Syllabus for the Final Exam (December 11, 2002).

NOTE: The exam will be for 3 hours. The focus will only be on problem solving and not writing Mathematical proofs. This syllabus includes all that we did in class before and after the midterm.

Before the Midterm:

1. Chapter-1:
 (a) Section 1.1: Random experiments, outcomes, equally likely outcome, odds ratio, fair odds.
 (b) Section 1.2: Interpretation of probability, frequency interpretation, subjective viewpoint.
 (c) Section 1.3: Mathematical set up for probability, sample space, events, probability function, rules of probability, distributions. [pp 19 - 27].
 (d) Section 1.4: Conditional probabilities, multiplication rule, rule of average for conditional probabilities, independence of two events, tree diagram representation.
 (e) Section 1.5: Bayes’ rule.
 (f) Section 1.6: Many events, general multiplication rule, independence of many events, pairwise independence.

2. Chapter-2:
 (a) Section 2.1: Success-failure experiment, repeated trials, Binomial distribution, mode of Binomial, mean and standard deviation.
 (b) Section 2.2: Normal approximation to Binomial probabilities, De Moivre - Laplace Central Limit Theorem, continuity correction. [pp 93 - 100]
 (c) Section 2.4: Poisson approximation to Binomial probabilities, Poisson distribution.
 (d) Section 2.5: Sampling with and without replacement, Hypergeometric distribution.

3. Chapter-3:
 (a) Section 3.1: Random variables, definition, discrete random variables, examples, Bernoulli(p), Binomial(n, p), Hypergeometric(n; N, G), Geometric(p), Poisson(λ), Uniform on {1, 2, ..., n} etc. Distribution of a random variable. Joint distribution of two and many random variables, marginal distributions, independence. Indicator variable, calculus of indicators. Multinomial distribution.
 (b) Section 3.2: Expectation of a discrete random variable, examples, interpretation. Sum rule. Indicator method, expectation of a function, expectation of square. Independence and product rule.
 (c) Section 3.3: Expectation of a square, examples, definition of variance, standard deviation. Sum formula for independent random variables. Shifting and scaling, standardization. [pp 185 - 190]
 (d) Section 3.4: Geometric distribution, mean, variance, memory-less property.
 (e) Section 3.5: Poisson distribution, definition, mean, variance. [pp 222 - 223]
 (f) Section 3.6: Hypergeometric distribution, sampling without replacement, mean of Hypergeometric. [NO Symmetry]
After the Midterm :

1. Chapter-3 :
 (a) Section 3.2 : Tail estimates, Markov Inequality, Expectation of a function of a random variable.
 (b) Section 3.3 : Chebychev’s Inequality, Sums and averages of independent random variables, Law of Large Numbers (LLN), Normal approximation method in general, Central Limit Theorem (CLT). [NO Skewness.]
 (c) Section 3.5 : Sums of independent Poisson variables, Poisson Scatter. [pp 226 - 233]

2. Chapter-4 :
 (a) Section 4.1 : Continuous random variables, Uniform distribution, Normal distribution with mean μ and variance σ^2. Probability density function, interpretation. Expectation and variance. Independence of two or many continuous random variables. [pp 259 - 271]
 (b) Section 4.2 : Exponential distribution, memoryless property, mean and variance of Exponential distribution. Poisson Arrival Process of rate λ on $(0, \infty)$. Poisson, Exponential and Gamma distributions. Gamma distribution with non-integer shape parameter, Gamma function.
 (c) Section 4.4 : One-to-one change of variable formula for density computation.

3. Chapter-5 :
 (a) Section 5.1 : Continuous joint distribution, joint densities. Uniform distribution from a bounded area or volume.
 (b) Section 5.2 : Joint and marginal densities. Independence.
 (c) Section 5.3 : Independent Normal distributions, linear combinations, rotation of two independent normal coordinates. Rotational symmetry of two independent normal coordinates, polar transformation. Chi-Square distribution.
 (d) Section 5.4 : Sums of independent random variables. Convolution formula. Sums of independent Gamma distributions. Product and ratio of independent random variables. [NO Beta Integral].

4. Chapter-6 :
 (a) Section 6.1 : Conditional distribution in discrete case, rule of average. Multiplication rule. Independence.
 (b) Section 6.2 : Conditional expectation in discrete case, properties of conditional expectation. Law of iterated expectation.
 (d) Section 6.4 : Definition of Covariance of two random variables, variance sum formula. Independence and covariance. [NO Correlation].

Complete Sections of the book which are NOT included in the syllabus :
1. Chapter-2 : Section 2.3.
2. Chapter-4 : Section 4.3 and Section 4.6.
3. Chapter-6 : Section 6.5.