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The Basic Setup

e Graph : Zd, d > 1 with nearest neighbor links.

e Two Stages of Randomness :

» The Environment : It is the transition laws
which will tell us how to take the next step from
the current position.

Note : These laws can be random !

» The Walk : Given the environment we have
an walker who moves on the lattice Z% starting
from 0 according to the transition laws.

Note : The walker provides second stage of
randomness.



Three Types of Models

1. Classical Markovian Walk :

e The Environment : At every site x € Z¢ we have
a Markov transition kernel (fixed).

e The Walk : Usual Markov chain starting from 0.

Remarks .
e The transition kernel(s) is(are) non-random.

e They may or may not depend on the time (so called
time homogeneous or time inhomogeneous chains).

Example 1 : Simple symmetric random walk on Z.

Remark : We mostly understand what happens in this
example.



2. Classical RWRE (Static Environment) :

e The Environment : At the beginning of time,
at every location x € Zd, we choose the transition
kernels according to some probability distribution,
and keep them fixed through out the time evolution.

e The Walk : Given the transition laws the walker

then moves according to a time homogeneous Markov
chain, starting from 0.

Example 2 [Sinai Walk] : We have two coins, one
unbiased (1/2,1/2) and one biased (3/4,1/4).

e Consider the integer line Z.

e At every location give value 0 or 1 according to
independent tosses of the unbiased coin.

e T he walker starts at O and moves using the biased

coin, with bias to right if the value of the current
position is 1, and bias to left if it is O.

Remark : There are ‘“traps’ !

...111111111110000000000.. ..

The walker would have to spend “lot of time" in such
“traps’” which will “slow down” the walk.



3. Random Walk in Dynamic Random Environ-
ment :

e The Environment : At every location the transi-
tion laws evolve over time.

e The Walk : Given (all) the transition kernels, the
walker moves according to a time inhomogeneous
Markov chain, starting from O.

Example 3 : Again say we have two coins, one unbiased
(1/2,1/2) and one biased (3/4,1/4).

e Consider again the integer line Z.
e [ he walker starts at O and carries both the coins.

e Before a move he first tosses the unbiased coin
independently of the past, and then the biased coin
again independently of the past. If the unbiased
end up in 1, then he puts the bias to right, else put
bias to left.

Question : What happens for this walk 7



More Precise Viewpoint
Quenched and Annealed Laws

e Quenched : The conditional law of the walk given
realization of the environment.

Note : The walk is a (possibly) time inhomoge-
neous Markov chain under this law.

e Annealed : The marginal distribution of the walk,
that is, integrating out the quenched law with re-
spect to the environment distribution.

Note : The walk may not be a Markov chain under
the annealed law.



Some Notations

e The Environment : At a site x € Z% and at time
t > 0 “environment” is a transition law, it will be
denoted by w: (x, ).

e The Walk : The position of the walker at time ¢
will be denoted by X;.



Definition of the Quenched Law

e The quenched law of (Xi),»o Starting from x will
be denoted by PX. -

e Given the entire environment

w = {(wt (%,°))e>0 ‘x € Zd},

P¥ is the law of the time inhomogeneous Markov
chain (X¢),so on Z¢, such that

Pi (Xt-l-l ZY‘Xt:X> = wi (X,y),
and
Pz (Xo = X) = 1.



Definition of the Annealed Law

e The annealed law of (X),,q starting from x will be
denoted by P*.

e It is defined by
P () 1= / PX () P (dw),

where w ~ P.



Dynamic Markovian Environment

e We will assume that for every x € Z% the environ-
ment chain at x, given by

(wt (Xa '))tZO

is a stationary Markov chain with some state space
S.

e We will also assume that the chains (w: (x,+)),>q are
i.i.d. as x varies. -

e Let K be the transition kernel for the environment
chain and « be a stationary distribution.

e By P™ we will denote the distribution of the entire
environment w.

Remarks :

e T his particular model was first introduced by Boldrigh-
ini, Minlos and Pellegrinotti [2000].

e The Example 3, falls under this model where the
environment chains are just i.i.d. chains.



Assumptions

(AO) We have only nearest neighbor transitions.

(Al) There exists 0 < k <1 such that
K(w,)>kn(), VweES.

(A2) There exist 0 < ¢ <1 and a fixed Markov kernel g
with only nearest neighbor transition which is non-
degenerate, such that

Wt (X7 Y) Z 8(](X,Y) a.s. [Pﬂ-]v
for all x,y € Z%, and ¢ > 0.

(A3) k+¢e2>1.
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Discussion on the Assumptions

(AO) We have only nearest neighbor transitions.

» T his is for simplicity, the arguments can be eas-
ily generalized to transitions with bounded in-
crement.

(Al) There exists 0 < k < 1 such that
K(w,)>kn(), YVweES.

» T his condition provides a uniform *fast mixing”
rate for the environment chains.

» If the state space for the environment chains
S is finite and K is irreducible and a periodic
(assumption made by BMP [2000]), then as-
sumption (Al) may fail, but it does hold if K is
replaced by K" for some fixed integer r > 1. A
slight modification of our arguments applies to
that case, too.

