose S is a
Polish space. Consider an invariant RTP with marginal
distribution u. Then RTP is endogenous if and only if,
the bivariate uniqueness property of the first kind holds.
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Another Possible Way to Determine
Influence of Infinity

Input at Infinity

Same Input

| ndependent
| nnovations

Output

%XQJ

| ndependent
Qutput ?

—= Yy
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Bivariate Uniqueness of Second Kind

Now consider the following bivariate RDE,

X 9(& (Xj,1<j<*N))

Y g(m; (Y;,1 <5< M))

where (X;,Y;),,; are i.i.d and has the same law as of

(X,Y), and are independent of the innovations (£, N)
and (n, M), which are i.i.d.

Definition 5 An invariant R TP with marginal u has bi-
variate uniqueness property of the second Kind if the
above bivariate RDE has unique solution u ® u, on the
space of joint probabilities with both marginals .
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Second Equivalence Theorem

Theorem 2 (B. (2006)) Suppose S is a Polish space.
Consider an invariant RTP with marginal distribution .

(a) If the RTP has a trivial tail then the bivariate unique-
ness property of the second kind holds.

(b) Conversely, (under some technical conditions) if the
bivariate uniqueness property of the second kind holds
then the tail of the RTP is trivial.

(c) IFTQRT be the operator associated with the bivariate
RDE then the RTRP has trivial tail if and only if

(TRT)" (b)) -5 pepu,

where /" is the measure concentrated on the diagonal
with both marginal .

Remark : This theorem parallels the first equivalence
theorem.
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Back to Example 3

e The RDE :
X £ ¢4+ X; (mod?2) on {0,1},

where X7 has same distribution as of X and it is
independent of £ ~ Bernoulli(q).

Solution : Unique solution X ~ Bernoulli(

).

N[

e T he Second Bivariate Version :

X £+ Xa
(mod 2) on {0,1}?,

Y n=+ Y1

where (X1,Y1) is an independent copy of the pair
(X,Y) and it is independent of (&¢,n) which are i.i.d.
Bernoulli(q).

Solution : The bivariate equation has unique solu-
tion given by the product measure

Bernoulli (%) ® Bernoulli (%) .

e T hus the RTP has a trivial tail.
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Frozen Percolation on Regular Binary Tree

The Setup :

o Let T3 = (V,E) be the infinite regular binary tree.

e Each edge e € E is equipped with independent edge
weight U, ~ Uniform|[0, 1].

e Think of time moving from O to 1.

Frozen Percolation Process (informal description):

e For an edge e € E at the time instance t = U, open
the edge e if each of its end vertex is in a finite
component; otherwise do not open e.

o Let (A1), be set process of open edges starting
from Ag = 0.
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The Regular Percolation Process :

e For an edge e € E at the time instance t = U, open
the edge e.

o If (Bt),~o; be the set process of open edges the it
can be described as

Bi={ecE|U.<t}

Remarks : Unlike the regular percolation process it is
not clear whether the frozen percolation process exists
and if so whether it admits a simpler description using
only the edge weights.

Two Easy Observations : If frozen percolation pro-
cess exists then following must hold

o A; C B; for all t € [0, 1].

o A = B; ift < % (since the critical probability for
infinite binary tree is 3).
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540° Argument [Aldous, 2000]

° StagAg 1 : Suppose that the process exists on Ts.

Let T3 be the planted binary tree which is a modifi-
cation of T3 where we distinguish a vertex of degree
1 as the root and all other vertices have degree 3.

/N

» X := Time it takes for the root to join oco (will
write X = oo if it never joins).

» X, := Time it takes for the root to join to oo in
the jth sub-tree for 5 =1, 2.

» X1 and X, are independent copies of X.
» It is easy to see that

d X1 N Xo if XiANXo>U
X = .
o0 otherwise
23



e Stage 2 :
» The RDE has only one solution with full support
given by
dy) = —, — <y <1, = —.
v(dy) =55 5 <y<l v({oh =3

So using the general theory we can construct
the invariant RTP with marginal v.

dy 1 1

» Each edge e € E defines two directed edges, and
each directed edge @ defines one planted tree,
let X be the corresponding X variable.

» Each directed edge & has two children say ¢
and &» then {X?I,X?Q} and X— satisfies the
equation with the edge weight U..

» Each edge e € E has a set of four children which

are the four directed edges away from e. We
denote it by 9{e}.

» Define A1 = {e€E|U. < min(X;: f € d{e}) }
and A; :={ec A1 |U. <t} for 0<t<1.
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e Stage 3 : Using this external random variables
(X?) repeat the original computation to prove the
existence of a frozen percolation process on Ts. In
fact it is easy to see that this construction gives an
automorphism invariant version of the process.

Remarks :

e T he construction of the process not only uses the
edge weights (U.) but also (possibly) external ran-
dom variables, namely (X?).

e For every @ the variable X? is a root value of a
invariant RTP with marginal v.

e Endogeny in this case will prove the measurability
of the frozen percolation process on infinite regular
binary tree.

e VWe can show using the second equivalence theorem
that the associated RTP has a trivial tail.

e Endogeny remains as an open problem !
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Frozen Percolation RDE

e Recall the RDE associated with the frozen perco-

lation process,

d

X £ P (X1AXoU)

where Xi, Xo are independent copies of X and are
independent of U ~ Uniform[0, 1] and the function
¢ is given by

_ N if z>u
Pz u) = { 00 otherwise -

e Also recall that it has unique solution with full sup-
port given by

dy 1
v(dy) = 2—y27 > <y<1, v({oo}) =

1
2
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Theorem 3 (B. (2006)) Theinvariant RTP with marginal
v has bivariate uniqueness property of the second Kind,
that is, the following bivariate RDE has unique solution
given by v Q v

X D (X1 ANXo; U)
Y (Y1 A Yo V)

where (X;,Y}),_, , are independent copies of (X,Y), and
are independent of (U,V) which are i.id. Uniform|[0,1].

Corollary 3.1 The invariant RTP with marginal v has
trivial tail.
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Some Future Directions

e Find some more “interesting” and/or “natural” ex-
amples where we have trivial tail for the RTP but
it is not endogenous.

e Can we characterize such RTPs ?

e How does the conditional distribution of X, given G
look like for such a RTP 7
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