Problem Set for Extra Credit (Due: Friday, 6th December)

Instructor: Antar Bandyopadhyay

Note: There are 8 problems each with 10 points. Solve as many as you can. Maximum extra credit you can get from this problem set is 8 points for your final grading.

1. Suppose \(X \) and \(Y \) are i.i.d. \(N(0, 1) \) random variables. Let \((R, \Theta)\) be the polar coordinate of the random point \((X,Y) \in \mathbb{R}^2\). We have seen in the class that \(R^2 \) has a distribution such that \(R^2 \sim \text{Exponential}(1/2) \).
 (a) Show that \(\Theta \sim \text{Unif}(0, 2\pi) \). [5 points]
 (b) Let \(Z = (X + Y)/\sqrt{2} \) and \(W = (X - Y)/\sqrt{2} \), show that \(Z \) and \(W \) are independent. Find the marginal distributions of \(Z \) and \(W \). [5 points]

2. Let \(X \) be a random variable with a continuous density function \(f \) such that \(f(x) > 0 \) for all \(-\infty < x < \infty\). Let \(F \) be the CDF of \(X \).
 (a) Show that \(F^{-1} \) exists as a function from \((0, 1)\) to \(\mathbb{R} \). [2 points]
 (b) Let \(U \sim \text{Unif}(0,1) \), find the CDF of \(Y = F^{-1}(U) \). [4 points]
 (c) Find the distribution of \(W = F(X) \). [4 points]

3. Suppose you have a computer routine which can generate i.i.d. \(\text{Unif}(0,1) \) variables, as many as you want. \(\lambda > 0 \) is a given number.
 (a) Use this routine to generate one \(\text{Exponential}(\lambda) \) random variable. [2 points]
 (b) Use the same routine to generate one \(\text{Poisson}(\lambda) \) random variable. [8 points]

Note: by “generate” I mean, you have to give a procedure whose end result will have the desired distribution. Such procedures are called simulations. (Hint for (b): Think of a Poisson arrival process of rate \(\lambda \).)

4. It is a math fact that if \(Z \) is a non-negative random variable and \(E[Z] = 0 \) then \(P(Z = 0) = 1. \) Use this fact to show that if \((X,Y)\) are two random variables such that
 \[
 E[X | Y] = Y, \quad \text{and} \quad E[Y | X] = X.
 \]
 Then \(P(X = Y) = 1. \) (Hint: Take \(Z = (X - Y)^2 \) and compute \(E[Z] \).) [10 points]

5. Suppose there are \(n \) balls labeled \(\{1, 2, \ldots, n\} \), and \(n \) boxes labeled \(\{1, 2, \ldots, n\} \). Balls are being placed at random in the boxes. Any ball can go into any box, and a box may contain more than one ball. Let \(X \) be the number of empty boxes. Find \(\text{Var}(X) \) and \(E[X^2] \). (Hint: Use indicators as we did for the midterm problem.) [8 + 2 points]

6. Problem # 6.3.2 of the text. [10 points]
7. Problem # 6.3.4 of the text. [10 points]
8. Problem # 6.3.6 of the text. [10 points]