» If the environment chains are i.i.d. chains (like
in Example 3) then (A1) holds trivially with k =
1.
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(A2) There exist 0 < e <1 and a fixed Markov kernel g
with only nearest neighbor transition which is non-
degenerate, such that

wt (X,y) > eq(x,y) a.s. [PT],
for all x,y € Z%, and ¢ > 0.

» This condition essentially means that the ran-
dom environment has a “deterministic” part g,
which is non-degenerate.

» Comparing with classical (static) RWRE litera-
ture, this condition can be referred as an ellip-
ticity condition.

» This condition was also assumed in BMP [1997,
2000] and Stannat [2004].
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(A3) k42> 1.

>

>

Technical but absolutely crucial for our argu-
ments !

T his conditions exhibits a trade off between the
environment chain being fast mixing (k close to
1) and the fluctuation in the environment being
“small” (e close to 1).

e close to 1 is also an assumption made by BMP
[1997, 2000].

This trade off is perhaps artificial !
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Annealed SLLN and Invariance Principle

Theorem 1 (Annealed SLLN) Suppose assumptions
(A0) — (A3) hold. Then there exists a constant v € RY,
such that

Xn — v a.s. [PY],
n
as n — oco.

Theorem 2 (Annealed Invariance Principle) Suppose
assumptions (A0) — (A3) hold. Then there exists a
(d x d) positive definite matrix X, such that under P°,

XLntJ —ntv
Vvn

) 2 BMy (D),
t>0

as n — o0.
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Quenched Invariance Principle

Further Assumption (A3)’ : We assume x + ¢ > 1.

Theorem 3 (Quenched Invariance Principle) Suppose
assumptions (A0) — (A3)’ hold, and also assume that
the dimension d is “large” (d > 7 would do). Then a.s.
for all w ~ P™, under the quenched law P?,

Xl_ntJ —ntv
vn

) e BMd (Z),
t>0 ¢

as n — o0.
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Bit of History

e If the environment chains are i.i.d. chains then
quenched CLT has been proved by

» Boldrighini, Minlos and Pellegrinotti [1997]

x In this work they proved for d > 2 which was
extended to d = 1 in a later work [1998].

x T hey used non-trivial analytic methods, in-
cluding a specific type of cluster expansion
technique.

» Stannat [2004]

* QGives a simpler but still analytic proof which
works for any dimension d > 1.

» Rassoul-Agha and Seppadldinen [2005]

x Proved invariance principle using probabilistic
techniques (a special case of a more general
result).

e For dynamic Markovian environment model, exactly
similar to ours, the quenched CLT has been proved

by
» Boldrighini, Minlos and Pellegrinotti [2000]
* For dimension d > 3.

* Proofs are based on “hard” analytic tech-
niques.
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Then What is New ?

Nothing new for the results !

Our goal was to provide simple proofs using prob-
abilistic techniques.

We achieved doing so, for the annealed results.

For quenched result ... well well ... "simple"” is a
relative term ! But the proof is probabilistic.

17



Some More Comments on the Quenched
Invariance Principle

e It is not known if the quenched IP holds for dimen-
sion d < 2.

e Our assumption d > 7 is clearly not optimal, for
example, when the environment chains are i.i.d.
chains, then it is known [Stannat 2004] that quenched
CLT holds for any dimension d > 1.

e We (and also BMP) believe that it should be true
for any d > 1.

e T his believe is in no contradiction with Sinai Walk,
as the classical (static) case is not included in our
model. In fact the static environment is in some
sense the “hardest” case to analyze.
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Our Main Strategy

We will show that there is an increasing sequence of
stopping times (7,),>o With 7o = 0 such that under
P? the pairs (7, — Tn-1, Xr, — Xr,,),>; are i.i.d.

Moreover we will show that under our assumptions
71 has finite second moment.

Because of nearest neighbor walk this will imply
annealed SLLN and IP.

For quenched IP we need to do more !
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Construction of -Coins

Recall the Assumption (A2) : Thereexist 0 <e <1
and a fixed Markov kernel g with only nearest neighbor
transition which is non-degenerate, such that

Wt (X7 Y) Z EQ(X7Y) a.s. [Pw]a
for all x,y € Z%, and ¢ > 0.

So we can construct (on an extended probability space)
a sequence of i.i.d. coin tosses, say {et}t21 such that

e P(e;=1)=c.

{et};>1 are independent of the environment chains.

e At a timet > 0O before taking the step for time t41,
the walker observes the outcome of the e-coin g441.

o If e,417 = 1 then it takes a move according to the
fixed transition kernel q.

o If e,417 = O then it takes a move according to the
random transition kernel

Wt (a) - 5Q('a')
1—¢ '
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Remarks :

e By taking a step when the e-coin is 1 the walker do
not collect any information about the environment.

e We will say a step taken by the walker is a “proper
step” if and only if, it was taken when the e-coin
was 0.

So by taking a “proper” step the walker learns
about the environment.
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The Regeneration Time

e We would like to define a random time 71 such that,

for every site x € Z% which has been visited by the
walker by taking a “proper” step before time r1, we
would demand the following to hold :

from the time of last “proper” visit to x by the
walker and before time 7, the environment chain
at x goes through a regeneration, in the sense that,
at some time before time = it should start afresh
from the stationary distribution.

e If we can do this, then at time m; the walker would
have forgotten every information it may have learned
about the environment while doing the walk.
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Construction of s-Coins

Recall the Assumption (Al) : Thereexists 0 < k<1
such that

K(w,)>k7m(:), VweS.

So at every site x € Z%, we can construct (another ex-
tension of the probability space) a sequence of i.i.d. coin
tosses, say {a:(x)};>q, such that

e P(a1 (x) =1) = &.
o {a(x),};>; are independent as x varies.

e At a site x, the environment chain moves from time
t to time t 4+ 1 in the following way

» if as+1(x) = 1 then it moves to a state selected
independently from the stationary distribution
T,

» if ;41 (x) =0 then it moves to a state accord-
ing to the kernel

K (wi(%,),) =57 ()
1l -k
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Precise Definition of 1

Fix ¢ > 0 and x € Z%.

Number of ‘“proper’” visits to x before time ¢ :
t
Ii(x): =) 1(X;=x,6=0).
s=0

Time of Last “proper” visit to x before time ¢
v (X) 1= Sup{s St‘XS = X, €5 ZO}.

Time of “regeneration” after last visit to x :
ne (x) := inf {s >0 ‘ O oygs (X) = 1 }

If I; (x) = 0 then ~ (x) = n: (x) = 0.

The Regeneration Time :

n :=inf{t>0‘fyt(x)+nt(x)<t VXEZd}.
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Properties of

Proposition 4 Let the assumptions (A0) — (A3) hold.
Then E° [72] < co.

Lemma 5 LetHi =0 (11; {Xt}ocper, s { (@ (-))i<r, }), then
under P° the conditional distribution of

({XT1+t - XTl}tZO ) {(w7'1+t ('7 '))tEO} ) {(O‘t ('))tZﬁ—l—l})

given Hi is same as the distribution of

({Xt}tzo ’ {(wt ('7 '))th} ) {(at ('))tZl}) .
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Main Idea for Proving the Annealed
Results

e The sequence of time (7,),,~; are defined inductively
by a

Tn41 =
Tn + T1 ((X7n+t)t20 ; {(an-l-t (- °))t20} ; {(O‘Tn+t ('))tzl}) )

starting from o = 0.

e Rerun of Lemma 5 will show that the pairs
(Tn — Tn-1, XTn - XTn—l)'n,Zl

are i.i.d. under PY,

e Rest follows from standard argument !
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Proof of Proposition 4

e Let {L(t)};>; be a fixed sequence of integers in-
creasing to oo and L(t) < t. We will choose appro-
priate value of L(t) later.

e Let 3; be the first time there is a run of length L(¢)
on non-zero e-coins ending at it, formally,

Br=inf{s> L) e == =ep =1}

e From definition of m; we get

P (11 > t)
P’ (B > t) +
P’ (B <t, 3x€Zs.t. ns (%) > B — s (X))

IA
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Continuing the proof ...

e Simple calculation shows

—0
P (Bt > t)
t—L(t)+1
|_ L(t) J
—0 C
< P ﬂ €jw+1 = " = €Grnyne = 1
j=0
t—L(t)+1

< <1_€L(t)) L

e For the other probability we observe
—0
P (B <t, Ax € Z? s.t. ng (x) > B — 5 (X))

e Z pd—1 =X (L()Vr)

r=0
— Z pd=1 | A L® 4 Z pd—1,=Ar
r<L(t) r>L(t)
where A = —log (1 — k) and the inequality follows

from the observation that

B — s (x) > L(t) V [x — Xg_r)l-
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Continuing the proof ...

e Recall the assumption (A3), k + &% > 1, thus we
can find 0 < § < 1 such that 2 > (1 — k)°. Taking

dlogt
log e

L(t) = {—

and using above estimates, we conclude,

C1
0
P ('7'1>t)§t2—_|_C

for some constants C'1,( > 0.
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Remarks on the Proof of the Quenched
Invariance Principle

e We use a technique introduced by Bolthausen and
Sznitman [2002].

e Let B := (X, —ntVv) /y/n, and B} be the polyg-

onal interpolation of (k/n) — B,

e Bolthausen and Sznitman technique says, that if
we have the annealed IP then the quenched IP will
follow if we can show that for all T > O,

> var . (B2 [ (37)]) <

for every Lipschitz function F on C ([0,T],R%) and
be(1,2].

e T0 check that the above sum of variances is finite,
we work with two walkers which are independent
given the environment, and then one needs to “con-
trol” the probability of intersection of paths. It is
precisely here while doing the estimates, we need
the “large” dimension assumption.
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